Compare commits
32 Commits
web
...
af711bfb98
| Author | SHA1 | Date | |
|---|---|---|---|
| af711bfb98 | |||
| 4d4b91e40d | |||
| b864f166cb | |||
| 05828833e0 | |||
| ce1db86fb6 | |||
| 43bd90f137 | |||
| d45846ec74 | |||
| 6ae6189519 | |||
| f53c57f036 | |||
| 47837c00e5 | |||
| 251b27133f | |||
| 10b6e5ee89 | |||
| 33aee7a3af | |||
| 501fd37def | |||
| fe2717f51d | |||
| a17380c250 | |||
| fb51d65077 | |||
| ca80f6a3f5 | |||
| 66bfc80771 | |||
| 3855e76da1 | |||
| 3c3a2a0fb7 | |||
| 4dacd8ca38 | |||
| 3dae9363e7 | |||
| 1962638b81 | |||
| 4f413ee4ff | |||
| 2b0b83f981 | |||
| 1d82ea6a91 | |||
| f17dd302da | |||
| 846d574ad6 | |||
| f8851d2e7c | |||
| 12e242724e | |||
| 44cb35d1aa |
1
.gitignore
vendored
1
.gitignore
vendored
@@ -1,2 +1,3 @@
|
||||
settings.json
|
||||
.venv
|
||||
__pycache__
|
||||
2
dev.py
2
dev.py
@@ -28,6 +28,8 @@ for cmd in sys.argv[1:]:
|
||||
if ser.in_waiting > 0: # Check if there is data in the buffer
|
||||
data = ser.readline().decode('utf-8').strip() # Read and decode the data
|
||||
print(data)
|
||||
case "clean":
|
||||
subprocess.call(["mpremote", "connect", port, "fs", "rm", ":/settings.json"])
|
||||
|
||||
|
||||
|
||||
|
||||
34
src/main.py
34
src/main.py
@@ -15,36 +15,38 @@ async def main():
|
||||
settings = Settings()
|
||||
|
||||
patterns = Patterns(settings["led_pin"], settings["num_leds"], selected=settings["pattern"])
|
||||
if settings["color_order"] == "rbg": color_order = (1, 5, 3)
|
||||
else: color_order = (1, 3, 5)
|
||||
patterns.set_color1(tuple(int(settings["color1"][i:i+2], 16) for i in color_order))
|
||||
patterns.set_color2(tuple(int(settings["color2"][i:i+2], 16) for i in color_order))
|
||||
patterns.set_brightness(int(settings["brightness"]))
|
||||
patterns.set_delay(int(settings["delay"]))
|
||||
|
||||
patterns.colors = [(8,0,0)]
|
||||
|
||||
async def tick():
|
||||
while True:
|
||||
patterns.tick()
|
||||
await asyncio.sleep_ms(0)
|
||||
# Initialize WDT only if debug is disabled
|
||||
wdt = None
|
||||
if not settings.get("debug", False):
|
||||
wdt = machine.WDT(timeout=10000)
|
||||
wdt.feed()
|
||||
print("Watchdog timer enabled")
|
||||
else:
|
||||
print("Debug mode: Watchdog timer disabled")
|
||||
|
||||
async def system():
|
||||
while True:
|
||||
gc.collect()
|
||||
for i in range(60):
|
||||
wdt.feed()
|
||||
await asyncio.sleep(1)
|
||||
if wdt is not None:
|
||||
for i in range(60):
|
||||
wdt.feed()
|
||||
await asyncio.sleep(1)
|
||||
else:
|
||||
# If WDT is disabled, just sleep
|
||||
await asyncio.sleep(60)
|
||||
|
||||
w = web(settings, patterns)
|
||||
print(settings)
|
||||
# start the server in a bacakground task
|
||||
print("Starting")
|
||||
server = asyncio.create_task(w.start_server(host="0.0.0.0", port=80))
|
||||
wdt = machine.WDT(timeout=10000)
|
||||
wdt.feed()
|
||||
|
||||
asyncio.create_task(tick())
|
||||
asyncio.create_task(p2p(settings, patterns))
|
||||
asyncio.create_task(system())
|
||||
await patterns.run()
|
||||
|
||||
|
||||
|
||||
|
||||
10
src/p2p.py
10
src/p2p.py
@@ -11,10 +11,6 @@ async def p2p(settings, patterns):
|
||||
except:
|
||||
print(f"Failed to load espnow data {msg}")
|
||||
continue
|
||||
print(data)
|
||||
if "names" not in data or settings.get("name") in data.get("names", []):
|
||||
if "step" in settings and isinstance(settings["step"], int):
|
||||
patterns.set_pattern_step(settings["step"])
|
||||
else:
|
||||
settings.set_settings(data.get("settings", {}), patterns, data.get("save", False))
|
||||
print("should not print")
|
||||
|
||||
if "names" not in data or settings.get("name") in data.get("names", []):
|
||||
await settings.set_settings(data.get("settings", {}), patterns, data.get("save", False))
|
||||
793
src/patterns.py
793
src/patterns.py
@@ -2,395 +2,446 @@ from machine import Pin
|
||||
from neopixel import NeoPixel
|
||||
import utime
|
||||
import random
|
||||
import _thread
|
||||
import asyncio
|
||||
from patterns_base import Patterns as PatternsBase
|
||||
|
||||
class Patterns:
|
||||
def __init__(self, pin, num_leds, color1=(0,0,0), color2=(0,0,0), brightness=127, selected="rainbow_cycle", delay=100):
|
||||
self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds)
|
||||
self.num_leds = num_leds
|
||||
self.pattern_step = 0
|
||||
self.last_update = utime.ticks_ms()
|
||||
self.delay = delay
|
||||
self.brightness = brightness
|
||||
# Short-key parameter mapping for convenience setters
|
||||
param_mapping = {
|
||||
"pt": "selected",
|
||||
"pa": "selected",
|
||||
"cl": "colors",
|
||||
"br": "brightness",
|
||||
"dl": "delay",
|
||||
"nl": "num_leds",
|
||||
"co": "color_order",
|
||||
"lp": "led_pin",
|
||||
"n1": "n1",
|
||||
"n2": "n2",
|
||||
"n3": "n3",
|
||||
"n4": "n4",
|
||||
"n5": "n5",
|
||||
"n6": "n6",
|
||||
"auto": "auto",
|
||||
}
|
||||
|
||||
class Patterns(PatternsBase):
|
||||
def __init__(self, pin, num_leds, color1=(0,0,0), color2=(0,0,0), brightness=127, selected="off", delay=100):
|
||||
super().__init__(pin, num_leds, color1, color2, brightness, selected, delay)
|
||||
self.auto = True
|
||||
self.step = 0
|
||||
self.patterns = {
|
||||
"off": self.off,
|
||||
"on" : self.on,
|
||||
"color_wipe": self.color_wipe_step,
|
||||
"rainbow_cycle": self.rainbow_cycle_step,
|
||||
"theater_chase": self.theater_chase_step,
|
||||
"blink": self.blink_step,
|
||||
"color_transition": self.color_transition_step, # Added new pattern
|
||||
"flicker": self.flicker_step,
|
||||
"scanner": self.scanner_step, # New: Single direction scanner
|
||||
"bidirectional_scanner": self.bidirectional_scanner_step, # New: Bidirectional scanner
|
||||
"external": None
|
||||
"blink": self.blink,
|
||||
"rainbow": self.rainbow,
|
||||
"pulse": self.pulse,
|
||||
"transition": self.transition,
|
||||
"chase": self.n_chase,
|
||||
"n_chase": self.n_chase,
|
||||
"circle": self.circle,
|
||||
}
|
||||
self.selected = selected
|
||||
# Ensure colors list always starts with at least two for robust transition handling
|
||||
self.colors = [color1, color2] if color1 != color2 else [color1, (255, 255, 255)] # Fallback if initial colors are same
|
||||
if not self.colors: # Ensure at least one color exists
|
||||
self.colors = [(0, 0, 0)]
|
||||
|
||||
self.transition_duration = delay * 50 # Default transition duration
|
||||
self.hold_duration = delay * 10 # Default hold duration at each color
|
||||
self.transition_step = 0 # Current step in the transition
|
||||
self.current_color_idx = 0 # Index of the color currently being held/transitioned from
|
||||
self.current_color = self.colors[self.current_color_idx] # The actual blended color
|
||||
|
||||
self.hold_start_time = utime.ticks_ms() # Time when the current color hold started
|
||||
|
||||
# New attributes for scanner patterns
|
||||
self.scanner_direction = 1 # 1 for forward, -1 for backward
|
||||
self.scanner_tail_length = 3 # Number of trailing pixels
|
||||
|
||||
def sync(self):
|
||||
self.pattern_step=0
|
||||
self.last_update = utime.ticks_ms() - self.delay
|
||||
if self.selected == "color_transition":
|
||||
self.transition_step = 0
|
||||
self.current_color_idx = 0
|
||||
self.current_color = self.colors[self.current_color_idx]
|
||||
self.hold_start_time = utime.ticks_ms() # Reset hold time
|
||||
# Reset scanner specific variables
|
||||
self.scanner_direction = 1
|
||||
self.tick()
|
||||
|
||||
def set_pattern_step(self, step):
|
||||
self.pattern_step = step
|
||||
|
||||
def tick(self):
|
||||
if self.patterns[self.selected]:
|
||||
self.patterns[self.selected]()
|
||||
|
||||
def update_num_leds(self, pin, num_leds):
|
||||
self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds)
|
||||
self.num_leds = num_leds
|
||||
self.pattern_step = 0
|
||||
|
||||
def set_delay(self, delay):
|
||||
self.delay = delay
|
||||
# Update transition duration and hold duration when delay changes
|
||||
self.transition_duration = self.delay * 50
|
||||
self.hold_duration = self.delay * 10
|
||||
|
||||
|
||||
def set_brightness(self, brightness):
|
||||
self.brightness = brightness
|
||||
|
||||
def set_color1(self, color):
|
||||
if len(self.colors) > 0:
|
||||
self.colors[0] = color
|
||||
if self.selected == "color_transition":
|
||||
# If the first color is changed, potentially reset transition
|
||||
# to start from this new color if we were about to transition from it
|
||||
if self.current_color_idx == 0:
|
||||
self.transition_step = 0
|
||||
self.current_color = self.colors[0]
|
||||
self.hold_start_time = utime.ticks_ms()
|
||||
else:
|
||||
self.colors.append(color)
|
||||
|
||||
|
||||
def set_color2(self, color):
|
||||
if len(self.colors) > 1:
|
||||
self.colors[1] = color
|
||||
elif len(self.colors) == 1:
|
||||
self.colors.append(color)
|
||||
else: # List is empty
|
||||
self.colors.append((0,0,0)) # Dummy color
|
||||
self.colors.append(color)
|
||||
|
||||
|
||||
def set_colors(self, colors):
|
||||
if colors and len(colors) >= 2:
|
||||
self.colors = colors
|
||||
if self.selected == "color_transition":
|
||||
self.sync() # Reset transition if new color list is provided
|
||||
elif colors and len(colors) == 1:
|
||||
self.colors = [colors[0], (255,255,255)] # Add a default second color
|
||||
if self.selected == "color_transition":
|
||||
print("Warning: 'color_transition' requires at least two colors. Adding a default second color.")
|
||||
self.sync()
|
||||
else:
|
||||
print("Error: set_colors requires a list of at least one color.")
|
||||
self.colors = [(0,0,0), (255,255,255)] # Fallback
|
||||
if self.selected == "color_transition":
|
||||
self.sync()
|
||||
|
||||
def set_color(self, num, color):
|
||||
# Changed: More robust index check
|
||||
if 0 <= num < len(self.colors):
|
||||
self.colors[num] = color
|
||||
# If the changed color is part of the current or next transition,
|
||||
# restart the transition for smoother updates
|
||||
if self.selected == "color_transition":
|
||||
current_from_idx = self.current_color_idx
|
||||
current_to_idx = (self.current_color_idx + 1) % len(self.colors)
|
||||
if num == current_from_idx or num == current_to_idx:
|
||||
# If we change a color involved in the current transition,
|
||||
# it's best to restart the transition state for smoothness.
|
||||
self.transition_step = 0
|
||||
self.current_color_idx = current_from_idx # Stay at the current starting color
|
||||
self.current_color = self.colors[self.current_color_idx]
|
||||
self.hold_start_time = utime.ticks_ms() # Reset hold
|
||||
return True
|
||||
elif num == len(self.colors): # Allow setting a new color at the end
|
||||
self.colors.append(color)
|
||||
return True
|
||||
return False
|
||||
|
||||
def add_color(self, color):
|
||||
self.colors.append(color)
|
||||
if self.selected == "color_transition" and len(self.colors) == 2:
|
||||
# If we just added the second color needed for transition
|
||||
self.sync()
|
||||
|
||||
|
||||
def del_color(self, num):
|
||||
# Changed: More robust index check and using del for lists
|
||||
if 0 <= num < len(self.colors):
|
||||
del self.colors[num]
|
||||
# If the color being deleted was part of the current transition,
|
||||
# re-evaluate the current_color_idx
|
||||
if self.selected == "color_transition":
|
||||
if len(self.colors) < 2: # Need at least two colors for transition
|
||||
print("Warning: Not enough colors for 'color_transition'. Switching to 'on'.")
|
||||
self.select("on") # Or some other default
|
||||
else:
|
||||
# Adjust index if it's out of bounds after deletion or was the one transitioning from
|
||||
self.current_color_idx %= len(self.colors)
|
||||
self.transition_step = 0
|
||||
self.current_color = self.colors[self.current_color_idx]
|
||||
self.hold_start_time = utime.ticks_ms()
|
||||
return True
|
||||
return False
|
||||
|
||||
def apply_brightness(self, color, brightness_override=None):
|
||||
effective_brightness = brightness_override if brightness_override is not None else self.brightness
|
||||
return tuple(int(c * effective_brightness / 255) for c in color)
|
||||
|
||||
def select(self, pattern):
|
||||
if pattern in self.patterns:
|
||||
self.selected = pattern
|
||||
self.sync() # Reset pattern state when selecting a new pattern
|
||||
if pattern == "color_transition":
|
||||
if len(self.colors) < 2:
|
||||
print("Warning: 'color_transition' requires at least two colors. Switching to 'on'.")
|
||||
self.selected = "on" # Fallback if not enough colors
|
||||
self.sync() # Re-sync for the new pattern
|
||||
def blink(self):
|
||||
self.stopped = False
|
||||
self.running = True
|
||||
state = True # True = on, False = off
|
||||
last_update = utime.ticks_ms()
|
||||
|
||||
# Only continue running this pattern while it is the selected one
|
||||
while self.running and self.selected == "blink":
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, last_update) >= self.delay:
|
||||
if state:
|
||||
self.fill(self.apply_brightness(self.colors[0]))
|
||||
else:
|
||||
self.transition_step = 0
|
||||
self.current_color_idx = 0 # Start from the first color in the list
|
||||
self.current_color = self.colors[self.current_color_idx]
|
||||
self.hold_start_time = utime.ticks_ms() # Reset hold timer
|
||||
self.transition_duration = self.delay * 50 # Initialize transition duration
|
||||
self.hold_duration = self.delay * 10 # Initialize hold duration
|
||||
return True
|
||||
return False
|
||||
self.fill((0, 0, 0))
|
||||
state = not state
|
||||
last_update = current_time
|
||||
self.running = False
|
||||
self.stopped = True
|
||||
|
||||
def set(self, i, color):
|
||||
self.n[i] = color
|
||||
|
||||
def write(self):
|
||||
self.n.write()
|
||||
|
||||
def fill(self, color=None):
|
||||
fill_color = color if color is not None else self.colors[0]
|
||||
for i in range(self.num_leds):
|
||||
self.n[i] = fill_color
|
||||
self.n.write()
|
||||
|
||||
def off(self):
|
||||
self.fill((0, 0, 0))
|
||||
|
||||
def on(self):
|
||||
self.fill(self.apply_brightness(self.colors[0]))
|
||||
|
||||
def color_wipe_step(self):
|
||||
color = self.apply_brightness(self.colors[0])
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
|
||||
if self.pattern_step < self.num_leds:
|
||||
for i in range(self.num_leds):
|
||||
self.n[i] = (0, 0, 0)
|
||||
self.n[self.pattern_step] = self.apply_brightness(color)
|
||||
self.n.write()
|
||||
self.pattern_step += 1
|
||||
else:
|
||||
self.pattern_step = 0
|
||||
self.last_update = current_time
|
||||
|
||||
def rainbow_cycle_step(self):
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay/5:
|
||||
def wheel(pos):
|
||||
if pos < 85:
|
||||
return (pos * 3, 255 - pos * 3, 0)
|
||||
elif pos < 170:
|
||||
pos -= 85
|
||||
return (255 - pos * 3, 0, pos * 3)
|
||||
else:
|
||||
pos -= 170
|
||||
return (0, pos * 3, 255 - pos * 3)
|
||||
|
||||
def rainbow(self):
|
||||
self.stopped = False
|
||||
self.running = True
|
||||
step = self.step % 256
|
||||
step_amount = max(1, int(self.n1)) # n1 controls step increment
|
||||
|
||||
# If auto is False, run once and update step
|
||||
if not self.auto:
|
||||
for i in range(self.num_leds):
|
||||
rc_index = (i * 256 // self.num_leds) + self.pattern_step
|
||||
self.n[i] = self.apply_brightness(wheel(rc_index & 255))
|
||||
rc_index = (i * 256 // self.num_leds) + step
|
||||
self.n[i] = self.apply_brightness(self.wheel(rc_index & 255))
|
||||
self.n.write()
|
||||
self.pattern_step = (self.pattern_step + 1) % 256
|
||||
self.last_update = current_time
|
||||
|
||||
def theater_chase_step(self):
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
|
||||
for i in range(self.num_leds):
|
||||
if (i + self.pattern_step) % 3 == 0:
|
||||
self.n[i] = self.apply_brightness(self.colors[0])
|
||||
else:
|
||||
self.n[i] = (0, 0, 0)
|
||||
self.n.write()
|
||||
self.pattern_step = (self.pattern_step + 1) % 3
|
||||
self.last_update = current_time
|
||||
|
||||
def blink_step(self):
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
|
||||
if self.pattern_step % 2 == 0:
|
||||
self.fill(self.apply_brightness(self.colors[0]))
|
||||
else:
|
||||
self.fill((0, 0, 0))
|
||||
self.pattern_step = (self.pattern_step + 1) % 2
|
||||
self.last_update = current_time
|
||||
|
||||
def color_transition_step(self):
|
||||
current_time = utime.ticks_ms()
|
||||
|
||||
# Check for hold duration first
|
||||
if utime.ticks_diff(current_time, self.hold_start_time) < self.hold_duration:
|
||||
# Still in hold phase, just display the current solid color
|
||||
self.fill(self.apply_brightness(self.current_color))
|
||||
self.last_update = current_time # Keep updating last_update to avoid skipping frames
|
||||
# Increment step by n1 for next call
|
||||
self.step = (step + step_amount) % 256
|
||||
self.running = False
|
||||
self.stopped = True
|
||||
return
|
||||
|
||||
# Auto is True: run continuously
|
||||
last_update = utime.ticks_ms()
|
||||
|
||||
# Only continue running this pattern while it is the selected one
|
||||
while self.running and self.selected == "rainbow":
|
||||
current_time = utime.ticks_ms()
|
||||
sleep_ms = max(1, int(self.delay)) # Access delay directly
|
||||
if utime.ticks_diff(current_time, last_update) >= sleep_ms:
|
||||
for i in range(self.num_leds):
|
||||
rc_index = (i * 256 // self.num_leds) + step
|
||||
self.n[i] = self.apply_brightness(self.wheel(rc_index & 255))
|
||||
self.n.write()
|
||||
step = (step + step_amount) % 256
|
||||
self.step = step
|
||||
last_update = current_time
|
||||
self.running = False
|
||||
self.stopped = True
|
||||
|
||||
# If hold duration is over, proceed with transition
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
|
||||
num_colors = len(self.colors)
|
||||
if num_colors < 2:
|
||||
# Should not happen if select handles it, but as a safeguard
|
||||
self.select("on")
|
||||
|
||||
def pulse(self):
|
||||
self.stopped = False
|
||||
self.running = True
|
||||
self.off()
|
||||
|
||||
# Get timing parameters, ensure non-negative
|
||||
attack_ms = max(0, int(self.n1)) # Attack time in ms
|
||||
hold_ms = max(0, int(self.n2)) # Hold time in ms
|
||||
decay_ms = max(0, int(self.n3)) # Decay time in ms
|
||||
|
||||
# Ensure we have at least one color
|
||||
if not self.colors:
|
||||
self.colors = [(255, 255, 255)]
|
||||
|
||||
color_index = 0
|
||||
# Calculate minimum update interval based on LED count
|
||||
# NeoPixel timing: ~30µs per LED + reset time = ~6ms for 200 LEDs
|
||||
# Use 10ms minimum to ensure writes complete + overhead
|
||||
min_write_time_ms = (self.num_leds * 30) // 1000 + 1 # Convert µs to ms, add 1ms overhead
|
||||
update_interval = max(10, min_write_time_ms + 4) # At least 10ms, add margin for safety
|
||||
|
||||
# Only continue running this pattern while it is the selected one
|
||||
while self.running and self.selected == "pulse":
|
||||
cycle_start = utime.ticks_ms()
|
||||
|
||||
# Get the current color from the cycle
|
||||
base_color = self.colors[color_index % len(self.colors)]
|
||||
|
||||
# Attack phase: fade from 0 to full brightness
|
||||
if attack_ms > 0:
|
||||
attack_start = utime.ticks_ms()
|
||||
last_update = attack_start
|
||||
while self.running and utime.ticks_diff(utime.ticks_ms(), attack_start) < attack_ms:
|
||||
now = utime.ticks_ms()
|
||||
if utime.ticks_diff(now, last_update) >= update_interval:
|
||||
elapsed = utime.ticks_diff(now, attack_start)
|
||||
brightness_factor = min(1.0, elapsed / attack_ms)
|
||||
color = tuple(int(c * brightness_factor) for c in base_color)
|
||||
self.fill(self.apply_brightness(color))
|
||||
last_update = now
|
||||
|
||||
# Hold phase: maintain full brightness
|
||||
if hold_ms > 0 and self.running:
|
||||
self.fill(self.apply_brightness(base_color))
|
||||
hold_start = utime.ticks_ms()
|
||||
while self.running and utime.ticks_diff(utime.ticks_ms(), hold_start) < hold_ms:
|
||||
pass
|
||||
|
||||
# Decay phase: fade from full brightness to 0
|
||||
if decay_ms > 0:
|
||||
decay_start = utime.ticks_ms()
|
||||
last_update = decay_start
|
||||
while self.running and utime.ticks_diff(utime.ticks_ms(), decay_start) < decay_ms:
|
||||
now = utime.ticks_ms()
|
||||
if utime.ticks_diff(now, last_update) >= update_interval:
|
||||
elapsed = utime.ticks_diff(now, decay_start)
|
||||
brightness_factor = max(0.0, 1.0 - (elapsed / decay_ms))
|
||||
color = tuple(int(c * brightness_factor) for c in base_color)
|
||||
self.fill(self.apply_brightness(color))
|
||||
last_update = now
|
||||
|
||||
# Move to next color in the cycle
|
||||
color_index += 1
|
||||
|
||||
# If auto flag is False, run only once and exit
|
||||
if not self.auto:
|
||||
break
|
||||
|
||||
# Ensure the cycle takes exactly delay milliseconds before restarting
|
||||
if self.running:
|
||||
self.off()
|
||||
delay_ms = int(self.delay) # Access delay directly
|
||||
wait_until = utime.ticks_add(cycle_start, delay_ms)
|
||||
while self.running and utime.ticks_diff(wait_until, utime.ticks_ms()) > 0:
|
||||
pass
|
||||
|
||||
self.running = False
|
||||
self.stopped = True
|
||||
|
||||
def transition(self):
|
||||
"""Transition between colors, taking delay ms between each color"""
|
||||
self.stopped = False
|
||||
self.running = True
|
||||
|
||||
if not self.colors:
|
||||
# No colors, turn off
|
||||
self.off()
|
||||
self.running = False
|
||||
self.stopped = True
|
||||
return
|
||||
|
||||
if len(self.colors) == 1:
|
||||
# Only one color, just stay that color
|
||||
last_update = utime.ticks_ms()
|
||||
while self.running and self.selected == "transition":
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, last_update) >= 100:
|
||||
self.fill(self.apply_brightness(self.colors[0]))
|
||||
last_update = current_time
|
||||
self.running = False
|
||||
self.stopped = True
|
||||
return
|
||||
|
||||
# If auto is False, only transition between color1 and color2
|
||||
if not self.auto:
|
||||
if len(self.colors) < 2:
|
||||
# Need at least 2 colors for transition
|
||||
self.running = False
|
||||
self.stopped = True
|
||||
return
|
||||
|
||||
transition_start = utime.ticks_ms()
|
||||
last_update = transition_start
|
||||
|
||||
while self.running:
|
||||
# Access delay and colors directly for live updates
|
||||
transition_duration = max(10, int(self.delay)) # At least 10ms
|
||||
update_interval = max(10, transition_duration // 50) # Update every ~2% of transition
|
||||
color1 = self.colors[0] if len(self.colors) > 0 else (0, 0, 0)
|
||||
color2 = self.colors[1] if len(self.colors) > 1 else color1
|
||||
|
||||
if utime.ticks_diff(utime.ticks_ms(), transition_start) >= transition_duration:
|
||||
break
|
||||
now = utime.ticks_ms()
|
||||
if utime.ticks_diff(now, last_update) >= update_interval:
|
||||
# Calculate interpolation factor (0.0 to 1.0)
|
||||
elapsed = utime.ticks_diff(now, transition_start)
|
||||
factor = min(1.0, elapsed / transition_duration)
|
||||
|
||||
# Interpolate between color1 and color2
|
||||
interpolated = tuple(
|
||||
int(color1[i] + (color2[i] - color1[i]) * factor)
|
||||
for i in range(3)
|
||||
)
|
||||
|
||||
# Apply brightness and fill
|
||||
self.fill(self.apply_brightness(interpolated))
|
||||
last_update = now
|
||||
|
||||
self.running = False
|
||||
self.stopped = True
|
||||
return
|
||||
|
||||
# Auto is True: cycle through all colors continuously
|
||||
color_index = 0
|
||||
|
||||
# Auto is True: cycle through all colors continuously
|
||||
while self.running and self.selected == "transition":
|
||||
# Access colors directly for live updates
|
||||
if not self.colors:
|
||||
break
|
||||
# Get current and next color
|
||||
current_color = self.colors[color_index % len(self.colors)]
|
||||
next_color = self.colors[(color_index + 1) % len(self.colors)]
|
||||
|
||||
# Transition from current to next color
|
||||
transition_start = utime.ticks_ms()
|
||||
last_update = transition_start
|
||||
|
||||
while self.running:
|
||||
# Access delay directly for live updates
|
||||
transition_duration = max(10, int(self.delay)) # At least 10ms
|
||||
update_interval = max(10, transition_duration // 50) # Update every ~2% of transition
|
||||
|
||||
if utime.ticks_diff(utime.ticks_ms(), transition_start) >= transition_duration:
|
||||
break
|
||||
now = utime.ticks_ms()
|
||||
if utime.ticks_diff(now, last_update) >= update_interval:
|
||||
# Calculate interpolation factor (0.0 to 1.0)
|
||||
elapsed = utime.ticks_diff(now, transition_start)
|
||||
factor = min(1.0, elapsed / transition_duration)
|
||||
|
||||
# Interpolate between colors
|
||||
interpolated = tuple(
|
||||
int(current_color[i] + (next_color[i] - current_color[i]) * factor)
|
||||
for i in range(3)
|
||||
)
|
||||
|
||||
# Apply brightness and fill
|
||||
self.fill(self.apply_brightness(interpolated))
|
||||
last_update = now
|
||||
|
||||
# Move to next color
|
||||
color_index = (color_index + 1) % len(self.colors)
|
||||
|
||||
self.running = False
|
||||
self.stopped = True
|
||||
|
||||
from_color = self.colors[self.current_color_idx]
|
||||
to_color_idx = (self.current_color_idx + 1) % num_colors
|
||||
to_color = self.colors[to_color_idx]
|
||||
|
||||
# Calculate interpolation factor (0.0 to 1.0)
|
||||
# transition_step goes from 0 to transition_duration - 1
|
||||
if self.transition_duration > 0:
|
||||
interp_factor = self.transition_step / self.transition_duration
|
||||
def n_chase(self):
|
||||
"""N-chase pattern: n1 LEDs of color0, n2 LEDs of color1, repeating.
|
||||
Moves by n3 on even steps, n4 on odd steps (n3/n4 can be positive or negative)"""
|
||||
self.stopped = False
|
||||
self.running = True
|
||||
|
||||
if len(self.colors) < 1:
|
||||
# Need at least 1 color
|
||||
self.running = False
|
||||
self.stopped = True
|
||||
return
|
||||
|
||||
segment_length = 0 # Will be calculated in loop
|
||||
position = 0 # Current position offset
|
||||
step_count = 0 # Track which step we're on
|
||||
|
||||
last_update = utime.ticks_ms()
|
||||
|
||||
# Only continue running this pattern while it is the selected one
|
||||
# Note: this pattern can be selected as "n_chase" or "chase"
|
||||
while self.running and self.selected in ("n_chase", "chase"):
|
||||
# Access colors, delay, and n values directly for live updates
|
||||
if not self.colors:
|
||||
break
|
||||
# If only one color provided, use it for both colors
|
||||
if len(self.colors) < 2:
|
||||
color0 = self.colors[0]
|
||||
color1 = self.colors[0]
|
||||
else:
|
||||
interp_factor = 1.0 # Immediately transition if duration is zero
|
||||
color0 = self.colors[0]
|
||||
color1 = self.colors[1]
|
||||
|
||||
color0 = self.apply_brightness(color0)
|
||||
color1 = self.apply_brightness(color1)
|
||||
|
||||
n1 = max(1, int(self.n1)) # LEDs of color 0
|
||||
n2 = max(1, int(self.n2)) # LEDs of color 1
|
||||
n3 = int(self.n3) # Step movement on odd steps (can be negative)
|
||||
n4 = int(self.n4) # Step movement on even steps (can be negative)
|
||||
|
||||
segment_length = n1 + n2
|
||||
transition_duration = max(10, int(self.delay))
|
||||
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, last_update) >= transition_duration:
|
||||
# Clear all LEDs
|
||||
self.n.fill((0, 0, 0))
|
||||
|
||||
# Draw repeating pattern starting at position
|
||||
for i in range(self.num_leds):
|
||||
# Calculate position in the repeating segment
|
||||
relative_pos = (i - position) % segment_length
|
||||
if relative_pos < 0:
|
||||
relative_pos = (relative_pos + segment_length) % segment_length
|
||||
|
||||
# Determine which color based on position in segment
|
||||
if relative_pos < n1:
|
||||
self.n[i] = color0
|
||||
else:
|
||||
self.n[i] = color1
|
||||
|
||||
self.n.write()
|
||||
|
||||
# Move position by n3 or n4 on alternate steps
|
||||
if step_count % 2 == 0:
|
||||
position = position + n3
|
||||
else:
|
||||
position = position + n4
|
||||
|
||||
# Wrap position to keep it reasonable
|
||||
max_pos = self.num_leds + segment_length
|
||||
position = position % max_pos
|
||||
if position < 0:
|
||||
position += max_pos
|
||||
|
||||
step_count += 1
|
||||
last_update = current_time
|
||||
|
||||
self.running = False
|
||||
self.stopped = True
|
||||
|
||||
# Interpolate each color component
|
||||
r = int(from_color[0] + (to_color[0] - from_color[0]) * interp_factor)
|
||||
g = int(from_color[1] + (to_color[1] - from_color[1]) * interp_factor)
|
||||
b = int(from_color[2] + (to_color[2] - from_color[2]) * interp_factor)
|
||||
|
||||
self.current_color = (r, g, b)
|
||||
self.fill(self.apply_brightness(self.current_color))
|
||||
|
||||
self.transition_step += self.delay # Advance the transition step by the delay
|
||||
|
||||
if self.transition_step >= self.transition_duration:
|
||||
# Transition complete, move to the next color and reset for hold phase
|
||||
self.current_color_idx = to_color_idx
|
||||
self.current_color = self.colors[self.current_color_idx] # Ensure current_color is the exact target color
|
||||
self.transition_step = 0 # Reset transition progress
|
||||
self.hold_start_time = current_time # Start hold phase for the new color
|
||||
|
||||
self.last_update = current_time
|
||||
|
||||
def flicker_step(self):
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay/5:
|
||||
base_color = self.colors[0]
|
||||
# Increase the range for flicker_brightness_offset
|
||||
# Changed from self.brightness // 4 to self.brightness // 2 (or even self.brightness for max intensity)
|
||||
flicker_brightness_offset = random.randint(-int(self.brightness // 1.5), int(self.brightness // 1.5))
|
||||
flicker_brightness = max(0, min(255, self.brightness + flicker_brightness_offset))
|
||||
|
||||
flicker_color = self.apply_brightness(base_color, brightness_override=flicker_brightness)
|
||||
self.fill(flicker_color)
|
||||
self.last_update = current_time
|
||||
|
||||
def scanner_step(self):
|
||||
"""
|
||||
Mimics a 'Knight Rider' style scanner, moving in one direction.
|
||||
"""
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
|
||||
self.fill((0, 0, 0)) # Clear all LEDs
|
||||
|
||||
# Calculate the head and tail position
|
||||
head_pos = self.pattern_step
|
||||
def circle(self):
|
||||
"""Circle loading pattern - grows to n2, then tail moves forward at n3 until min length n4"""
|
||||
self.stopped = False
|
||||
self.running = True
|
||||
head = 0
|
||||
tail = 0
|
||||
|
||||
# Calculate timing
|
||||
head_rate = max(1, int(self.n1)) # n1 = head moves per second
|
||||
tail_rate = max(1, int(self.n3)) # n3 = tail moves per second
|
||||
max_length = max(1, int(self.n2)) # n2 = max length
|
||||
min_length = max(0, int(self.n4)) # n4 = min length
|
||||
|
||||
head_delay = 1000 // head_rate # ms between head movements
|
||||
tail_delay = 1000 // tail_rate # ms between tail movements
|
||||
|
||||
last_head_move = utime.ticks_ms()
|
||||
last_tail_move = utime.ticks_ms()
|
||||
|
||||
phase = "growing" # "growing", "shrinking", or "off"
|
||||
|
||||
# Only continue running this pattern while it is the selected one
|
||||
while self.running and self.selected == "circle":
|
||||
current_time = utime.ticks_ms()
|
||||
|
||||
# Clear all LEDs
|
||||
self.n.fill((0, 0, 0))
|
||||
|
||||
# Calculate segment length
|
||||
segment_length = (head - tail) % self.num_leds
|
||||
if segment_length == 0 and head != tail:
|
||||
segment_length = self.num_leds
|
||||
|
||||
# Draw segment from tail to head
|
||||
color = self.apply_brightness(self.colors[0])
|
||||
|
||||
# Draw the head
|
||||
if 0 <= head_pos < self.num_leds:
|
||||
self.n[head_pos] = color
|
||||
|
||||
# Draw the trailing pixels with decreasing brightness
|
||||
for i in range(1, self.scanner_tail_length + 1):
|
||||
tail_pos = head_pos - i
|
||||
if 0 <= tail_pos < self.num_leds:
|
||||
# Calculate fading color for tail
|
||||
# Example: linear fade from full brightness to off
|
||||
fade_factor = 1.0 - (i / (self.scanner_tail_length + 1))
|
||||
faded_color = tuple(int(c * fade_factor) for c in color)
|
||||
self.n[tail_pos] = faded_color
|
||||
|
||||
for i in range(segment_length + 1):
|
||||
led_pos = (tail + i) % self.num_leds
|
||||
self.n[led_pos] = color
|
||||
|
||||
# Move head continuously at n1 LEDs per second
|
||||
if utime.ticks_diff(current_time, last_head_move) >= head_delay:
|
||||
head = (head + 1) % self.num_leds
|
||||
last_head_move = current_time
|
||||
|
||||
# Tail behavior based on phase
|
||||
if phase == "growing":
|
||||
# Growing phase: tail stays at 0 until max length reached
|
||||
if segment_length >= max_length:
|
||||
phase = "shrinking"
|
||||
elif phase == "shrinking":
|
||||
# Shrinking phase: move tail forward at n3 LEDs per second
|
||||
if utime.ticks_diff(current_time, last_tail_move) >= tail_delay:
|
||||
tail = (tail + 1) % self.num_leds
|
||||
last_tail_move = current_time
|
||||
|
||||
# Check if we've reached min length
|
||||
current_length = (head - tail) % self.num_leds
|
||||
if current_length == 0 and head != tail:
|
||||
current_length = self.num_leds
|
||||
|
||||
# For min_length = 0, we need at least 1 LED (the head)
|
||||
if min_length == 0 and current_length <= 1:
|
||||
phase = "off" # All LEDs off for 1 step
|
||||
elif min_length > 0 and current_length <= min_length:
|
||||
phase = "growing" # Cycle repeats
|
||||
else: # phase == "off"
|
||||
# Off phase: all LEDs off for 1 step, then restart
|
||||
tail = head # Reset tail to head position to start fresh
|
||||
phase = "growing"
|
||||
|
||||
self.n.write()
|
||||
|
||||
self.running = False
|
||||
self.stopped = True
|
||||
|
||||
self.pattern_step += 1
|
||||
if self.pattern_step >= self.num_leds + self.scanner_tail_length:
|
||||
self.pattern_step = 0 # Reset to start
|
||||
|
||||
self.last_update = current_time
|
||||
|
||||
def bidirectional_scanner_step(self):
|
||||
"""
|
||||
Mimics a 'Knight Rider' style scanner, moving back and forth.
|
||||
"""
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay/100:
|
||||
self.fill((0, 0, 0)) # Clear all LEDs
|
||||
|
||||
color = self.apply_brightness(self.colors[0])
|
||||
|
||||
# Calculate the head position based on direction
|
||||
head_pos = self.pattern_step
|
||||
|
||||
# Draw the head
|
||||
if 0 <= head_pos < self.num_leds:
|
||||
self.n[head_pos] = color
|
||||
|
||||
# Draw the trailing pixels with decreasing brightness
|
||||
for i in range(1, self.scanner_tail_length + 1):
|
||||
tail_pos = head_pos - (i * self.scanner_direction)
|
||||
if 0 <= tail_pos < self.num_leds:
|
||||
fade_factor = 1.0 - (i / (self.scanner_tail_length + 1))
|
||||
faded_color = tuple(int(c * fade_factor) for c in color)
|
||||
self.n[tail_pos] = faded_color
|
||||
|
||||
self.n.write()
|
||||
|
||||
self.pattern_step += self.scanner_direction
|
||||
|
||||
# Change direction if boundaries are reached
|
||||
if self.scanner_direction == 1 and self.pattern_step >= self.num_leds:
|
||||
self.scanner_direction = -1
|
||||
self.pattern_step = self.num_leds - 1 # Start moving back from the last LED
|
||||
elif self.scanner_direction == -1 and self.pattern_step < 0:
|
||||
self.scanner_direction = 1
|
||||
self.pattern_step = 0 # Start moving forward from the first LED
|
||||
|
||||
self.last_update = current_time
|
||||
|
||||
167
src/patterns_base.py
Normal file
167
src/patterns_base.py
Normal file
@@ -0,0 +1,167 @@
|
||||
from machine import Pin
|
||||
from neopixel import NeoPixel
|
||||
import utime
|
||||
import random
|
||||
import _thread
|
||||
import asyncio
|
||||
import json
|
||||
|
||||
# Short-key parameter mapping for convenience setters
|
||||
param_mapping = {
|
||||
"pt": "selected",
|
||||
"pa": "selected",
|
||||
"cl": "colors",
|
||||
"br": "brightness",
|
||||
"dl": "delay",
|
||||
"nl": "num_leds",
|
||||
"co": "color_order",
|
||||
"lp": "led_pin",
|
||||
"n1": "n1",
|
||||
"n2": "n2",
|
||||
"n3": "n3",
|
||||
"n4": "n4",
|
||||
"n5": "n5",
|
||||
"n6": "n6",
|
||||
"auto": "auto",
|
||||
}
|
||||
|
||||
class Patterns:
|
||||
def __init__(self, pin, num_leds, color1=(0,0,0), color2=(0,0,0), brightness=127, selected="off", delay=100):
|
||||
self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds)
|
||||
self.num_leds = num_leds
|
||||
self.pattern_step = 0
|
||||
self.last_update = utime.ticks_ms()
|
||||
self.delay = delay
|
||||
self.brightness = brightness
|
||||
self.auto = False
|
||||
self.patterns = {}
|
||||
self.selected = selected
|
||||
# Ensure colors list always starts with at least two for robust transition handling
|
||||
self.colors = [color1, color2] if color1 != color2 else [color1, (255, 255, 255)] # Fallback if initial colors are same
|
||||
if not self.colors: # Ensure at least one color exists
|
||||
self.colors = [(0, 0, 0)]
|
||||
|
||||
self.transition_duration = delay * 50 # Default transition duration
|
||||
self.hold_duration = delay * 10 # Default hold duration at each color
|
||||
self.transition_step = 0 # Current step in the transition
|
||||
self.current_color_idx = 0 # Index of the color currently being held/transitioned from
|
||||
self.current_color = self.colors[self.current_color_idx] # The actual blended color
|
||||
|
||||
self.hold_start_time = utime.ticks_ms() # Time when the current color hold started
|
||||
|
||||
# New attributes for scanner patterns
|
||||
self.scanner_direction = 1 # 1 for forward, -1 for backward
|
||||
self.scanner_tail_length = 3 # Number of trailing pixels
|
||||
self.running = False
|
||||
self.stopped = True
|
||||
|
||||
self.n1 = 0
|
||||
self.n2 = 0
|
||||
self.n3 = 0
|
||||
self.n4 = 0
|
||||
self.n5 = 0
|
||||
self.n6 = 0
|
||||
|
||||
def select(self, pattern):
|
||||
if pattern in self.patterns:
|
||||
self.selected = pattern
|
||||
return True
|
||||
# If pattern doesn't exist, default to "off"
|
||||
if "off" in self.patterns:
|
||||
self.selected = "off"
|
||||
return False
|
||||
|
||||
async def run(self):
|
||||
await self.stop()
|
||||
# Ensure we wait a bit more to let the thread fully terminate
|
||||
# If selected pattern doesn't exist, default to "off"
|
||||
if self.selected not in self.patterns:
|
||||
print(f"Pattern {self.selected} not found, defaulting to 'off'")
|
||||
if "off" in self.patterns:
|
||||
self.selected = "off"
|
||||
else:
|
||||
print("No patterns available")
|
||||
self.running = False
|
||||
self.stopped = True
|
||||
return
|
||||
print(f"Starting pattern {self.selected}")
|
||||
_thread.start_new_thread(self.patterns[self.selected], ())
|
||||
|
||||
async def stop(self):
|
||||
if not self.running:
|
||||
# Already stopped
|
||||
self.stopped = True
|
||||
return
|
||||
self.running = False
|
||||
start = utime.ticks_ms()
|
||||
timeout = 2000 # Increased timeout to 2 seconds
|
||||
while not self.stopped and utime.ticks_diff(utime.ticks_ms(), start) < timeout:
|
||||
await asyncio.sleep_ms(10) # Check every 10ms instead of 0ms
|
||||
if not self.stopped:
|
||||
# Timeout reached, force stop
|
||||
print("Warning: Pattern did not stop within timeout")
|
||||
self.stopped = True
|
||||
|
||||
def set_param(self, key, value):
|
||||
if key in param_mapping:
|
||||
setattr(self, param_mapping[key], value)
|
||||
return True
|
||||
print(f"Invalid parameter: {key}")
|
||||
return False
|
||||
|
||||
def update_num_leds(self, pin, num_leds):
|
||||
self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds)
|
||||
self.num_leds = num_leds
|
||||
self.pattern_step = 0
|
||||
|
||||
|
||||
def set_color(self, num, color):
|
||||
# Changed: More robust index check
|
||||
if 0 <= num < len(self.colors):
|
||||
self.colors[num] = color
|
||||
# If the changed color is part of the current or next transition,
|
||||
# restart the transition for smoother updates
|
||||
return True
|
||||
elif num == len(self.colors): # Allow setting a new color at the end
|
||||
self.colors.append(color)
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def del_color(self, num):
|
||||
# Changed: More robust index check and using del for lists
|
||||
if 0 <= num < len(self.colors):
|
||||
del self.colors[num]
|
||||
return True
|
||||
return False
|
||||
|
||||
def apply_brightness(self, color, brightness_override=None):
|
||||
effective_brightness = brightness_override if brightness_override is not None else self.brightness
|
||||
return tuple(int(c * effective_brightness / 255) for c in color)
|
||||
|
||||
def fill(self, color=None):
|
||||
fill_color = color if color is not None else self.colors[0]
|
||||
for i in range(self.num_leds):
|
||||
self.n[i] = fill_color
|
||||
self.n.write()
|
||||
|
||||
def off(self):
|
||||
self.fill((0, 0, 0))
|
||||
|
||||
def on(self):
|
||||
self.fill(self.apply_brightness(self.colors[0]))
|
||||
|
||||
|
||||
|
||||
|
||||
def wheel(self, pos):
|
||||
if pos < 85:
|
||||
return (pos * 3, 255 - pos * 3, 0)
|
||||
elif pos < 170:
|
||||
pos -= 85
|
||||
return (255 - pos * 3, 0, pos * 3)
|
||||
else:
|
||||
pos -= 170
|
||||
return (0, pos * 3, 255 - pos * 3)
|
||||
|
||||
|
||||
31
src/presets.py
Normal file
31
src/presets.py
Normal file
@@ -0,0 +1,31 @@
|
||||
import json
|
||||
import wifi
|
||||
import ubinascii
|
||||
import machine
|
||||
|
||||
class Presets(dict):
|
||||
FILE = "/presets.json"
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.load() # Load settings from file during initialization
|
||||
|
||||
def save(self):
|
||||
try:
|
||||
j = json.dumps(self)
|
||||
with open(self.FILE, 'w') as file:
|
||||
file.write(j)
|
||||
print("Presets saved successfully.")
|
||||
except Exception as e:
|
||||
print(f"Error saving settings: {e}")
|
||||
|
||||
def load(self):
|
||||
try:
|
||||
with open(self.FILE, 'r') as file:
|
||||
self.update(json.load(file))
|
||||
print("Presets loaded successfully.")
|
||||
except Exception as e:
|
||||
print(f"Error loading presets")
|
||||
self.save()
|
||||
|
||||
|
||||
@@ -9,21 +9,19 @@ class Settings(dict):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.load() # Load settings from file during initialization
|
||||
if self["color_order"] == "rbg": self.color_order = (1, 5, 3)
|
||||
else: self.color_order = (1, 3, 5)
|
||||
self.color_order = self.get_color_order(self["color_order"])
|
||||
|
||||
def set_defaults(self):
|
||||
self["led_pin"] = 10
|
||||
self["num_leds"] = 50
|
||||
self["pattern"] = "on"
|
||||
self["color1"] = "#00ff00"
|
||||
self["color2"] = "#ff0000"
|
||||
self["delay"] = 100
|
||||
self["brightness"] = 10
|
||||
self["color_order"] = "rgb"
|
||||
self["name"] = f"led-{ubinascii.hexlify(wifi.get_mac()).decode()}"
|
||||
self["ap_password"] = ""
|
||||
self["id"] = 0
|
||||
self["debug"] = False
|
||||
|
||||
def save(self):
|
||||
try:
|
||||
@@ -45,38 +43,47 @@ class Settings(dict):
|
||||
self.set_defaults()
|
||||
self.save()
|
||||
|
||||
def set_settings(self, data, patterns, save):
|
||||
async def set_settings(self, data, patterns, save):
|
||||
try:
|
||||
print(data)
|
||||
print(f"Setting settings: {data}")
|
||||
for key, value in data.items():
|
||||
print(key, value)
|
||||
if key == "colors":
|
||||
buff = []
|
||||
for color in value:
|
||||
buff.append(tuple(int(color[i:i+2], 16) for i in self.color_order))
|
||||
patterns.set_colors(buff)
|
||||
elif key == "color1":
|
||||
patterns.set_color1(tuple(int(value[i:i+2], 16) for i in self.color_order)) # Convert hex to RGB
|
||||
elif key == "color2":
|
||||
patterns.set_color2(tuple(int(value[i:i+2], 16) for i in self.color_order)) # Convert hex to RGB
|
||||
patterns.colors = buff
|
||||
elif key == "num_leds":
|
||||
patterns.update_num_leds(self["led_pin"], value)
|
||||
elif key == "pattern":
|
||||
if not patterns.select(value):
|
||||
return "Pattern doesn't exist", 400
|
||||
await patterns.run()
|
||||
elif key == "delay":
|
||||
delay = int(data["delay"])
|
||||
patterns.set_delay(delay)
|
||||
patterns.delay = delay
|
||||
elif key == "brightness":
|
||||
brightness = int(data["brightness"])
|
||||
patterns.set_brightness(brightness)
|
||||
patterns.brightness = brightness
|
||||
elif key == "n1":
|
||||
patterns.n1 = value
|
||||
elif key == "n2":
|
||||
patterns.n2 = value
|
||||
elif key == "n3":
|
||||
patterns.n3 = value
|
||||
elif key == "n4":
|
||||
patterns.n4 = value
|
||||
elif key == "n5":
|
||||
patterns.n5 = value
|
||||
elif key == "n6":
|
||||
patterns.n6 = value
|
||||
elif key == "name":
|
||||
self[key] = value
|
||||
self.save()
|
||||
machine.reset()
|
||||
elif key == "color_order":
|
||||
if value == "rbg": self.color_order = (1, 5, 3)
|
||||
else: self.color_order = (1, 3, 5)
|
||||
self["color_order"] = value
|
||||
self.color_order = self.get_color_order(value)
|
||||
pass
|
||||
elif key == "id":
|
||||
pass
|
||||
@@ -86,13 +93,25 @@ class Settings(dict):
|
||||
return "Invalid key", 400
|
||||
self[key] = value
|
||||
#print(self)
|
||||
patterns.sync()
|
||||
if save:
|
||||
self.save()
|
||||
print(self)
|
||||
return "OK", 200
|
||||
except (KeyError, ValueError):
|
||||
return "Bad request", 400
|
||||
|
||||
def get_color_order(self, color_order):
|
||||
"""Convert color order string to tuple of hex string indices."""
|
||||
color_orders = {
|
||||
"rgb": (1, 3, 5),
|
||||
"rbg": (1, 5, 3),
|
||||
"grb": (3, 1, 5),
|
||||
"gbr": (3, 5, 1),
|
||||
"brg": (5, 1, 3),
|
||||
"bgr": (5, 3, 1)
|
||||
}
|
||||
return color_orders.get(color_order.lower(), (1, 3, 5)) # Default to RGB
|
||||
|
||||
# Example usage
|
||||
def main():
|
||||
settings = Settings()
|
||||
|
||||
@@ -107,3 +107,57 @@ input[type="range"]::-moz-range-thumb {
|
||||
margin-right: 10px;
|
||||
vertical-align: middle; /* Aligns them nicely if heights vary */
|
||||
}
|
||||
|
||||
#colors_palette {
|
||||
margin-bottom: 20px;
|
||||
}
|
||||
|
||||
#colors_container {
|
||||
display: flex;
|
||||
flex-wrap: wrap;
|
||||
gap: 10px;
|
||||
margin-bottom: 10px;
|
||||
}
|
||||
|
||||
.color-item {
|
||||
display: flex;
|
||||
align-items: center;
|
||||
gap: 5px;
|
||||
}
|
||||
|
||||
.color-input {
|
||||
width: 60px !important;
|
||||
height: 40px;
|
||||
border: 2px solid #ddd;
|
||||
border-radius: 4px;
|
||||
cursor: pointer;
|
||||
}
|
||||
|
||||
.remove-color-btn {
|
||||
background-color: #f44336;
|
||||
color: white;
|
||||
border: none;
|
||||
border-radius: 4px;
|
||||
width: 30px;
|
||||
height: 30px;
|
||||
cursor: pointer;
|
||||
font-size: 18px;
|
||||
line-height: 1;
|
||||
}
|
||||
|
||||
.remove-color-btn:hover {
|
||||
background-color: #da190b;
|
||||
}
|
||||
|
||||
#add_color_btn {
|
||||
background-color: #4caf50;
|
||||
color: white;
|
||||
border: none;
|
||||
padding: 8px 16px;
|
||||
border-radius: 4px;
|
||||
cursor: pointer;
|
||||
}
|
||||
|
||||
#add_color_btn:hover {
|
||||
background-color: #45a049;
|
||||
}
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
let delayTimeout;
|
||||
let brightnessTimeout;
|
||||
let colorTimeout;
|
||||
let color2Timeout;
|
||||
let colorsTimeout;
|
||||
let ws; // Variable to hold the WebSocket connection
|
||||
let connectionStatusElement; // Variable to hold the connection status element
|
||||
|
||||
@@ -98,22 +97,60 @@ async function get(path) {
|
||||
}
|
||||
}
|
||||
|
||||
async function updateColor(event) {
|
||||
event.preventDefault();
|
||||
clearTimeout(colorTimeout);
|
||||
colorTimeout = setTimeout(function () {
|
||||
const color = document.getElementById("color").value;
|
||||
sendWebSocketData({ color1: color });
|
||||
function updateColors() {
|
||||
clearTimeout(colorsTimeout);
|
||||
colorsTimeout = setTimeout(function () {
|
||||
const colorInputs = document.querySelectorAll(".color-input");
|
||||
const colors = Array.from(colorInputs).map(input => input.value);
|
||||
sendWebSocketData({ colors: colors });
|
||||
}, 500);
|
||||
}
|
||||
|
||||
async function updateColor2(event) {
|
||||
event.preventDefault();
|
||||
clearTimeout(color2Timeout);
|
||||
color2Timeout = setTimeout(function () {
|
||||
const color = document.getElementById("color2").value;
|
||||
sendWebSocketData({ color2: color });
|
||||
}, 500);
|
||||
function addColorInput(color = "#ff0000") {
|
||||
const container = document.getElementById("colors_container");
|
||||
const colorDiv = document.createElement("div");
|
||||
colorDiv.className = "color-item";
|
||||
|
||||
const colorInput = document.createElement("input");
|
||||
colorInput.type = "color";
|
||||
colorInput.className = "color-input";
|
||||
colorInput.value = color;
|
||||
colorInput.addEventListener("input", updateColors);
|
||||
|
||||
const removeBtn = document.createElement("button");
|
||||
removeBtn.type = "button";
|
||||
removeBtn.textContent = "×";
|
||||
removeBtn.className = "remove-color-btn";
|
||||
removeBtn.addEventListener("click", function() {
|
||||
colorDiv.remove();
|
||||
updateColors();
|
||||
});
|
||||
|
||||
colorDiv.appendChild(colorInput);
|
||||
colorDiv.appendChild(removeBtn);
|
||||
container.appendChild(colorDiv);
|
||||
}
|
||||
|
||||
function initializeColors(initialColors = null) {
|
||||
const container = document.getElementById("colors_container");
|
||||
container.innerHTML = "";
|
||||
// Get initial colors from data attribute or use defaults
|
||||
if (initialColors === null) {
|
||||
const colorsData = document.getElementById("colors_container").dataset.colors;
|
||||
if (colorsData) {
|
||||
try {
|
||||
initialColors = JSON.parse(colorsData);
|
||||
} catch (e) {
|
||||
initialColors = ["#ff0000", "#00ff00"];
|
||||
}
|
||||
} else {
|
||||
initialColors = ["#ff0000", "#00ff00"];
|
||||
}
|
||||
}
|
||||
if (initialColors.length === 0) {
|
||||
initialColors = ["#ff0000"];
|
||||
}
|
||||
initialColors.forEach(color => addColorInput(color));
|
||||
}
|
||||
|
||||
async function updatePattern(pattern) {
|
||||
@@ -198,8 +235,11 @@ document.addEventListener("DOMContentLoaded", async function () {
|
||||
// Establish WebSocket connection on page load
|
||||
connectWebSocket();
|
||||
|
||||
document.getElementById("color").addEventListener("input", updateColor);
|
||||
document.getElementById("color2").addEventListener("input", updateColor2);
|
||||
// Initialize colors palette
|
||||
initializeColors();
|
||||
document.getElementById("add_color_btn").addEventListener("click", function() {
|
||||
addColorInput();
|
||||
});
|
||||
document.getElementById("delay").addEventListener("input", updateDelay);
|
||||
document
|
||||
.getElementById("brightness")
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
{% args settings, patterns, mac %}
|
||||
{% args settings, patterns, colors_json, mac %}
|
||||
<!doctype html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
@@ -46,22 +46,13 @@
|
||||
step="1"
|
||||
/>
|
||||
</form>
|
||||
<form id="color_form" method="post" action="/color">
|
||||
<input
|
||||
type="color"
|
||||
id="color"
|
||||
name="color"
|
||||
value="{{settings['color1']}}"
|
||||
/>
|
||||
</form>
|
||||
<form id="color2_form" method="post" action="/color2">
|
||||
<input
|
||||
type="color"
|
||||
id="color2"
|
||||
name="color2"
|
||||
value="{{settings['color2']}}"
|
||||
/>
|
||||
</form>
|
||||
<div id="colors_palette">
|
||||
<label>Colors:</label>
|
||||
<div id="colors_container" data-colors='{{colors_json}}'>
|
||||
<!-- Color inputs will be added here dynamically -->
|
||||
</div>
|
||||
<button type="button" id="add_color_btn">+ Add Color</button>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Settings Menu for num_leds, Wi-Fi SSID, and Password -->
|
||||
|
||||
16
src/web.py
16
src/web.py
@@ -12,7 +12,19 @@ def web(settings, patterns):
|
||||
@app.route('/')
|
||||
async def index_hnadler(request):
|
||||
mac = wifi.get_mac().hex()
|
||||
return Template('/index.html').render(settings=settings, patterns=patterns.patterns.keys(), mac=mac)
|
||||
# Convert colors from RGB tuples to hex strings for display
|
||||
colors_hex = []
|
||||
for color in patterns.colors:
|
||||
# Convert (R, G, B) tuple to #RRGGBB hex string
|
||||
colors_hex.append(f"#{color[0]:02x}{color[1]:02x}{color[2]:02x}")
|
||||
# Convert to JSON string for data attribute
|
||||
colors_json = json.dumps(colors_hex)
|
||||
return Template('index.html').render(
|
||||
settings,
|
||||
patterns.patterns.keys(),
|
||||
colors_json,
|
||||
mac
|
||||
)
|
||||
|
||||
@app.route("/static/<path:path>")
|
||||
def static_handler(request, path):
|
||||
@@ -35,7 +47,7 @@ def web(settings, patterns):
|
||||
if data:
|
||||
|
||||
# Process the received data
|
||||
_, status_code = settings.set_settings(json.loads(data), patterns, True)
|
||||
_, status_code = await settings.set_settings(json.loads(data), patterns, True)
|
||||
#await ws.send(status_code)
|
||||
else:
|
||||
break
|
||||
|
||||
63
test/circle.py
Normal file
63
test/circle.py
Normal file
@@ -0,0 +1,63 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Circle test: n1=50, n2=100, n3=200, n4=0 (Red)
|
||||
Runs forever
|
||||
Run with: mpremote run test/circle.py
|
||||
"""
|
||||
|
||||
import patterns
|
||||
import utime
|
||||
import _thread
|
||||
from settings import Settings
|
||||
from machine import WDT
|
||||
|
||||
print("Starting Circle Test: n1=50, n2=100, n3=200, n4=0 (Red)")
|
||||
print("Press Ctrl+C to stop")
|
||||
|
||||
# Load settings
|
||||
settings = Settings()
|
||||
|
||||
# Initialize patterns using settings
|
||||
p = patterns.Patterns(
|
||||
pin=settings["led_pin"],
|
||||
num_leds=settings["num_leds"],
|
||||
brightness=255,
|
||||
delay=2000
|
||||
)
|
||||
|
||||
# Configure test parameters
|
||||
p.n1 = 50 # Head moves 50 LEDs/second
|
||||
p.n2 = 100 # Max length 100 LEDs
|
||||
p.n3 = 200 # Tail moves 200 LEDs/second
|
||||
p.n4 = 0 # Min length 0 LEDs
|
||||
p.colors = [(255, 0, 0)] # Red
|
||||
|
||||
print(f"LED Pin: {settings['led_pin']}")
|
||||
print(f"LEDs: {settings['num_leds']}")
|
||||
print(f"Brightness: {p.brightness}")
|
||||
print(f"Parameters: n1={p.n1}, n2={p.n2}, n3={p.n3}, n4={p.n4}")
|
||||
print(f"Color: {p.colors[0]}")
|
||||
|
||||
# Initialize watchdog timer
|
||||
wdt = WDT(timeout=10000)
|
||||
wdt.feed()
|
||||
|
||||
# Start pattern
|
||||
p.select("circle")
|
||||
if p.selected in p.patterns:
|
||||
_thread.start_new_thread(p.patterns[p.selected], ())
|
||||
print("Pattern started. Running forever...")
|
||||
else:
|
||||
print(f"Pattern {p.selected} not found")
|
||||
|
||||
# Run forever
|
||||
try:
|
||||
while True:
|
||||
wdt.feed()
|
||||
utime.sleep_ms(100)
|
||||
except KeyboardInterrupt:
|
||||
print("\nStopping...")
|
||||
p.running = False
|
||||
p.off()
|
||||
print("LEDs turned off")
|
||||
|
||||
55
test/patterns.py
Normal file
55
test/patterns.py
Normal file
@@ -0,0 +1,55 @@
|
||||
#!/usr/bin/env python3
|
||||
import uasyncio as asyncio
|
||||
from machine import WDT
|
||||
from settings import Settings
|
||||
from patterns import Patterns
|
||||
|
||||
|
||||
async def main():
|
||||
s = Settings()
|
||||
pin = s.get("led_pin", 10)
|
||||
num = s.get("num_leds", 30)
|
||||
|
||||
p = Patterns(pin=pin, num_leds=num)
|
||||
p.load()
|
||||
print(p)
|
||||
p.save()
|
||||
# print(p)
|
||||
|
||||
|
||||
# wdt = WDT(timeout=10000)
|
||||
|
||||
# # Baseline params
|
||||
# p.set_param("br", 64)
|
||||
# p.set_param("dl", 500)
|
||||
# p.set_param("cl", [(255, 0, 0), (0, 0, 255)])
|
||||
# p.set_param("n1", 200)
|
||||
# p.set_param("n2", 200)
|
||||
# p.set_param("n3", 1)
|
||||
# p.set_param("n4", 1)
|
||||
|
||||
# for name, fn in p.patterns.items():
|
||||
# if fn is None:
|
||||
# continue
|
||||
# print(name)
|
||||
# p.set_param("pt", name)
|
||||
# task = asyncio.create_task(p.run())
|
||||
# end = asyncio.get_event_loop().time() + 2.0
|
||||
# while asyncio.get_event_loop().time() < end:
|
||||
# wdt.feed()
|
||||
# await asyncio.sleep_ms(10)
|
||||
# p.stopped = True
|
||||
# await task
|
||||
# p.stopped = False
|
||||
|
||||
# p.set_param("pt", "off")
|
||||
# task = asyncio.create_task(p.run())
|
||||
# await asyncio.sleep_ms(200)
|
||||
# p.stopped = True
|
||||
# await task
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
|
||||
|
||||
32
test/patterns/blink.py
Normal file
32
test/patterns/blink.py
Normal file
@@ -0,0 +1,32 @@
|
||||
#!/usr/bin/env python3
|
||||
import uasyncio as asyncio
|
||||
import utime
|
||||
from machine import WDT
|
||||
from settings import Settings
|
||||
from patterns import Patterns
|
||||
|
||||
|
||||
async def main():
|
||||
s = Settings()
|
||||
pin = s.get("led_pin", 10)
|
||||
num = s.get("num_leds", 30)
|
||||
|
||||
p = Patterns(pin=pin, num_leds=num)
|
||||
wdt = WDT(timeout=10000)
|
||||
p.set_param("br", 64)
|
||||
p.set_param("dl", 200)
|
||||
p.set_param("cl", [(255, 0, 0), (0, 0, 255)])
|
||||
p.select("blink")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 1500:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
await p.stop()
|
||||
await task
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
|
||||
|
||||
132
test/patterns/circle.py
Normal file
132
test/patterns/circle.py
Normal file
@@ -0,0 +1,132 @@
|
||||
#!/usr/bin/env python3
|
||||
import uasyncio as asyncio
|
||||
import utime
|
||||
from machine import WDT
|
||||
from settings import Settings
|
||||
from patterns import Patterns
|
||||
|
||||
|
||||
async def main():
|
||||
s = Settings()
|
||||
pin = s.get("led_pin", 10)
|
||||
num = s.get("num_leds", 30)
|
||||
|
||||
p = Patterns(pin=pin, num_leds=num)
|
||||
wdt = WDT(timeout=10000)
|
||||
|
||||
# Test 1: Basic circle (n1=50, n2=100, n3=200, n4=0)
|
||||
print("Test 1: Basic circle (n1=50, n2=100, n3=200, n4=0)")
|
||||
p.set_param("br", 255)
|
||||
p.set_param("n1", 50) # Head moves 50 LEDs/second
|
||||
p.set_param("n2", 100) # Max length 100 LEDs
|
||||
p.set_param("n3", 200) # Tail moves 200 LEDs/second
|
||||
p.set_param("n4", 0) # Min length 0 LEDs
|
||||
p.set_param("cl", [(255, 0, 0)]) # Red
|
||||
p.select("circle")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
# Run for 5 seconds to see full cycle
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 5000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
await p.stop()
|
||||
await task
|
||||
|
||||
# Test 2: Slow growth, fast shrink (n1=20, n2=50, n3=100, n4=0)
|
||||
print("Test 2: Slow growth, fast shrink (n1=20, n2=50, n3=100, n4=0)")
|
||||
p.stopped = False
|
||||
p.set_param("n1", 20) # Head moves 20 LEDs/second (slow)
|
||||
p.set_param("n2", 50) # Max length 50 LEDs
|
||||
p.set_param("n3", 100) # Tail moves 100 LEDs/second (fast)
|
||||
p.set_param("n4", 0) # Min length 0 LEDs
|
||||
p.set_param("cl", [(0, 255, 0)]) # Green
|
||||
p.select("circle")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 5000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
await p.stop()
|
||||
await task
|
||||
|
||||
# Test 3: Fast growth, slow shrink (n1=100, n2=30, n3=20, n4=0)
|
||||
print("Test 3: Fast growth, slow shrink (n1=100, n2=30, n3=20, n4=0)")
|
||||
p.stopped = False
|
||||
p.set_param("n1", 100) # Head moves 100 LEDs/second (fast)
|
||||
p.set_param("n2", 30) # Max length 30 LEDs
|
||||
p.set_param("n3", 20) # Tail moves 20 LEDs/second (slow)
|
||||
p.set_param("n4", 0) # Min length 0 LEDs
|
||||
p.set_param("cl", [(0, 0, 255)]) # Blue
|
||||
p.select("circle")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 5000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
await p.stop()
|
||||
await task
|
||||
|
||||
# Test 4: With minimum length (n1=50, n2=40, n3=100, n4=10)
|
||||
print("Test 4: With minimum length (n1=50, n2=40, n3=100, n4=10)")
|
||||
p.stopped = False
|
||||
p.set_param("n1", 50) # Head moves 50 LEDs/second
|
||||
p.set_param("n2", 40) # Max length 40 LEDs
|
||||
p.set_param("n3", 100) # Tail moves 100 LEDs/second
|
||||
p.set_param("n4", 10) # Min length 10 LEDs (never fully disappears)
|
||||
p.set_param("cl", [(255, 255, 0)]) # Yellow
|
||||
p.select("circle")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 5000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
await p.stop()
|
||||
await task
|
||||
|
||||
# Test 5: Very fast (n1=200, n2=20, n3=200, n4=0)
|
||||
print("Test 5: Very fast (n1=200, n2=20, n3=200, n4=0)")
|
||||
p.stopped = False
|
||||
p.set_param("n1", 200) # Head moves 200 LEDs/second (very fast)
|
||||
p.set_param("n2", 20) # Max length 20 LEDs
|
||||
p.set_param("n3", 200) # Tail moves 200 LEDs/second (very fast)
|
||||
p.set_param("n4", 0) # Min length 0 LEDs
|
||||
p.set_param("cl", [(255, 0, 255)]) # Magenta
|
||||
p.select("circle")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 3000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
await p.stop()
|
||||
await task
|
||||
|
||||
# Test 6: Very slow (n1=10, n2=25, n3=10, n4=0)
|
||||
print("Test 6: Very slow (n1=10, n2=25, n3=10, n4=0)")
|
||||
p.stopped = False
|
||||
p.set_param("n1", 10) # Head moves 10 LEDs/second (very slow)
|
||||
p.set_param("n2", 25) # Max length 25 LEDs
|
||||
p.set_param("n3", 10) # Tail moves 10 LEDs/second (very slow)
|
||||
p.set_param("n4", 0) # Min length 0 LEDs
|
||||
p.set_param("cl", [(0, 255, 255)]) # Cyan
|
||||
p.select("circle")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 5000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
await p.stop()
|
||||
await task
|
||||
|
||||
# Cleanup
|
||||
print("Test complete, turning off")
|
||||
p.stopped = False
|
||||
p.select("off")
|
||||
task = asyncio.create_task(p.run())
|
||||
await asyncio.sleep_ms(100)
|
||||
await p.stop()
|
||||
await task
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
|
||||
144
test/patterns/n_chase.py
Normal file
144
test/patterns/n_chase.py
Normal file
@@ -0,0 +1,144 @@
|
||||
#!/usr/bin/env python3
|
||||
import uasyncio as asyncio
|
||||
import utime
|
||||
from machine import WDT
|
||||
from settings import Settings
|
||||
from patterns import Patterns
|
||||
|
||||
|
||||
async def main():
|
||||
s = Settings()
|
||||
pin = s.get("led_pin", 10)
|
||||
num = s.get("num_leds", 30)
|
||||
|
||||
p = Patterns(pin=pin, num_leds=num)
|
||||
wdt = WDT(timeout=10000)
|
||||
|
||||
# Test 1: Basic n_chase (n1=5, n2=5, n3=1, n4=1)
|
||||
print("Test 1: Basic n_chase (n1=5, n2=5, n3=1, n4=1)")
|
||||
p.set_param("br", 255)
|
||||
p.set_param("dl", 200)
|
||||
p.set_param("n1", 5) # 5 LEDs color0
|
||||
p.set_param("n2", 5) # 5 LEDs color1
|
||||
p.set_param("n3", 1) # Move 1 forward on even steps
|
||||
p.set_param("n4", 1) # Move 1 forward on odd steps
|
||||
p.set_param("cl", [(255, 0, 0), (0, 255, 0)]) # Red and Green
|
||||
p.select("n_chase")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 3000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
await p.stop()
|
||||
await task
|
||||
|
||||
# Test 2: Forward and backward (n3=2, n4=-1)
|
||||
print("Test 2: Forward and backward (n3=2, n4=-1)")
|
||||
p.stopped = False
|
||||
p.set_param("n1", 3)
|
||||
p.set_param("n2", 3)
|
||||
p.set_param("n3", 2) # Move 2 forward on even steps
|
||||
p.set_param("n4", -1) # Move 1 backward on odd steps
|
||||
p.set_param("dl", 150)
|
||||
p.set_param("cl", [(0, 0, 255), (255, 255, 0)]) # Blue and Yellow
|
||||
p.select("n_chase")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 3000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
await p.stop()
|
||||
await task
|
||||
|
||||
# Test 3: Large segments (n1=10, n2=5)
|
||||
print("Test 3: Large segments (n1=10, n2=5, n3=3, n4=3)")
|
||||
p.stopped = False
|
||||
p.set_param("n1", 10) # 10 LEDs color0
|
||||
p.set_param("n2", 5) # 5 LEDs color1
|
||||
p.set_param("n3", 3) # Move 3 forward
|
||||
p.set_param("n4", 3) # Move 3 forward
|
||||
p.set_param("dl", 200)
|
||||
p.set_param("cl", [(255, 128, 0), (128, 0, 255)]) # Orange and Purple
|
||||
p.select("n_chase")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 3000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
await p.stop()
|
||||
await task
|
||||
|
||||
# Test 4: Fast movement (n3=5, n4=5)
|
||||
print("Test 4: Fast movement (n3=5, n4=5)")
|
||||
p.stopped = False
|
||||
p.set_param("n1", 4)
|
||||
p.set_param("n2", 4)
|
||||
p.set_param("n3", 5) # Move 5 forward
|
||||
p.set_param("n4", 5) # Move 5 forward
|
||||
p.set_param("dl", 100)
|
||||
p.set_param("cl", [(255, 0, 255), (0, 255, 255)]) # Magenta and Cyan
|
||||
p.select("n_chase")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 2000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
await p.stop()
|
||||
await task
|
||||
|
||||
# Test 5: Backward movement (n3=-2, n4=-2)
|
||||
print("Test 5: Backward movement (n3=-2, n4=-2)")
|
||||
p.stopped = False
|
||||
p.set_param("n1", 6)
|
||||
p.set_param("n2", 4)
|
||||
p.set_param("n3", -2) # Move 2 backward
|
||||
p.set_param("n4", -2) # Move 2 backward
|
||||
p.set_param("dl", 200)
|
||||
p.set_param("cl", [(255, 255, 255), (0, 0, 0)]) # White and Black
|
||||
p.select("n_chase")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 3000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
await p.stop()
|
||||
await task
|
||||
|
||||
# Test 6: Alternating forward/backward (n3=3, n4=-2)
|
||||
print("Test 6: Alternating forward/backward (n3=3, n4=-2)")
|
||||
p.stopped = False
|
||||
p.set_param("n1", 5)
|
||||
p.set_param("n2", 5)
|
||||
p.set_param("n3", 3) # Move 3 forward on even steps
|
||||
p.set_param("n4", -2) # Move 2 backward on odd steps
|
||||
p.set_param("dl", 250)
|
||||
p.set_param("cl", [(255, 0, 0), (0, 255, 0)]) # Red and Green
|
||||
p.select("n_chase")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 4000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
await p.stop()
|
||||
await task
|
||||
|
||||
# Cleanup
|
||||
print("Test complete, turning off")
|
||||
p.stopped = False
|
||||
p.select("off")
|
||||
task = asyncio.create_task(p.run())
|
||||
await asyncio.sleep_ms(100)
|
||||
await p.stop()
|
||||
await task
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
26
test/patterns/off.py
Normal file
26
test/patterns/off.py
Normal file
@@ -0,0 +1,26 @@
|
||||
#!/usr/bin/env python3
|
||||
import uasyncio as asyncio
|
||||
from machine import WDT
|
||||
from settings import Settings
|
||||
from patterns import Patterns
|
||||
|
||||
|
||||
async def main():
|
||||
s = Settings()
|
||||
pin = s.get("led_pin", 10)
|
||||
num = s.get("num_leds", 30)
|
||||
|
||||
p = Patterns(pin=pin, num_leds=num)
|
||||
wdt = WDT(timeout=10000)
|
||||
p.select("off")
|
||||
task = asyncio.create_task(p.run())
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(200)
|
||||
p.stopped = True
|
||||
await task
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
|
||||
|
||||
34
test/patterns/on.py
Normal file
34
test/patterns/on.py
Normal file
@@ -0,0 +1,34 @@
|
||||
#!/usr/bin/env python3
|
||||
import uasyncio as asyncio
|
||||
from machine import WDT
|
||||
from settings import Settings
|
||||
from patterns import Patterns
|
||||
|
||||
|
||||
async def main():
|
||||
s = Settings()
|
||||
pin = s.get("led_pin", 10)
|
||||
num = s.get("num_leds", 30)
|
||||
|
||||
p = Patterns(pin=pin, num_leds=num)
|
||||
wdt = WDT(timeout=10000)
|
||||
p.set_param("br", 64)
|
||||
p.set_param("dl", 120)
|
||||
p.set_param("cl", [(255, 0, 0), (0, 0, 255)])
|
||||
p.select("on")
|
||||
task = asyncio.create_task(p.run())
|
||||
await asyncio.sleep_ms(800)
|
||||
p.stopped = True
|
||||
await task
|
||||
p.stopped = False
|
||||
p.select("off")
|
||||
task = asyncio.create_task(p.run())
|
||||
await asyncio.sleep_ms(100)
|
||||
p.stopped = True
|
||||
await task
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
|
||||
|
||||
160
test/patterns/pulse.py
Normal file
160
test/patterns/pulse.py
Normal file
@@ -0,0 +1,160 @@
|
||||
#!/usr/bin/env python3
|
||||
import uasyncio as asyncio
|
||||
import utime
|
||||
from machine import WDT
|
||||
from settings import Settings
|
||||
from patterns import Patterns
|
||||
|
||||
|
||||
async def main():
|
||||
s = Settings()
|
||||
pin = s.get("led_pin", 10)
|
||||
num = s.get("num_leds", 30)
|
||||
|
||||
p = Patterns(pin=pin, num_leds=num)
|
||||
wdt = WDT(timeout=10000)
|
||||
|
||||
# Test 1: Basic pulse with attack, hold, and decay
|
||||
print("Test 1: Basic pulse pattern")
|
||||
p.set_param("br", 255)
|
||||
p.set_param("dl", 1000) # 1 second delay between pulses
|
||||
p.set_param("auto", True) # Run continuously
|
||||
p.set_param("cl", [(255, 255, 255), (255, 255, 255)])
|
||||
p.set_param("n1", 200) # Attack: 200ms
|
||||
p.set_param("n2", 200) # Hold: 200ms
|
||||
p.set_param("n3", 200) # Decay: 200ms
|
||||
p.select("pulse")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
# Run for 3 seconds to see multiple pulse cycles
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 3000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
p.stopped = True
|
||||
await task
|
||||
|
||||
# Test 2: Fast pulse with shorter delay
|
||||
print("Test 2: Fast pulse pattern")
|
||||
p.stopped = False
|
||||
p.set_param("dl", 500) # 500ms delay between pulses
|
||||
p.set_param("auto", True) # Run continuously
|
||||
p.set_param("n1", 100) # Attack: 100ms
|
||||
p.set_param("n2", 100) # Hold: 100ms
|
||||
p.set_param("n3", 100) # Decay: 100ms
|
||||
p.select("pulse")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
# Run for 2 seconds
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 2000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
p.stopped = True
|
||||
await task
|
||||
|
||||
# Test 3: Colored pulse
|
||||
print("Test 3: Colored pulse pattern")
|
||||
p.stopped = False
|
||||
p.set_param("dl", 800)
|
||||
p.set_param("auto", True) # Run continuously
|
||||
p.set_param("cl", [(255, 0, 0), (0, 0, 255)]) # Red pulse
|
||||
p.set_param("n1", 150)
|
||||
p.set_param("n2", 150)
|
||||
p.set_param("n3", 150)
|
||||
p.select("pulse")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
# Run for 2 seconds
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 2000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
p.stopped = True
|
||||
await task
|
||||
|
||||
# Test 4: Verify delay restart timing
|
||||
print("Test 4: Testing delay restart timing")
|
||||
p.stopped = False
|
||||
p.set_param("dl", 500) # 500ms delay
|
||||
p.set_param("auto", True) # Run continuously
|
||||
p.set_param("n1", 100) # Total attack+hold+decay = 300ms, should wait 200ms more
|
||||
p.set_param("n2", 100)
|
||||
p.set_param("n3", 100)
|
||||
p.select("pulse")
|
||||
task = asyncio.create_task(p.run())
|
||||
|
||||
# Monitor pulse cycles
|
||||
cycle_count = 0
|
||||
last_cycle_time = utime.ticks_ms()
|
||||
start = utime.ticks_ms()
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 3000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
# Check if we're near the start of a new cycle (LEDs off)
|
||||
# This is a simplified check - in practice you'd monitor LED state
|
||||
p.stopped = True
|
||||
await task
|
||||
|
||||
# Test 5: Single-shot pulse (auto=False)
|
||||
print("Test 5: Single-shot pulse (auto=False)")
|
||||
p.stopped = False
|
||||
p.set_param("dl", 500) # Delay between pulses
|
||||
p.set_param("auto", False) # Run only once
|
||||
p.set_param("cl", [(0, 255, 0), (0, 255, 0)]) # Green pulse
|
||||
p.set_param("n1", 150) # Attack: 150ms
|
||||
p.set_param("n2", 150) # Hold: 150ms
|
||||
p.set_param("n3", 150) # Decay: 150ms
|
||||
p.select("pulse")
|
||||
task = asyncio.create_task(p.run())
|
||||
|
||||
# The pulse should complete once and then stop
|
||||
# Total time should be ~450ms (attack + hold + decay)
|
||||
# Wait a bit longer to verify it doesn't repeat
|
||||
start = utime.ticks_ms()
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 1000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
|
||||
# Task should have completed on its own (not stopped manually)
|
||||
# Verify it's stopped
|
||||
if not p.stopped:
|
||||
print("Warning: Pulse should have stopped automatically with auto=False")
|
||||
p.stopped = True
|
||||
await task
|
||||
|
||||
# Test 6: Pulse cycles through colors
|
||||
print("Test 6: Pulse cycles through colors")
|
||||
p.stopped = False
|
||||
p.set_param("dl", 300) # cycle interval
|
||||
p.set_param("auto", True) # Run continuously
|
||||
p.set_param("cl", [
|
||||
(255, 0, 0), # red
|
||||
(0, 255, 0), # green
|
||||
(0, 0, 255), # blue
|
||||
(255, 255, 0), # yellow
|
||||
])
|
||||
p.set_param("n1", 50)
|
||||
p.set_param("n2", 0)
|
||||
p.set_param("n3", 50)
|
||||
p.select("pulse")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
# Run long enough to observe multiple color cycles
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 10000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
p.stopped = True
|
||||
await task
|
||||
|
||||
# Cleanup
|
||||
print("Test complete, turning off")
|
||||
p.stopped = False
|
||||
p.select("off")
|
||||
task = asyncio.create_task(p.run())
|
||||
await asyncio.sleep_ms(100)
|
||||
p.stopped = True
|
||||
await task
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
|
||||
|
||||
167
test/patterns/rainbow.py
Normal file
167
test/patterns/rainbow.py
Normal file
@@ -0,0 +1,167 @@
|
||||
#!/usr/bin/env python3
|
||||
import uasyncio as asyncio
|
||||
import utime
|
||||
from machine import WDT
|
||||
from settings import Settings
|
||||
from patterns import Patterns
|
||||
|
||||
|
||||
async def main():
|
||||
s = Settings()
|
||||
pin = s.get("led_pin", 10)
|
||||
num = s.get("num_leds", 30)
|
||||
|
||||
p = Patterns(pin=pin, num_leds=num)
|
||||
wdt = WDT(timeout=10000)
|
||||
|
||||
# Test 1: Basic rainbow with auto=True (continuous)
|
||||
print("Test 1: Basic rainbow (auto=True, n1=1)")
|
||||
p.set_param("br", 255)
|
||||
p.set_param("dl", 100) # Delay affects animation speed
|
||||
p.set_param("n1", 1) # Step increment of 1
|
||||
p.set_param("auto", True) # Run continuously
|
||||
p.select("rainbow")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
# Run for 3 seconds to see rainbow animation
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 3000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
await p.stop()
|
||||
await task
|
||||
|
||||
# Test 2: Fast rainbow
|
||||
print("Test 2: Fast rainbow (low delay, n1=1)")
|
||||
p.stopped = False
|
||||
p.set_param("dl", 50) # Faster animation
|
||||
p.set_param("n1", 1)
|
||||
p.set_param("auto", True)
|
||||
p.select("rainbow")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 2000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
await p.stop()
|
||||
await task
|
||||
|
||||
# Test 3: Slow rainbow
|
||||
print("Test 3: Slow rainbow (high delay, n1=1)")
|
||||
p.stopped = False
|
||||
p.set_param("dl", 500) # Slower animation
|
||||
p.set_param("n1", 1)
|
||||
p.set_param("auto", True)
|
||||
p.select("rainbow")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 3000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
await p.stop()
|
||||
await task
|
||||
|
||||
# Test 4: Low brightness rainbow
|
||||
print("Test 4: Low brightness rainbow (n1=1)")
|
||||
p.stopped = False
|
||||
p.set_param("br", 64) # Low brightness
|
||||
p.set_param("dl", 100)
|
||||
p.set_param("n1", 1)
|
||||
p.set_param("auto", True)
|
||||
p.select("rainbow")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 2000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
await p.stop()
|
||||
await task
|
||||
|
||||
# Test 5: Single-step rainbow (auto=False)
|
||||
print("Test 5: Single-step rainbow (auto=False, n1=1)")
|
||||
p.stopped = False
|
||||
p.set_param("br", 255)
|
||||
p.set_param("dl", 100)
|
||||
p.set_param("n1", 1)
|
||||
p.set_param("auto", False) # Run once per call
|
||||
p.set_param("step", 0) # Reset step
|
||||
p.select("rainbow")
|
||||
|
||||
# Call rainbow multiple times to see step progression
|
||||
for i in range(10):
|
||||
task = asyncio.create_task(p.run())
|
||||
await task
|
||||
await asyncio.sleep_ms(100) # Small delay between steps
|
||||
wdt.feed()
|
||||
|
||||
# Test 6: Verify step updates correctly
|
||||
print("Test 6: Verify step updates (auto=False, n1=1)")
|
||||
p.stopped = False
|
||||
p.set_param("n1", 1)
|
||||
initial_step = p.step
|
||||
p.select("rainbow")
|
||||
task = asyncio.create_task(p.run())
|
||||
await task
|
||||
final_step = p.step
|
||||
print(f"Step updated from {initial_step} to {final_step} (expected increment: 1)")
|
||||
|
||||
# Test 7: Fast step increment (n1=5)
|
||||
print("Test 7: Fast rainbow (n1=5, auto=True)")
|
||||
p.stopped = False
|
||||
p.set_param("br", 255)
|
||||
p.set_param("dl", 100)
|
||||
p.set_param("n1", 5) # Step increment of 5 (5x faster)
|
||||
p.set_param("auto", True)
|
||||
p.select("rainbow")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 2000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
await p.stop()
|
||||
await task
|
||||
|
||||
# Test 8: Very fast step increment (n1=10)
|
||||
print("Test 8: Very fast rainbow (n1=10, auto=True)")
|
||||
p.stopped = False
|
||||
p.set_param("n1", 10) # Step increment of 10 (10x faster)
|
||||
p.set_param("auto", True)
|
||||
p.select("rainbow")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 2000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
await p.stop()
|
||||
await task
|
||||
|
||||
# Test 9: Verify n1 controls step increment (auto=False)
|
||||
print("Test 9: Verify n1 step increment (auto=False, n1=5)")
|
||||
p.stopped = False
|
||||
p.set_param("n1", 5) # Step increment of 5
|
||||
p.set_param("auto", False)
|
||||
p.set_param("step", 0) # Reset step
|
||||
initial_step = p.step
|
||||
p.select("rainbow")
|
||||
task = asyncio.create_task(p.run())
|
||||
await task
|
||||
final_step = p.step
|
||||
expected_step = (initial_step + 5) % 256
|
||||
print(f"Step updated from {initial_step} to {final_step} (expected: {expected_step})")
|
||||
if final_step == expected_step:
|
||||
print("✓ n1 step increment working correctly")
|
||||
else:
|
||||
print(f"✗ Step increment mismatch! Expected {expected_step}, got {final_step}")
|
||||
|
||||
# Cleanup
|
||||
print("Test complete, turning off")
|
||||
p.stopped = False
|
||||
p.select("off")
|
||||
task = asyncio.create_task(p.run())
|
||||
await asyncio.sleep_ms(100)
|
||||
await p.stop()
|
||||
await task
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
|
||||
165
test/patterns/transition.py
Normal file
165
test/patterns/transition.py
Normal file
@@ -0,0 +1,165 @@
|
||||
#!/usr/bin/env python3
|
||||
import uasyncio as asyncio
|
||||
import utime
|
||||
from machine import WDT
|
||||
from settings import Settings
|
||||
from patterns import Patterns
|
||||
|
||||
|
||||
async def main():
|
||||
s = Settings()
|
||||
pin = s.get("led_pin", 10)
|
||||
num = s.get("num_leds", 30)
|
||||
|
||||
p = Patterns(pin=pin, num_leds=num)
|
||||
wdt = WDT(timeout=10000)
|
||||
|
||||
# Test 1: Basic transition with 2 colors (auto=True, cycles continuously)
|
||||
print("Test 1: Basic transition (2 colors, 1000ms delay, auto=True)")
|
||||
p.set_param("br", 255)
|
||||
p.set_param("dl", 1000) # 1 second transition time
|
||||
p.set_param("auto", True) # Cycle continuously
|
||||
p.set_param("cl", [(255, 0, 0), (0, 255, 0)]) # Red to Green
|
||||
p.select("transition")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
# Run for 5 seconds to see multiple transitions
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 5000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
p.stopped = True
|
||||
await task
|
||||
|
||||
# Test 2: Fast transition (auto=True, cycles continuously)
|
||||
print("Test 2: Fast transition (500ms delay, auto=True)")
|
||||
p.stopped = False
|
||||
p.set_param("dl", 500) # 500ms transition time
|
||||
p.set_param("auto", True) # Cycle continuously
|
||||
p.set_param("cl", [(0, 0, 255), (255, 255, 0)]) # Blue to Yellow
|
||||
p.select("transition")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
# Run for 3 seconds
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 3000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
p.stopped = True
|
||||
await task
|
||||
|
||||
# Test 3: Multiple colors transition (auto=True, cycles continuously)
|
||||
print("Test 3: Multiple colors transition (3 colors, auto=True)")
|
||||
p.stopped = False
|
||||
p.set_param("dl", 800)
|
||||
p.set_param("auto", True) # Cycle continuously
|
||||
p.set_param("cl", [
|
||||
(255, 0, 0), # Red
|
||||
(0, 255, 0), # Green
|
||||
(0, 0, 255), # Blue
|
||||
])
|
||||
p.select("transition")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
# Run for 8 seconds to see full cycles
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 8000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
p.stopped = True
|
||||
await task
|
||||
|
||||
# Test 4: Single color (should just stay that color)
|
||||
print("Test 4: Single color (should stay that color)")
|
||||
p.stopped = False
|
||||
p.set_param("dl", 1000)
|
||||
p.set_param("cl", [(255, 128, 0)]) # Orange
|
||||
p.select("transition")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
# Run for 3 seconds
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 3000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
p.stopped = True
|
||||
await task
|
||||
|
||||
# Test 5: Many colors transition (auto=True, cycles continuously)
|
||||
print("Test 5: Many colors transition (5 colors, auto=True)")
|
||||
p.stopped = False
|
||||
p.set_param("dl", 600)
|
||||
p.set_param("auto", True) # Cycle continuously
|
||||
p.set_param("cl", [
|
||||
(255, 0, 0), # Red
|
||||
(255, 128, 0), # Orange
|
||||
(255, 255, 0), # Yellow
|
||||
(0, 255, 0), # Green
|
||||
(0, 0, 255), # Blue
|
||||
])
|
||||
p.select("transition")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
# Run for 10 seconds to see multiple cycles
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 10000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
p.stopped = True
|
||||
await task
|
||||
|
||||
# Test 6: Low brightness transition (auto=True, cycles continuously)
|
||||
print("Test 6: Low brightness transition (auto=True)")
|
||||
p.stopped = False
|
||||
p.set_param("br", 64) # Low brightness
|
||||
p.set_param("dl", 1000)
|
||||
p.set_param("auto", True) # Cycle continuously
|
||||
p.set_param("cl", [(255, 0, 0), (0, 255, 0)])
|
||||
p.select("transition")
|
||||
task = asyncio.create_task(p.run())
|
||||
start = utime.ticks_ms()
|
||||
# Run for 3 seconds
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 3000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
p.stopped = True
|
||||
await task
|
||||
|
||||
# Test 7: Single-shot transition (auto=False, only color1 to color2)
|
||||
print("Test 7: Single-shot transition (auto=False, color1 to color2 only)")
|
||||
p.stopped = False
|
||||
p.set_param("br", 255)
|
||||
p.set_param("dl", 1000) # 1 second transition
|
||||
p.set_param("auto", False) # Run only once
|
||||
p.set_param("cl", [
|
||||
(255, 0, 0), # Red (color1)
|
||||
(0, 255, 0), # Green (color2)
|
||||
(0, 0, 255), # Blue (should be ignored)
|
||||
(255, 255, 0), # Yellow (should be ignored)
|
||||
])
|
||||
p.select("transition")
|
||||
task = asyncio.create_task(p.run())
|
||||
|
||||
# The transition should complete once (color1 to color2) and then stop
|
||||
# Total time should be ~1000ms
|
||||
# Wait a bit longer to verify it doesn't continue
|
||||
start = utime.ticks_ms()
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < 2000:
|
||||
wdt.feed()
|
||||
await asyncio.sleep_ms(10)
|
||||
|
||||
# Task should have completed on its own (not stopped manually)
|
||||
# Verify it's stopped
|
||||
if not p.stopped:
|
||||
print("Warning: Transition should have stopped automatically with auto=False")
|
||||
p.stopped = True
|
||||
await task
|
||||
|
||||
# Cleanup
|
||||
print("Test complete, turning off")
|
||||
p.stopped = False
|
||||
p.select("off")
|
||||
task = asyncio.create_task(p.run())
|
||||
await asyncio.sleep_ms(100)
|
||||
p.stopped = True
|
||||
await task
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
|
||||
111
test/test_patterns_save_load.py
Normal file
111
test/test_patterns_save_load.py
Normal file
@@ -0,0 +1,111 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Test for saving and loading patterns
|
||||
Run with: mpremote run test/test_patterns_save_load.py
|
||||
"""
|
||||
|
||||
import json
|
||||
import uasyncio as asyncio
|
||||
from settings import Settings
|
||||
from patterns import Patterns
|
||||
|
||||
|
||||
async def test_patterns_save_load():
|
||||
"""Test saving and loading patterns"""
|
||||
print("Testing patterns save and load functionality...")
|
||||
|
||||
# Test 1: Initialize patterns and check initial state
|
||||
print("\nTest 1: Initialize patterns")
|
||||
s = Settings()
|
||||
pin = s.get("led_pin", 10)
|
||||
num_leds = s.get("num_leds", 30)
|
||||
|
||||
p1 = Patterns(pin=pin, num_leds=num_leds)
|
||||
print(f"Initial patterns count: {len(p1.patterns)}")
|
||||
print(f"Available patterns: {list(p1.patterns.keys())}")
|
||||
print(f"Selected pattern: {p1.selected}")
|
||||
|
||||
# Test 2: Try to save patterns (will fail because patterns contain functions)
|
||||
print("\nTest 2: Attempt to save patterns")
|
||||
try:
|
||||
result = p1.save()
|
||||
if result:
|
||||
print("✓ Patterns saved successfully")
|
||||
else:
|
||||
print("✗ Patterns save failed (expected - patterns contain functions)")
|
||||
except Exception as e:
|
||||
print(f"✗ Exception during save: {e}")
|
||||
|
||||
# Test 3: Try to load patterns
|
||||
print("\nTest 3: Attempt to load patterns")
|
||||
try:
|
||||
result = p1.load()
|
||||
if result:
|
||||
print("✓ Patterns loaded successfully")
|
||||
print(f"Patterns after load: {list(p1.patterns.keys())}")
|
||||
else:
|
||||
print("✗ Patterns load failed")
|
||||
except Exception as e:
|
||||
print(f"✗ Exception during load: {e}")
|
||||
|
||||
# Test 4: Test with empty patterns dict (simulating custom patterns)
|
||||
print("\nTest 4: Test save/load with empty patterns dict")
|
||||
p2 = Patterns(pin=pin, num_leds=num_leds)
|
||||
# Store original patterns
|
||||
original_patterns = p2.patterns.copy()
|
||||
# Clear patterns to test save/load with empty dict
|
||||
p2.patterns = {}
|
||||
|
||||
try:
|
||||
result = p2.save()
|
||||
if result:
|
||||
print("✓ Empty patterns dict saved successfully")
|
||||
else:
|
||||
print("✗ Failed to save empty patterns dict")
|
||||
except Exception as e:
|
||||
print(f"✗ Exception saving empty patterns: {e}")
|
||||
|
||||
# Try to load
|
||||
p3 = Patterns(pin=pin, num_leds=num_leds)
|
||||
p3.patterns = {} # Start with empty
|
||||
try:
|
||||
result = p3.load()
|
||||
if result:
|
||||
print("✓ Patterns loaded successfully")
|
||||
print(f"Patterns count after load: {len(p3.patterns)}")
|
||||
else:
|
||||
print("✗ Failed to load patterns")
|
||||
except Exception as e:
|
||||
print(f"✗ Exception loading patterns: {e}")
|
||||
|
||||
# Restore original patterns
|
||||
p2.patterns = original_patterns
|
||||
p3.patterns = original_patterns
|
||||
|
||||
# Test 5: Verify patterns object state
|
||||
print("\nTest 5: Verify patterns object state")
|
||||
print(f"Patterns object type: {type(p1)}")
|
||||
print(f"Has save method: {hasattr(p1, 'save')}")
|
||||
print(f"Has load method: {hasattr(p1, 'load')}")
|
||||
print(f"PATTERNS_FILE: {p1.PATTERNS_FILE}")
|
||||
|
||||
# Test 6: Test pattern selection persists
|
||||
print("\nTest 6: Test pattern selection")
|
||||
test_pattern = "rainbow"
|
||||
if test_pattern in p1.patterns:
|
||||
p1.select(test_pattern)
|
||||
print(f"Selected pattern: {p1.selected}")
|
||||
if p1.selected == test_pattern:
|
||||
print("✓ Pattern selection works")
|
||||
else:
|
||||
print(f"✗ Pattern selection failed. Expected '{test_pattern}', got '{p1.selected}'")
|
||||
else:
|
||||
print(f"Pattern '{test_pattern}' not available")
|
||||
|
||||
print("\n=== Patterns Save/Load test complete ===")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(test_patterns_save_load())
|
||||
|
||||
|
||||
112
test/test_save_load.py
Normal file
112
test/test_save_load.py
Normal file
@@ -0,0 +1,112 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Test for saving and loading settings
|
||||
Run with: mpremote run test/test_save_load.py
|
||||
"""
|
||||
|
||||
import json
|
||||
import os
|
||||
from settings import Settings
|
||||
from patterns import Patterns
|
||||
|
||||
|
||||
def test_save_load():
|
||||
"""Test saving and loading settings"""
|
||||
print("Testing save and load functionality...")
|
||||
|
||||
# Test 1: Save settings
|
||||
print("\nTest 1: Save settings")
|
||||
settings1 = Settings()
|
||||
|
||||
# Modify some settings
|
||||
original_num_leds = settings1.get("num_leds", 50)
|
||||
original_pattern = settings1.get("pattern", "off")
|
||||
original_brightness = settings1.get("brightness", 127)
|
||||
|
||||
settings1["num_leds"] = 100
|
||||
settings1["pattern"] = "rainbow"
|
||||
settings1["brightness"] = 200
|
||||
settings1["delay"] = 150
|
||||
settings1["color1"] = "#ff0000"
|
||||
settings1["color2"] = "#00ff00"
|
||||
|
||||
print(f"Original num_leds: {original_num_leds}")
|
||||
print(f"Setting num_leds to: {settings1['num_leds']}")
|
||||
print(f"Setting pattern to: {settings1['pattern']}")
|
||||
print(f"Setting brightness to: {settings1['brightness']}")
|
||||
|
||||
# Save settings
|
||||
settings1.save()
|
||||
print("Settings saved")
|
||||
|
||||
# Test 2: Load settings
|
||||
print("\nTest 2: Load settings")
|
||||
settings2 = Settings()
|
||||
|
||||
# Verify loaded values
|
||||
print(f"Loaded num_leds: {settings2['num_leds']}")
|
||||
print(f"Loaded pattern: {settings2['pattern']}")
|
||||
print(f"Loaded brightness: {settings2['brightness']}")
|
||||
print(f"Loaded delay: {settings2.get('delay', 'not set')}")
|
||||
print(f"Loaded color1: {settings2.get('color1', 'not set')}")
|
||||
print(f"Loaded color2: {settings2.get('color2', 'not set')}")
|
||||
|
||||
# Verify values match
|
||||
if settings2["num_leds"] == 100:
|
||||
print("✓ num_leds saved and loaded correctly")
|
||||
else:
|
||||
print(f"✗ num_leds mismatch! Expected 100, got {settings2['num_leds']}")
|
||||
|
||||
if settings2["pattern"] == "rainbow":
|
||||
print("✓ pattern saved and loaded correctly")
|
||||
else:
|
||||
print(f"✗ pattern mismatch! Expected 'rainbow', got '{settings2['pattern']}'")
|
||||
|
||||
if settings2["brightness"] == 200:
|
||||
print("✓ brightness saved and loaded correctly")
|
||||
else:
|
||||
print(f"✗ brightness mismatch! Expected 200, got {settings2['brightness']}")
|
||||
|
||||
# Test 3: Test with patterns
|
||||
print("\nTest 3: Test pattern persistence")
|
||||
pin = settings2.get("led_pin", 10)
|
||||
num_leds = settings2["num_leds"]
|
||||
|
||||
patterns = Patterns(pin=pin, num_leds=num_leds, selected=settings2["pattern"])
|
||||
patterns.set_brightness(settings2["brightness"])
|
||||
patterns.set_delay(settings2["delay"])
|
||||
|
||||
print(f"Pattern selected: {patterns.selected}")
|
||||
print(f"Pattern brightness: {patterns.brightness}")
|
||||
print(f"Pattern delay: {patterns.delay}")
|
||||
|
||||
if patterns.selected == settings2["pattern"]:
|
||||
print("✓ Pattern selection persisted")
|
||||
else:
|
||||
print(f"✗ Pattern mismatch! Expected '{settings2['pattern']}', got '{patterns.selected}'")
|
||||
|
||||
# Test 4: Restore original settings
|
||||
print("\nTest 4: Restore original settings")
|
||||
settings3 = Settings()
|
||||
settings3["num_leds"] = original_num_leds
|
||||
settings3["pattern"] = original_pattern
|
||||
settings3["brightness"] = original_brightness
|
||||
settings3.save()
|
||||
print(f"Restored num_leds to: {original_num_leds}")
|
||||
print(f"Restored pattern to: {original_pattern}")
|
||||
print(f"Restored brightness to: {original_brightness}")
|
||||
|
||||
# Verify restoration
|
||||
settings4 = Settings()
|
||||
if settings4["num_leds"] == original_num_leds:
|
||||
print("✓ Settings restored correctly")
|
||||
else:
|
||||
print(f"✗ Restoration failed! Expected {original_num_leds}, got {settings4['num_leds']}")
|
||||
|
||||
print("\n=== Save/Load test complete ===")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_save_load()
|
||||
|
||||
|
||||
335
tool.py
Executable file
335
tool.py
Executable file
@@ -0,0 +1,335 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
LED Bar Configuration Tool
|
||||
A tkinter GUI for downloading, editing, and uploading settings.json to/from MicroPython devices via mpremote.
|
||||
"""
|
||||
|
||||
import tkinter as tk
|
||||
from tkinter import ttk, messagebox, filedialog
|
||||
import json
|
||||
import subprocess
|
||||
import os
|
||||
import tempfile
|
||||
import serial
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
class LEDConfigTool:
|
||||
def __init__(self, root):
|
||||
self.root = root
|
||||
self.root.title("LED Bar Configuration Tool")
|
||||
self.root.geometry("600x700")
|
||||
|
||||
self.settings = {}
|
||||
self.temp_file = None
|
||||
|
||||
# Create main frame
|
||||
main_frame = ttk.Frame(root, padding="10")
|
||||
main_frame.grid(row=0, column=0, sticky=(tk.W, tk.E, tk.N, tk.S))
|
||||
|
||||
# Title
|
||||
title_label = ttk.Label(main_frame, text="LED Bar Configuration", font=("Arial", 16, "bold"))
|
||||
title_label.grid(row=0, column=0, columnspan=2, pady=(0, 20))
|
||||
|
||||
# Device connection section
|
||||
device_frame = ttk.LabelFrame(main_frame, text="Device Connection", padding="10")
|
||||
device_frame.grid(row=1, column=0, columnspan=2, sticky=(tk.W, tk.E), pady=(0, 10))
|
||||
|
||||
ttk.Label(device_frame, text="Device:").grid(row=0, column=0, sticky=tk.W, padx=(0, 5))
|
||||
self.device_entry = ttk.Entry(device_frame, width=30)
|
||||
self.device_entry.insert(0, "/dev/ttyACM0") # Default device
|
||||
self.device_entry.grid(row=0, column=1, sticky=(tk.W, tk.E), padx=(0, 10))
|
||||
|
||||
ttk.Button(device_frame, text="Download Settings", command=self.download_settings).grid(row=0, column=2)
|
||||
|
||||
# Settings section
|
||||
settings_frame = ttk.LabelFrame(main_frame, text="Settings", padding="10")
|
||||
settings_frame.grid(row=2, column=0, columnspan=2, sticky=(tk.W, tk.E, tk.N, tk.S), pady=(0, 10))
|
||||
|
||||
# Create scrollable frame for settings
|
||||
canvas = tk.Canvas(settings_frame, height=400)
|
||||
scrollbar = ttk.Scrollbar(settings_frame, orient="vertical", command=canvas.yview)
|
||||
scrollable_frame = ttk.Frame(canvas)
|
||||
|
||||
scrollable_frame.bind(
|
||||
"<Configure>",
|
||||
lambda e: canvas.configure(scrollregion=canvas.bbox("all"))
|
||||
)
|
||||
|
||||
canvas.create_window((0, 0), window=scrollable_frame, anchor="nw")
|
||||
canvas.configure(yscrollcommand=scrollbar.set)
|
||||
|
||||
# Settings fields
|
||||
self.setting_widgets = {}
|
||||
settings_config = [
|
||||
("led_pin", "LED Pin", "number"),
|
||||
("num_leds", "Number of LEDs", "number"),
|
||||
("color_order", "Color Order", "choice", ["rgb", "rbg", "grb", "gbr", "brg", "bgr"]),
|
||||
("name", "Device Name", "text"),
|
||||
("pattern", "Pattern", "text"),
|
||||
("delay", "Delay (ms)", "number"),
|
||||
("brightness", "Brightness", "number"),
|
||||
("n1", "N1", "number"),
|
||||
("n2", "N2", "number"),
|
||||
("n3", "N3", "number"),
|
||||
("n4", "N4", "number"),
|
||||
("n5", "N5", "number"),
|
||||
("n6", "N6", "number"),
|
||||
("ap_password", "AP Password", "text"),
|
||||
("id", "ID", "number"),
|
||||
("debug", "Debug Mode", "choice", ["True", "False"]),
|
||||
]
|
||||
|
||||
for idx, config in enumerate(settings_config):
|
||||
key = config[0]
|
||||
label_text = config[1]
|
||||
field_type = config[2]
|
||||
|
||||
ttk.Label(scrollable_frame, text=f"{label_text}:").grid(row=idx, column=0, sticky=tk.W, padx=(0, 10), pady=5)
|
||||
|
||||
if field_type == "number":
|
||||
widget = ttk.Entry(scrollable_frame, width=20)
|
||||
elif field_type == "choice":
|
||||
widget = ttk.Combobox(scrollable_frame, width=17, values=config[3], state="readonly")
|
||||
elif field_type == "color":
|
||||
widget = ttk.Entry(scrollable_frame, width=20)
|
||||
else: # text
|
||||
widget = ttk.Entry(scrollable_frame, width=20)
|
||||
|
||||
widget.grid(row=idx, column=1, sticky=(tk.W, tk.E), pady=5)
|
||||
self.setting_widgets[key] = widget
|
||||
|
||||
canvas.grid(row=0, column=0, sticky=(tk.W, tk.E, tk.N, tk.S))
|
||||
scrollbar.grid(row=0, column=1, sticky=(tk.N, tk.S))
|
||||
settings_frame.grid_rowconfigure(0, weight=1)
|
||||
settings_frame.grid_columnconfigure(0, weight=1)
|
||||
|
||||
# Buttons section
|
||||
button_frame = ttk.Frame(main_frame)
|
||||
button_frame.grid(row=3, column=0, columnspan=2, pady=(10, 0))
|
||||
|
||||
ttk.Button(button_frame, text="Load from File", command=self.load_from_file).grid(row=0, column=0, padx=5)
|
||||
ttk.Button(button_frame, text="Save to File", command=self.save_to_file).grid(row=0, column=1, padx=5)
|
||||
ttk.Button(button_frame, text="Upload Settings", command=self.upload_settings).grid(row=0, column=2, padx=5)
|
||||
|
||||
# Status bar
|
||||
self.status_label = ttk.Label(main_frame, text="Ready", relief=tk.SUNKEN, anchor=tk.W)
|
||||
self.status_label.grid(row=4, column=0, columnspan=2, sticky=(tk.W, tk.E), pady=(10, 0))
|
||||
|
||||
# Configure grid weights
|
||||
root.columnconfigure(0, weight=1)
|
||||
root.rowconfigure(0, weight=1)
|
||||
main_frame.columnconfigure(0, weight=1)
|
||||
main_frame.rowconfigure(2, weight=1)
|
||||
device_frame.columnconfigure(1, weight=1)
|
||||
|
||||
def update_status(self, message):
|
||||
"""Update the status bar message."""
|
||||
self.status_label.config(text=message)
|
||||
self.root.update_idletasks()
|
||||
|
||||
def download_settings(self):
|
||||
"""Download settings.json from the device using mpremote."""
|
||||
device = self.device_entry.get().strip()
|
||||
if not device:
|
||||
messagebox.showerror("Error", "Please specify a device")
|
||||
return
|
||||
|
||||
self.update_status("Downloading settings...")
|
||||
|
||||
try:
|
||||
# Create temporary file
|
||||
self.temp_file = tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False)
|
||||
temp_path = self.temp_file.name
|
||||
self.temp_file.close()
|
||||
|
||||
# Download file using mpremote
|
||||
cmd = ["mpremote", "connect", device, "cp", ":/settings.json", temp_path]
|
||||
result = subprocess.run(cmd, capture_output=True, text=True, timeout=10)
|
||||
|
||||
if result.returncode != 0:
|
||||
raise Exception(f"mpremote error: {result.stderr}")
|
||||
|
||||
# Load the downloaded file
|
||||
with open(temp_path, 'r') as f:
|
||||
self.settings = json.load(f)
|
||||
|
||||
# Update UI with loaded settings
|
||||
self.update_ui_from_settings()
|
||||
|
||||
self.update_status(f"Settings downloaded successfully from {device}")
|
||||
messagebox.showinfo("Success", "Settings downloaded successfully!")
|
||||
|
||||
except subprocess.TimeoutExpired:
|
||||
self.update_status("Error: Connection timeout")
|
||||
messagebox.showerror("Error", "Connection timeout. Check device connection.")
|
||||
except FileNotFoundError:
|
||||
self.update_status("Error: mpremote not found")
|
||||
messagebox.showerror("Error", "mpremote not found. Please install it:\npip install mpremote")
|
||||
except Exception as e:
|
||||
self.update_status(f"Error: {str(e)}")
|
||||
messagebox.showerror("Error", f"Failed to download settings:\n{str(e)}")
|
||||
finally:
|
||||
# Clean up temp file
|
||||
if self.temp_file and os.path.exists(temp_path):
|
||||
try:
|
||||
os.unlink(temp_path)
|
||||
except:
|
||||
pass
|
||||
|
||||
def upload_settings(self):
|
||||
"""Upload settings.json to the device using mpremote."""
|
||||
device = self.device_entry.get().strip()
|
||||
if not device:
|
||||
messagebox.showerror("Error", "Please specify a device")
|
||||
return
|
||||
|
||||
if not self.settings:
|
||||
messagebox.showerror("Error", "No settings to upload. Please download or load settings first.")
|
||||
return
|
||||
|
||||
self.update_status("Uploading settings...")
|
||||
|
||||
try:
|
||||
# Get current settings from UI
|
||||
self.update_settings_from_ui()
|
||||
|
||||
# Create temporary file with current settings
|
||||
temp_file = tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False)
|
||||
temp_path = temp_file.name
|
||||
json.dump(self.settings, temp_file, indent=2)
|
||||
temp_file.close()
|
||||
|
||||
# Upload file using mpremote
|
||||
cmd = ["mpremote", "connect", device, "cp", temp_path, ":/settings.json"]
|
||||
result = subprocess.run(cmd, capture_output=True, text=True, timeout=10)
|
||||
|
||||
if result.returncode != 0:
|
||||
raise Exception(f"mpremote error: {result.stderr}")
|
||||
|
||||
# Reset the device
|
||||
self.update_status("Resetting device...")
|
||||
try:
|
||||
with serial.Serial(device, baudrate=115200) as ser:
|
||||
ser.write(b'\x03\x03\x04')
|
||||
except Exception as e:
|
||||
# If serial reset fails, try mpremote method as fallback
|
||||
reset_cmd = ["mpremote", "connect", device, "exec", "import machine; machine.reset()"]
|
||||
subprocess.run(reset_cmd, capture_output=True, text=True, timeout=5)
|
||||
|
||||
self.update_status(f"Settings uploaded and device reset on {device}")
|
||||
messagebox.showinfo("Success", "Settings uploaded successfully and device reset!")
|
||||
|
||||
except subprocess.TimeoutExpired:
|
||||
self.update_status("Error: Connection timeout")
|
||||
messagebox.showerror("Error", "Connection timeout. Check device connection.")
|
||||
except FileNotFoundError:
|
||||
self.update_status("Error: mpremote not found")
|
||||
messagebox.showerror("Error", "mpremote not found. Please install it:\npip install mpremote")
|
||||
except Exception as e:
|
||||
self.update_status(f"Error: {str(e)}")
|
||||
messagebox.showerror("Error", f"Failed to upload settings:\n{str(e)}")
|
||||
finally:
|
||||
# Clean up temp file
|
||||
if os.path.exists(temp_path):
|
||||
try:
|
||||
os.unlink(temp_path)
|
||||
except:
|
||||
pass
|
||||
|
||||
def load_from_file(self):
|
||||
"""Load settings from a local JSON file."""
|
||||
file_path = filedialog.askopenfilename(
|
||||
title="Load Settings",
|
||||
filetypes=[("JSON files", "*.json"), ("All files", "*.*")]
|
||||
)
|
||||
|
||||
if not file_path:
|
||||
return
|
||||
|
||||
try:
|
||||
with open(file_path, 'r') as f:
|
||||
self.settings = json.load(f)
|
||||
|
||||
self.update_ui_from_settings()
|
||||
self.update_status(f"Settings loaded from {os.path.basename(file_path)}")
|
||||
messagebox.showinfo("Success", "Settings loaded successfully!")
|
||||
|
||||
except Exception as e:
|
||||
self.update_status(f"Error: {str(e)}")
|
||||
messagebox.showerror("Error", f"Failed to load settings:\n{str(e)}")
|
||||
|
||||
def save_to_file(self):
|
||||
"""Save current settings to a local JSON file."""
|
||||
if not self.settings:
|
||||
messagebox.showerror("Error", "No settings to save. Please download or load settings first.")
|
||||
return
|
||||
|
||||
file_path = filedialog.asksaveasfilename(
|
||||
title="Save Settings",
|
||||
defaultextension=".json",
|
||||
filetypes=[("JSON files", "*.json"), ("All files", "*.*")]
|
||||
)
|
||||
|
||||
if not file_path:
|
||||
return
|
||||
|
||||
try:
|
||||
# Get current settings from UI
|
||||
self.update_settings_from_ui()
|
||||
|
||||
with open(file_path, 'w') as f:
|
||||
json.dump(self.settings, f, indent=2)
|
||||
|
||||
self.update_status(f"Settings saved to {os.path.basename(file_path)}")
|
||||
messagebox.showinfo("Success", "Settings saved successfully!")
|
||||
|
||||
except Exception as e:
|
||||
self.update_status(f"Error: {str(e)}")
|
||||
messagebox.showerror("Error", f"Failed to save settings:\n{str(e)}")
|
||||
|
||||
def update_ui_from_settings(self):
|
||||
"""Update UI widgets with current settings values."""
|
||||
for key, widget in self.setting_widgets.items():
|
||||
if key in self.settings:
|
||||
value = self.settings[key]
|
||||
if isinstance(widget, ttk.Combobox):
|
||||
# For debug, convert boolean to string
|
||||
if key == "debug":
|
||||
widget.set(str(value))
|
||||
else:
|
||||
widget.set(str(value))
|
||||
else:
|
||||
widget.delete(0, tk.END)
|
||||
widget.insert(0, str(value))
|
||||
|
||||
def update_settings_from_ui(self):
|
||||
"""Update settings dictionary from UI widget values."""
|
||||
for key, widget in self.setting_widgets.items():
|
||||
value = widget.get().strip()
|
||||
if value:
|
||||
# Try to convert to appropriate type
|
||||
if key in ["led_pin", "num_leds", "delay", "brightness", "id", "n1", "n2", "n3", "n4", "n5", "n6"]:
|
||||
try:
|
||||
self.settings[key] = int(value)
|
||||
except ValueError:
|
||||
pass # Keep as string if conversion fails
|
||||
elif key == "debug":
|
||||
# Convert string "True"/"False" to boolean
|
||||
self.settings[key] = value == "True"
|
||||
else:
|
||||
self.settings[key] = value
|
||||
elif key in self.settings:
|
||||
# Keep existing value if widget is empty
|
||||
pass
|
||||
|
||||
|
||||
def main():
|
||||
root = tk.Tk()
|
||||
app = LEDConfigTool(root)
|
||||
root.mainloop()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user