8 Commits

Author SHA1 Message Date
ae407ab3aa receiver: no change to protocol; revert temporary color-index handling; radiate uses ticks_us timing; development: ensure dev.py upload workflow retained 2025-10-04 01:10:46 +13:00
e516b49eb8 Add segmented_movement pattern with alternating forward/backward movement
- Add n4 parameter support to main.py ESP NOW receiver
- Implement segmented_movement pattern with configurable parameters:
  * n1: segment length (number of LEDs per segment)
  * n2: spacing between segments
  * n3: forward movement speed (positions per beat)
  * n4: backward movement speed (positions per beat)
- Pattern alternates between forward and backward movement each beat
- If only n3 or n4 is set, moves in that direction every beat
- Draws repeating segments with spacing across entire LED strip
- Add Pipfile script to run dev.py directly with arguments
2025-10-03 19:56:24 +13:00
355d113e32 Fix rainbow pattern synchronization in LED bar
- Use controller's step for synchronization instead of internal step counter
- Rainbow pattern now syncs with controller timing like n_chase pattern
- Prevents rainbow from running independently and out of sync
- Uses beat_index % 256 for full color wheel cycling
2025-09-19 01:29:48 +12:00
d715af4344 Fix n_chase pattern to properly chase through all LED positions
- Replace oscillating behavior with proper chasing movement
- Use pattern_step for internal tracking instead of controller's step
- Calculate position relative to chase head: (i - pattern_step) % num_leds
- Chase head moves through all LED positions with n3 step multiplier
- n1 controls width of lit chase segment
2025-09-19 00:22:25 +12:00
67c4a1a6f6 Update LED bar to handle message type field
- Process 't' field to distinguish between beat ('b') and update ('u') messages
- Beat messages: execute pattern immediately using current parameters
- Update messages: only update parameters, don't execute pattern
- Maintains backward compatibility with default to beat if 't' not specified
- Enables proper synchronization between controller and bars
2025-09-18 22:10:23 +12:00
748ad4b507 Add n3 step rate functionality to patterns 2025-09-18 20:35:21 +12:00
1275d60aaa Make alternating pattern timing independent of n1
- Changed alternating pattern to return delay/2 instead of delay
- Each phase now lasts delay/2, making full cycle equal to delay
- n1 now only controls ON/OFF segment width, not timing
2025-09-18 19:11:35 +12:00
d8e853183b main: enforce event-driven behavior; run selected pattern once per message; clarify comments; fix pattern lookup 2025-09-17 20:20:41 +12:00
7 changed files with 346 additions and 48 deletions

71
8_BAR_SETUP.md Normal file
View File

@@ -0,0 +1,71 @@
# 8-LED Bar System Setup
This system supports 8 LED bars working together, each with unique names "100" through "107".
## Quick Setup
### 1. Configure Each LED Bar
Each LED bar needs a unique name. Run the configuration script on each bar:
```bash
python configure_bar.py
```
Then enter the bar name (100, 101, 102, etc.) when prompted.
### 2. Update Bar Names (Optional)
To change the bar names, edit `/home/jimmy/projects/lighting-controller/src/bar_config.py`:
```python
LED_BAR_NAMES = [
"100", # Bar 1
"101", # Bar 2
"102", # Bar 3
"103", # Bar 4
"104", # Bar 5
"105", # Bar 6
"106", # Bar 7
"107", # Bar 8
]
```
### 3. Default Settings
All bars use the same default settings defined in `bar_config.py`:
```python
DEFAULT_BAR_SETTINGS = {
"pattern": "pulse",
"delay": 100,
"colors": [(0, 255, 0)], # Default green
"brightness": 100,
"num_leds": 200,
"n1": 10,
"n2": 10,
"n3": 1,
"n": 0,
}
```
## How It Works
1. **Lighting Controller** sends ESP-NOW messages to all bars simultaneously
2. **Each LED Bar** listens for messages addressed to its unique name
3. **All bars** receive the same pattern/color/brightness settings
4. **Synchronized effects** across all 8 bars
## Current Features
- ✅ All bars show the same pattern simultaneously
- ✅ Individual bar addressing (100-107)
- ✅ Optimized JSON payloads with defaults deduplication
- ✅ Easy configuration via `bar_config.py`
- ✅ MIDI control for all bars
- ✅ n3 step rate functionality
## Future Enhancements
- Sequential patterns (bar 1 → bar 2 → bar 3...)
- Wave effects across bars
- Individual bar control
- Master/slave synchronization
- Physical arrangement awareness

View File

@@ -16,4 +16,4 @@ uvicorn = "*"
python_version = "3.12"
[scripts]
dev = 'watchfiles "./dev.py /dev/ttyACM0 src reset follow"'
dev = "./dev.py"

58
configure_bar.py Normal file
View File

@@ -0,0 +1,58 @@
#!/usr/bin/env python3
"""
LED Bar Configuration Script
Updates the settings.json file for each LED bar with its unique name
"""
import json
import os
# LED Bar names/IDs
LED_BAR_NAMES = ["100", "101", "102", "103", "104", "105", "106", "107"]
def update_bar_settings(bar_name, settings_file="settings.json"):
"""Update the settings.json file with the bar name"""
if not os.path.exists(settings_file):
print(f"Error: {settings_file} not found")
return False
# Read current settings
with open(settings_file, 'r') as f:
settings = json.load(f)
# Update the name
settings["name"] = bar_name
# Write back to file
with open(settings_file, 'w') as f:
json.dump(settings, f, indent=4)
print(f"Updated {settings_file} with name: {bar_name}")
return True
def main():
print("LED Bar Configuration Script")
print("=" * 40)
print("Available bar names:", LED_BAR_NAMES)
print()
while True:
print("Enter bar name to configure (or 'quit' to exit):")
bar_name = input("> ").strip()
if bar_name.lower() == 'quit':
break
if bar_name not in LED_BAR_NAMES:
print(f"Invalid bar name. Must be one of: {LED_BAR_NAMES}")
continue
if update_bar_settings(bar_name):
print(f"Successfully configured LED bar as '{bar_name}'")
else:
print("Failed to update settings")
print()
if __name__ == "__main__":
main()

View File

@@ -1,5 +1,4 @@
import asyncio
import aioespnow
import patterns
from settings import Settings
from web import web
@@ -18,44 +17,73 @@ def main():
settings = Settings()
print(settings)
if settings.get("color_order", "rgb") == "rbg":
color_order = (1, 5, 3)
else:
color_order = (1, 3, 5)
patterns = Patterns(settings["led_pin"], settings["num_leds"], selected="off")
sta_if = network.WLAN(network.STA_IF)
sta_if.active(True)
e = espnow.ESPNow()
e.config(rxbuf=1024)
e.active(True)
# Increase buffer size for 8-bar payloads (default 526 bytes might be too small) # Set to 1KB to handle larger multi-bar payloads
wdt = machine.WDT(timeout=10000)
wdt.feed()
while True:
# patterns.tick()
# advance pattern based on its own returned schedule
# due = patterns.tick(due)
wdt.feed()
host, msg = e.recv(0)
if msg:
try:
data = json.loads(msg)
print(data)
# Drain all pending packets and only process the latest
last_msg = None
while True:
host, msg = e.recv(0)
if not msg:
break
last_msg = msg
if last_msg:
try:
data = json.loads(last_msg)
print(data)
defaults = data.get("d", {})
bar = data.get(settings.get("name"), {})
patterns.brightness = bar.get("brightness", defaults.get("brightness", patterns.brightness))
patterns.delay = bar.get("delay", defaults.get("delay", patterns.delay))
colors = bar.get("colors", defaults.get("colors", patterns.colors))
patterns.colors = [tuple(int(color[i:i+2], 16) for i in settings.color_order) for color in colors]
# patterns.select(bar.get("pattern", defaults.get("pattern", "off")))
# Check message type
message_type = defaults.get("t", "b") # Default to beat if not specified
# Always update parameters from message
patterns.brightness = bar.get("br", defaults.get("br", patterns.brightness))
patterns.delay = bar.get("dl", defaults.get("dl", patterns.delay))
patterns.colors = bar.get("cl", defaults.get("cl", patterns.colors))
patterns.n1 = bar.get("n1", defaults.get("n1", patterns.n1))
patterns.n2 = bar.get("n2", defaults.get("n2", patterns.n2))
patterns.step = bar.get("pattern_step", defaults.get("step", patterns.step))
selected_pattern = bar.get("pattern", defaults.get("pattern", "off"))
if selected_pattern in patterns.patterns:
patterns.patterns[selected_pattern]()
else:
print(f"Pattern {selected_pattern} not found")
patterns.n3 = bar.get("n3", defaults.get("n3", patterns.n3))
patterns.n4 = bar.get("n4", defaults.get("n4", patterns.n4))
patterns.step = bar.get("s", defaults.get("s", patterns.step))
except:
print(f"Failed to load espnow data {msg}")
# Print received parameters
print(f"Params: br={patterns.brightness}, dl={patterns.delay}, n1={patterns.n1}, n2={patterns.n2}, n3={patterns.n3}, n4={patterns.n4}, step={patterns.step}")
# Only execute pattern if it's a beat message
if message_type == "b": # Beat message
selected_pattern = bar.get("pt", defaults.get("pt", "off"))
if selected_pattern in patterns.patterns:
# Run the selected pattern ONCE in response to this beat message
patterns.patterns[selected_pattern]()
else:
print(f"Pattern {selected_pattern} not found")
elif message_type == "u": # Update message
# Just update parameters, don't execute pattern
print(f"Parameters updated: brightness={patterns.brightness}, delay={patterns.delay}")
else:
print(f"Unknown message type: {message_type}")
except Exception as ex:
print(f"Failed to load espnow data {last_msg}: {ex}")
continue

View File

@@ -12,8 +12,12 @@ class Patterns(PatternBase): # Inherit from PatternBase
self.off_width = 2 # Default off width (so total segment is 3, matching original behavior)
self.n1 = 0 # Default start of fill range
self.n2 = self.num_leds - 1 # Default end of fill range
self.n3 = 1 # Default step factor
self.n4 = 0
self.oneshot = False # New: One-shot flag for patterns like fill_range
self.patterns = {
"on": self.on,
"off": self.off,
"flicker": self.flicker,
"fill_range": self.fill_range,
"n_chase": self.n_chase,
@@ -22,21 +26,47 @@ class Patterns(PatternBase): # Inherit from PatternBase
"rainbow": self.rainbow,
"specto": self.specto,
"radiate": self.radiate,
"segmented_movement": self.segmented_movement,
# Shortened pattern names for optimized JSON payloads
"o": self.off,
"f": self.flicker,
"fr": self.fill_range,
"nc": self.n_chase,
"a": self.alternating,
"p": self.pulse,
"r": self.rainbow,
"s": self.specto,
"rd": self.radiate,
"sm": self.segmented_movement,
}
self.step = 0
def on(self):
"""Turn on all LEDs with current color"""
self.fill(self.apply_brightness(self.colors[0]))
self.n.write()
return self.delay
def off(self):
"""Turn off all LEDs"""
self.fill((0, 0, 0))
self.n.write()
return self.delay
def flicker(self):
current_time = utime.ticks_ms()
base_color = self.colors[0]
# Increase the range for flicker_brightness_offset
# Changed from self.brightness // 4 to self.brightness // 2 (or even self.brightness for max intensity)
# Use fixed minimum brightness of 10, flicker between 10 and full brightness
# Use n3 as step rate multiplier to control how fast patterns step
min_brightness = 10
step_rate = max(1, int(self.n3))
flicker_brightness_offset = random.randint(-int(self.brightness // 1.5), int(self.brightness // 1.5))
flicker_brightness = max(0, min(255, self.brightness + flicker_brightness_offset))
flicker_brightness = max(min_brightness, min(255, self.brightness + flicker_brightness_offset))
flicker_color = self.apply_brightness(base_color, brightness_override=flicker_brightness)
self.fill(flicker_color)
self.last_update = current_time
return max(1, int(self.delay // 5))
return max(1, int(self.delay // (5 * step_rate)))
def fill_range(self):
"""
@@ -61,6 +91,7 @@ class Patterns(PatternBase): # Inherit from PatternBase
A theater chase pattern using n1 for on-width and n2 for off-width.
"""
current_time = utime.ticks_ms()
step_rate = max(1, int(self.n3))
segment_length = self.n1 + self.n2
if segment_length == 0: # Avoid division by zero
self.fill((0,0,0))
@@ -68,13 +99,19 @@ class Patterns(PatternBase): # Inherit from PatternBase
self.last_update = current_time
return self.delay
# Use controller's step for synchronization, but scale it for chasing
chase_step = (self.step * step_rate) % self.num_leds
for i in range(self.num_leds):
if (i + self.pattern_step) % segment_length < self.n1:
# Calculate position relative to the chase head
pos_from_head = (i - chase_step) % self.num_leds
if pos_from_head < self.n1:
self.n[i] = self.apply_brightness(self.colors[0])
else:
self.n[i] = (0, 0, 0)
self.n.write()
self.pattern_step = (self.pattern_step + 1) % segment_length
# Don't update internal step - use controller's step for sync
self.last_update = current_time
return self.delay
@@ -108,8 +145,8 @@ class Patterns(PatternBase): # Inherit from PatternBase
self.n[i] = active_color
self.n.write()
self.step = (self.step + 1) % 2
return self.delay
# Don't update step - use the step value sent from controller for synchronization
return max(1, int(self.delay // 2))
def pulse(self):
@@ -166,11 +203,16 @@ class Patterns(PatternBase): # Inherit from PatternBase
pos -= 170
return (0, pos * 3, 255 - pos * 3)
step_rate = max(1, int(self.n3))
# Use controller's step for synchronization, scaled for rainbow cycling
rainbow_step = (self.step * step_rate) % 256
for i in range(self.num_leds):
rc_index = (i * 256 // max(1, self.num_leds)) + self.pattern_step
rc_index = (i * 256 // max(1, self.num_leds)) + rainbow_step
self.n[i] = self.apply_brightness(wheel(rc_index & 255))
self.n.write()
self.pattern_step = (self.pattern_step + 1) % 256
# Don't update internal step - use controller's step for sync
return max(1, int(self.delay // 5))
def specto(self):
@@ -221,8 +263,8 @@ class Patterns(PatternBase): # Inherit from PatternBase
if lit_total >= self.num_leds:
break
# wait self.delay ms before next ring
start = utime.ticks_ms()
while utime.ticks_diff(utime.ticks_ms(), start) < self.delay:
start = utime.ticks_us()
while utime.ticks_diff(utime.ticks_us(), start) < self.delay:
pass
radius += 1
@@ -237,8 +279,8 @@ class Patterns(PatternBase): # Inherit from PatternBase
if 0 <= right < self.num_leds:
self.n[right] = (0, 0, 0)
self.n.write()
start = utime.ticks_ms()
while utime.ticks_diff(utime.ticks_ms(), start) < self.delay:
start = utime.ticks_us()
while utime.ticks_diff(utime.ticks_us(), start) < self.delay:
pass
# ensure all LEDs are off at completion
@@ -247,6 +289,112 @@ class Patterns(PatternBase): # Inherit from PatternBase
self.run = False
return self.delay
def segmented_movement(self):
"""
Segmented movement pattern that alternates forward and backward.
Parameters:
n1: Number of LEDs per segment
n2: Spacing between segments (currently unused)
n3: Forward movement steps per beat
n4: Backward movement steps per beat
Movement: Alternates between moving forward n3 steps and backward n4 steps each beat.
"""
try:
# Get parameters
segment_length = max(1, int(self.n1)) if hasattr(self, 'n1') else 3
segment_spacing = max(0, int(self.n2)) if hasattr(self, 'n2') else 2
forward_step = max(0, int(self.n3)) if hasattr(self, 'n3') else 1
backward_step = max(0, int(self.n4)) if hasattr(self, 'n4') else 0
# Initialize position tracking if not exists
if not hasattr(self, '_sm_position'):
self._sm_position = 0
self._sm_last_step = -1
# Check if this is a new beat (step changed)
if self.step != self._sm_last_step:
# Alternate between forward and backward movement
if self.step % 2 == 0:
# Even steps: move forward (if n3 > 0)
if forward_step > 0:
self._sm_position += forward_step
direction = "FWD"
elif backward_step > 0:
# If no forward, still move backward
self._sm_position -= backward_step
direction = "BWD"
else:
direction = "NONE"
else:
# Odd steps: move backward (if n4 > 0)
if backward_step > 0:
self._sm_position -= backward_step
direction = "BWD"
elif forward_step > 0:
# If no backward, still move forward
self._sm_position += forward_step
direction = "FWD"
else:
direction = "NONE"
# Wrap position around strip length
strip_length = self.num_leds + segment_length
self._sm_position = self._sm_position % strip_length
# Update last step
self._sm_last_step = self.step
# DEBUG: Print every beat
if self.step % 5 == 0:
print(f"SM: step={self.step}, dir={direction}, n3={forward_step}, n4={backward_step}, pos={self._sm_position}")
# Clear all LEDs
self.fill((0, 0, 0))
# Get color
color = self.apply_brightness(self.colors[0])
# Calculate segment width (segment + spacing)
segment_width = segment_length + segment_spacing
# Draw multiple segments across the strip
if segment_width > 0:
base_position = int(self._sm_position) % segment_width
# Draw segments starting from base_position
current_pos = base_position
while current_pos < self.num_leds:
# Draw segment from current_pos to current_pos + segment_length
segment_end = min(current_pos + segment_length, self.num_leds)
for i in range(max(0, current_pos), segment_end):
self.n[i] = color
# Move to next segment position
current_pos += segment_width
# Handle wrap-around: draw segments that start before 0
wrap_position = base_position - segment_width
while wrap_position > -segment_length:
if wrap_position < 0:
# Partial segment at start
segment_end = min(wrap_position + segment_length, self.num_leds)
for i in range(0, segment_end):
self.n[i] = color
wrap_position -= segment_width
self.n.write()
return self.delay
except Exception as e:
# DEBUG: Print error
print(f"SM Error: {e}")
# If anything goes wrong, turn off LEDs and return
self.fill((0, 0, 0))
self.n.write()
return self.delay
if __name__ == "__main__":
import time

View File

@@ -13,10 +13,10 @@ class Settings(dict):
else: self.color_order = (1, 3, 5)
def set_defaults(self):
self["led_pin"] = 4
self["num_leds"] = 100
self["led_pin"] = 10
self["num_leds"] = 119
self["color_order"] = "rgb"
self["name"] = f"3"
self["name"] = f"104"
def save(self):
try:

View File

@@ -18,10 +18,6 @@ PATTERN_SUITE = [
{"pattern": "n_chase", "n1": 5, "n2": 5, "delay": 250, "iterations": 40, "repeat_delay": 120, "colors": ["#00ff88"]},
{"pattern": "alternating", "n1": 6, "n2": 6, "delay": 300, "iterations": 20, "repeat_delay": 300, "colors": ["#ff8800"]},
{"pattern": "pulse", "delay": 200, "iterations": 6, "repeat_delay": 300, "colors": ["#ffffff"]},
# Specto sweep demo: increase n1 from 0 to 30 repeatedly
{"pattern": "specto", "delay": 80, "iterations": 32, "repeat_delay": 80, "colors": ["#00ff00"], "n1_sequence": list(range(0, 31)) + [30]},
# Radiate demo: origins every 8 LEDs, moderate speed
{"pattern": "radiate", "delay": 60, "iterations": 6, "repeat_delay": 600, "colors": ["#ffffff"], "n1": 8},
]
@@ -74,9 +70,6 @@ async def run_suite(uri: str):
interval_ms = int(cfg.get("interval_ms", cfg.get("delay", 100) or 100))
repeat_ms = int(cfg.get("repeat_delay", interval_ms))
for i in range(iterations):
# Optional per-iteration n1 for specto
seq = cfg.get("n1_sequence")
n1_val = (seq[i % len(seq)] if seq else cfg.get("n1"))
msg = build_message(
cfg.get("pattern", "off"),
i,
@@ -84,7 +77,7 @@ async def run_suite(uri: str):
colors=cfg.get("colors"),
brightness=cfg.get("brightness", 127),
num_leds=cfg.get("num_leds"),
n1=n1_val,
n1=cfg.get("n1"),
n2=cfg.get("n2"),
name=cfg.get("name", "0"),
pattern_step=cfg.get("pattern_step"),