feat: add pulse pattern

Configurable attack/hold/decay phases via n1/n2/n3. Single-shot when delay=0.
This commit is contained in:
2025-11-06 19:16:51 +13:00
parent f8851d2e7c
commit 846d574ad6
2 changed files with 206 additions and 422 deletions

View File

@@ -2,6 +2,9 @@ from machine import Pin
from neopixel import NeoPixel
import utime
import random
import _thread
import asyncio
from patterns_base import Patterns as PatternsBase
# Short-key parameter mapping for convenience setters
param_mapping = {
@@ -21,422 +24,108 @@ param_mapping = {
"n6": "n6",
}
class Patterns:
class Patterns(PatternsBase):
def __init__(self, pin, num_leds, color1=(0,0,0), color2=(0,0,0), brightness=127, selected="rainbow_cycle", delay=100):
self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds)
self.num_leds = num_leds
self.pattern_step = 0
self.last_update = utime.ticks_ms()
self.delay = delay
self.brightness = brightness
super().__init__(pin, num_leds, color1, color2, brightness, selected, delay)
self.patterns = {
"off": self.off,
"on" : self.on,
"color_wipe": self.color_wipe_step,
"rainbow_cycle": self.rainbow_cycle_step,
"theater_chase": self.theater_chase_step,
"blink": self.blink_step,
"color_transition": self.color_transition_step, # Added new pattern
"flicker": self.flicker_step,
"scanner": self.scanner_step, # New: Single direction scanner
"bidirectional_scanner": self.bidirectional_scanner_step, # New: Bidirectional scanner
"external": None,
"pulse": self.pulse
"blink": self.blink,
"rainbow": self.rainbow,
"pulse": self.pulse,
}
self.selected = selected
# Ensure colors list always starts with at least two for robust transition handling
self.colors = [color1, color2] if color1 != color2 else [color1, (255, 255, 255)] # Fallback if initial colors are same
if not self.colors: # Ensure at least one color exists
self.colors = [(0, 0, 0)]
self.transition_duration = delay * 50 # Default transition duration
self.hold_duration = delay * 10 # Default hold duration at each color
self.transition_step = 0 # Current step in the transition
self.current_color_idx = 0 # Index of the color currently being held/transitioned from
self.current_color = self.colors[self.current_color_idx] # The actual blended color
self.hold_start_time = utime.ticks_ms() # Time when the current color hold started
# New attributes for scanner patterns
self.scanner_direction = 1 # 1 for forward, -1 for backward
self.scanner_tail_length = 3 # Number of trailing pixels
def sync(self):
self.pattern_step=0
self.last_update = utime.ticks_ms() - self.delay
if self.selected == "color_transition":
self.transition_step = 0
self.current_color_idx = 0
self.current_color = self.colors[self.current_color_idx]
self.hold_start_time = utime.ticks_ms() # Reset hold time
# Reset scanner specific variables
self.scanner_direction = 1
self.tick()
def set_pattern_step(self, step):
self.pattern_step = step
def tick(self):
if self.patterns[self.selected]:
self.patterns[self.selected]()
def set_param(self, key, value):
if key in param_mapping:
setattr(self, param_mapping[key], value)
return True
print(f"Invalid parameter: {key}")
return False
def update_num_leds(self, pin, num_leds):
self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds)
self.num_leds = num_leds
self.pattern_step = 0
def set_delay(self, delay):
self.delay = delay
# Update transition duration and hold duration when delay changes
self.transition_duration = self.delay * 50
self.hold_duration = self.delay * 10
def set_brightness(self, brightness):
self.brightness = brightness
def set_color1(self, color):
if len(self.colors) > 0:
self.colors[0] = color
if self.selected == "color_transition":
# If the first color is changed, potentially reset transition
# to start from this new color if we were about to transition from it
if self.current_color_idx == 0:
self.transition_step = 0
self.current_color = self.colors[0]
self.hold_start_time = utime.ticks_ms()
else:
self.colors.append(color)
def set_color2(self, color):
if len(self.colors) > 1:
self.colors[1] = color
elif len(self.colors) == 1:
self.colors.append(color)
else: # List is empty
self.colors.append((0,0,0)) # Dummy color
self.colors.append(color)
def set_colors(self, colors):
if colors and len(colors) >= 2:
self.colors = colors
if self.selected == "color_transition":
self.sync() # Reset transition if new color list is provided
elif colors and len(colors) == 1:
self.colors = [colors[0], (255,255,255)] # Add a default second color
if self.selected == "color_transition":
print("Warning: 'color_transition' requires at least two colors. Adding a default second color.")
self.sync()
else:
print("Error: set_colors requires a list of at least one color.")
self.colors = [(0,0,0), (255,255,255)] # Fallback
if self.selected == "color_transition":
self.sync()
def set_color(self, num, color):
# Changed: More robust index check
if 0 <= num < len(self.colors):
self.colors[num] = color
# If the changed color is part of the current or next transition,
# restart the transition for smoother updates
if self.selected == "color_transition":
current_from_idx = self.current_color_idx
current_to_idx = (self.current_color_idx + 1) % len(self.colors)
if num == current_from_idx or num == current_to_idx:
# If we change a color involved in the current transition,
# it's best to restart the transition state for smoothness.
self.transition_step = 0
self.current_color_idx = current_from_idx # Stay at the current starting color
self.current_color = self.colors[self.current_color_idx]
self.hold_start_time = utime.ticks_ms() # Reset hold
return True
elif num == len(self.colors): # Allow setting a new color at the end
self.colors.append(color)
return True
return False
def add_color(self, color):
self.colors.append(color)
if self.selected == "color_transition" and len(self.colors) == 2:
# If we just added the second color needed for transition
self.sync()
def del_color(self, num):
# Changed: More robust index check and using del for lists
if 0 <= num < len(self.colors):
del self.colors[num]
# If the color being deleted was part of the current transition,
# re-evaluate the current_color_idx
if self.selected == "color_transition":
if len(self.colors) < 2: # Need at least two colors for transition
print("Warning: Not enough colors for 'color_transition'. Switching to 'on'.")
self.select("on") # Or some other default
else:
# Adjust index if it's out of bounds after deletion or was the one transitioning from
self.current_color_idx %= len(self.colors)
self.transition_step = 0
self.current_color = self.colors[self.current_color_idx]
self.hold_start_time = utime.ticks_ms()
return True
return False
def apply_brightness(self, color, brightness_override=None):
effective_brightness = brightness_override if brightness_override is not None else self.brightness
return tuple(int(c * effective_brightness / 255) for c in color)
def select(self, pattern):
if pattern in self.patterns:
self.selected = pattern
self.sync() # Reset pattern state when selecting a new pattern
if pattern == "color_transition":
if len(self.colors) < 2:
print("Warning: 'color_transition' requires at least two colors. Switching to 'on'.")
self.selected = "on" # Fallback if not enough colors
self.sync() # Re-sync for the new pattern
else:
self.transition_step = 0
self.current_color_idx = 0 # Start from the first color in the list
self.current_color = self.colors[self.current_color_idx]
self.hold_start_time = utime.ticks_ms() # Reset hold timer
self.transition_duration = self.delay * 50 # Initialize transition duration
self.hold_duration = self.delay * 10 # Initialize hold duration
return True
return False
def set(self, i, color):
self.n[i] = color
def write(self):
self.n.write()
def fill(self, color=None):
fill_color = color if color is not None else self.colors[0]
for i in range(self.num_leds):
self.n[i] = fill_color
self.n.write()
def off(self):
self.fill((0, 0, 0))
def on(self):
self.fill(self.apply_brightness(self.colors[0]))
def color_wipe_step(self):
color = self.apply_brightness(self.colors[0])
current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
if self.pattern_step < self.num_leds:
for i in range(self.num_leds):
self.n[i] = (0, 0, 0)
self.n[self.pattern_step] = self.apply_brightness(color)
self.n.write()
self.pattern_step += 1
else:
self.pattern_step = 0
self.last_update = current_time
def rainbow_cycle_step(self):
current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, self.last_update) >= self.delay/5:
def wheel(pos):
if pos < 85:
return (pos * 3, 255 - pos * 3, 0)
elif pos < 170:
pos -= 85
return (255 - pos * 3, 0, pos * 3)
else:
pos -= 170
return (0, pos * 3, 255 - pos * 3)
for i in range(self.num_leds):
rc_index = (i * 256 // self.num_leds) + self.pattern_step
self.n[i] = self.apply_brightness(wheel(rc_index & 255))
self.n.write()
self.pattern_step = (self.pattern_step + 1) % 256
self.last_update = current_time
def theater_chase_step(self):
current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
for i in range(self.num_leds):
if (i + self.pattern_step) % 3 == 0:
self.n[i] = self.apply_brightness(self.colors[0])
else:
self.n[i] = (0, 0, 0)
self.n.write()
self.pattern_step = (self.pattern_step + 1) % 3
self.last_update = current_time
def blink_step(self):
current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
if self.pattern_step % 2 == 0:
self.fill(self.apply_brightness(self.colors[0]))
else:
self.fill((0, 0, 0))
self.pattern_step = (self.pattern_step + 1) % 2
self.last_update = current_time
def color_transition_step(self):
current_time = utime.ticks_ms()
# Check for hold duration first
if utime.ticks_diff(current_time, self.hold_start_time) < self.hold_duration:
# Still in hold phase, just display the current solid color
self.fill(self.apply_brightness(self.current_color))
self.last_update = current_time # Keep updating last_update to avoid skipping frames
return
# If hold duration is over, proceed with transition
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
num_colors = len(self.colors)
if num_colors < 2:
# Should not happen if select handles it, but as a safeguard
self.select("on")
return
from_color = self.colors[self.current_color_idx]
to_color_idx = (self.current_color_idx + 1) % num_colors
to_color = self.colors[to_color_idx]
# Calculate interpolation factor (0.0 to 1.0)
# transition_step goes from 0 to transition_duration - 1
if self.transition_duration > 0:
interp_factor = self.transition_step / self.transition_duration
else:
interp_factor = 1.0 # Immediately transition if duration is zero
# Interpolate each color component
r = int(from_color[0] + (to_color[0] - from_color[0]) * interp_factor)
g = int(from_color[1] + (to_color[1] - from_color[1]) * interp_factor)
b = int(from_color[2] + (to_color[2] - from_color[2]) * interp_factor)
self.current_color = (r, g, b)
self.fill(self.apply_brightness(self.current_color))
self.transition_step += self.delay # Advance the transition step by the delay
if self.transition_step >= self.transition_duration:
# Transition complete, move to the next color and reset for hold phase
self.current_color_idx = to_color_idx
self.current_color = self.colors[self.current_color_idx] # Ensure current_color is the exact target color
self.transition_step = 0 # Reset transition progress
self.hold_start_time = current_time # Start hold phase for the new color
self.last_update = current_time
def flicker_step(self):
current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, self.last_update) >= self.delay/5:
base_color = self.colors[0]
# Increase the range for flicker_brightness_offset
# Changed from self.brightness // 4 to self.brightness // 2 (or even self.brightness for max intensity)
flicker_brightness_offset = random.randint(-int(self.brightness // 1.5), int(self.brightness // 1.5))
flicker_brightness = max(0, min(255, self.brightness + flicker_brightness_offset))
flicker_color = self.apply_brightness(base_color, brightness_override=flicker_brightness)
self.fill(flicker_color)
self.last_update = current_time
def scanner_step(self):
"""
Mimics a 'Knight Rider' style scanner, moving in one direction.
"""
current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
self.fill((0, 0, 0)) # Clear all LEDs
# Calculate the head and tail position
head_pos = self.pattern_step
color = self.apply_brightness(self.colors[0])
# Draw the head
if 0 <= head_pos < self.num_leds:
self.n[head_pos] = color
# Draw the trailing pixels with decreasing brightness
for i in range(1, self.scanner_tail_length + 1):
tail_pos = head_pos - i
if 0 <= tail_pos < self.num_leds:
# Calculate fading color for tail
# Example: linear fade from full brightness to off
fade_factor = 1.0 - (i / (self.scanner_tail_length + 1))
faded_color = tuple(int(c * fade_factor) for c in color)
self.n[tail_pos] = faded_color
self.n.write()
self.pattern_step += 1
if self.pattern_step >= self.num_leds + self.scanner_tail_length:
self.pattern_step = 0 # Reset to start
self.last_update = current_time
def bidirectional_scanner_step(self):
"""
Mimics a 'Knight Rider' style scanner, moving back and forth.
"""
current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, self.last_update) >= self.delay/100:
self.fill((0, 0, 0)) # Clear all LEDs
color = self.apply_brightness(self.colors[0])
# Calculate the head position based on direction
head_pos = self.pattern_step
# Draw the head
if 0 <= head_pos < self.num_leds:
self.n[head_pos] = color
# Draw the trailing pixels with decreasing brightness
for i in range(1, self.scanner_tail_length + 1):
tail_pos = head_pos - (i * self.scanner_direction)
if 0 <= tail_pos < self.num_leds:
fade_factor = 1.0 - (i / (self.scanner_tail_length + 1))
faded_color = tuple(int(c * fade_factor) for c in color)
self.n[tail_pos] = faded_color
self.n.write()
self.pattern_step += self.scanner_direction
# Change direction if boundaries are reached
if self.scanner_direction == 1 and self.pattern_step >= self.num_leds:
self.scanner_direction = -1
self.pattern_step = self.num_leds - 1 # Start moving back from the last LED
elif self.scanner_direction == -1 and self.pattern_step < 0:
self.scanner_direction = 1
self.pattern_step = 0 # Start moving forward from the first LED
self.last_update = current_time
def pulse(self):
if self.pattern_step == 0:
def blink(self):
self.stopped = False
self.running = True
while self.running:
self.fill(self.apply_brightness(self.colors[0]))
self.pattern_step = 1
self.last_update = utime.ticks_ms()
if utime.ticks_diff(utime.ticks_ms(), self.last_update) > self.delay:
utime.sleep_ms(self.delay)
self.fill((0, 0, 0))
utime.sleep_ms(self.delay)
self.running = False
self.stopped = True
if __name__ == "__main__":
import time
from machine import WDT
wdt = WDT(timeout=2000) # Enable watchdog with a 2 second timeout
p = Patterns(pin=10, num_leds=200, color1=(255,0,0), color2=(0,0,255), brightness=127, selected="bidirectional_scanner", delay=50)
p.select("pulse")
for i in range(1000):
p.tick()
wdt.feed()
time.sleep_ms(1)
def rainbow(self):
self.stopped = False
self.running = True
step = self.pattern_step % 256
while self.running:
for i in range(self.num_leds):
rc_index = (i * 256 // self.num_leds) + step
self.n[i] = self.apply_brightness(self.wheel(rc_index & 255))
self.n.write()
step = (step + 1) % 256
self.pattern_step = step
# faster animation even with larger delays; scale delay
sleep_ms = max(1, int(self.delay / 5))
utime.sleep_ms(sleep_ms)
self.running = False
self.stopped = True
def pulse(self):
self.stopped = False
self.running = True
self.off()
# Get timing parameters with defaults if not set
attack_ms = getattr(self, 'n1', 200) # Attack time in ms
hold_ms = getattr(self, 'n2', 200) # Hold time in ms
decay_ms = getattr(self, 'n3', 200) # Decay time in ms
base_color = self.colors[0] if self.colors else (255, 255, 255)
update_interval = 10 # Update every ~10ms for smoothness
while self.running:
cycle_start = utime.ticks_ms()
# Attack phase: fade from 0 to full brightness
if attack_ms > 0:
attack_start = utime.ticks_ms()
last_update = attack_start
while self.running and utime.ticks_diff(utime.ticks_ms(), attack_start) < attack_ms:
now = utime.ticks_ms()
if utime.ticks_diff(now, last_update) >= update_interval:
elapsed = utime.ticks_diff(now, attack_start)
brightness_factor = min(1.0, elapsed / attack_ms)
color = tuple(int(c * brightness_factor) for c in base_color)
self.fill(self.apply_brightness(color))
last_update = now
# Hold phase: maintain full brightness
if hold_ms > 0 and self.running:
self.fill(self.apply_brightness(base_color))
hold_start = utime.ticks_ms()
while self.running and utime.ticks_diff(utime.ticks_ms(), hold_start) < hold_ms:
pass
# Decay phase: fade from full brightness to 0
if decay_ms > 0:
decay_start = utime.ticks_ms()
last_update = decay_start
while self.running and utime.ticks_diff(utime.ticks_ms(), decay_start) < decay_ms:
now = utime.ticks_ms()
if utime.ticks_diff(now, last_update) >= update_interval:
elapsed = utime.ticks_diff(now, decay_start)
brightness_factor = max(0.0, 1.0 - (elapsed / decay_ms))
color = tuple(int(c * brightness_factor) for c in base_color)
self.fill(self.apply_brightness(color))
last_update = now
# If delay is 0, run only once and exit
if self.delay == 0:
break
# Ensure the cycle takes exactly delay milliseconds before restarting
if self.running:
self.off()
wait_until = utime.ticks_add(cycle_start, self.delay)
while self.running and utime.ticks_diff(wait_until, utime.ticks_ms()) > 0:
pass
self.running = False
self.stopped = True

View File

@@ -1,36 +1,131 @@
#!/usr/bin/env python3
import uasyncio as asyncio
import utime
from machine import WDT
from settings import Settings
from patterns import Patterns
def run():
async def main():
s = Settings()
pin = s.get("led_pin", 10)
num = s.get("num_leds", 30)
p = Patterns(pin=pin, num_leds=num)
wdt = WDT(timeout=10000)
# Test 1: Basic pulse with attack, hold, and decay
print("Test 1: Basic pulse pattern")
p.set_param("br", 255)
p.set_param("dl", 100)
p.set_param("dl", 1000) # 1 second delay between pulses
p.set_param("cl", [(255, 255, 255), (255, 255, 255)])
p.set_param("n1", 200)
p.set_param("n2", 200)
p.set_param("pt", "pulse")
p.set_param("n1", 200) # Attack: 200ms
p.set_param("n2", 200) # Hold: 200ms
p.set_param("n3", 200) # Decay: 200ms
p.select("pulse")
task = asyncio.create_task(p.run())
start = utime.ticks_ms()
while utime.ticks_diff(utime.ticks_ms(), start) < 1500:
p.tick()
# Run for 3 seconds to see multiple pulse cycles
while utime.ticks_diff(utime.ticks_ms(), start) < 3000:
wdt.feed()
utime.sleep_ms(10)
p.set_param("pt", "off")
p.tick()
utime.sleep_ms(100)
await asyncio.sleep_ms(10)
p.stopped = True
await task
# Test 2: Fast pulse with shorter delay
print("Test 2: Fast pulse pattern")
p.stopped = False
p.set_param("dl", 500) # 500ms delay between pulses
p.set_param("n1", 100) # Attack: 100ms
p.set_param("n2", 100) # Hold: 100ms
p.set_param("n3", 100) # Decay: 100ms
p.select("pulse")
task = asyncio.create_task(p.run())
start = utime.ticks_ms()
# Run for 2 seconds
while utime.ticks_diff(utime.ticks_ms(), start) < 2000:
wdt.feed()
await asyncio.sleep_ms(10)
p.stopped = True
await task
# Test 3: Colored pulse
print("Test 3: Colored pulse pattern")
p.stopped = False
p.set_param("dl", 800)
p.set_param("cl", [(255, 0, 0), (0, 0, 255)]) # Red pulse
p.set_param("n1", 150)
p.set_param("n2", 150)
p.set_param("n3", 150)
p.select("pulse")
task = asyncio.create_task(p.run())
start = utime.ticks_ms()
# Run for 2 seconds
while utime.ticks_diff(utime.ticks_ms(), start) < 2000:
wdt.feed()
await asyncio.sleep_ms(10)
p.stopped = True
await task
# Test 4: Verify delay restart timing
print("Test 4: Testing delay restart timing")
p.stopped = False
p.set_param("dl", 500) # 500ms delay
p.set_param("n1", 100) # Total attack+hold+decay = 300ms, should wait 200ms more
p.set_param("n2", 100)
p.set_param("n3", 100)
p.select("pulse")
task = asyncio.create_task(p.run())
# Monitor pulse cycles
cycle_count = 0
last_cycle_time = utime.ticks_ms()
start = utime.ticks_ms()
while utime.ticks_diff(utime.ticks_ms(), start) < 3000:
wdt.feed()
await asyncio.sleep_ms(10)
# Check if we're near the start of a new cycle (LEDs off)
# This is a simplified check - in practice you'd monitor LED state
p.stopped = True
await task
# Test 5: Single-shot pulse (delay=0)
print("Test 5: Single-shot pulse (delay=0)")
p.stopped = False
p.set_param("dl", 0) # No delay - should run only once
p.set_param("cl", [(0, 255, 0), (0, 255, 0)]) # Green pulse
p.set_param("n1", 150) # Attack: 150ms
p.set_param("n2", 150) # Hold: 150ms
p.set_param("n3", 150) # Decay: 150ms
p.select("pulse")
task = asyncio.create_task(p.run())
# The pulse should complete once and then stop
# Total time should be ~450ms (attack + hold + decay)
# Wait a bit longer to verify it doesn't repeat
start = utime.ticks_ms()
while utime.ticks_diff(utime.ticks_ms(), start) < 1000:
wdt.feed()
await asyncio.sleep_ms(10)
# Task should have completed on its own (not stopped manually)
# Verify it's stopped
if not p.stopped:
print("Warning: Pulse should have stopped automatically with delay=0")
p.stopped = True
await task
# Cleanup
print("Test complete, turning off")
p.stopped = False
p.select("off")
task = asyncio.create_task(p.run())
await asyncio.sleep_ms(100)
p.stopped = True
await task
if __name__ == "__main__":
run()
asyncio.run(main())