latentblending/example1_standard.py

100 lines
3.3 KiB
Python
Raw Normal View History

2022-11-21 09:49:33 +00:00
# Copyright 2022 Lunar Ring. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os, sys
dp_git = "/home/lugo/git/"
sys.path.append(os.path.join(dp_git,'garden4'))
sys.path.append('util')
import torch
torch.backends.cudnn.benchmark = False
import numpy as np
import warnings
warnings.filterwarnings('ignore')
import time
import subprocess
import warnings
import torch
from tqdm.auto import tqdm
from diffusers import StableDiffusionInpaintPipeline
from diffusers import StableDiffusionPipeline
from diffusers.schedulers import DDIMScheduler
from PIL import Image
import matplotlib.pyplot as plt
import torch
from movie_man import MovieSaver
import datetime
from typing import Callable, List, Optional, Union
import inspect
from latent_blending import LatentBlending, add_frames_linear_interp
torch.set_grad_enabled(False)
#%% First let us spawn a diffusers pipe using DDIMScheduler
device = "cuda:0"
model_path = "../stable_diffusion_models/stable-diffusion-v1-5"
scheduler = DDIMScheduler(beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False)
pipe = StableDiffusionPipeline.from_pretrained(
model_path,
revision="fp16",
torch_dtype=torch.float16,
scheduler=scheduler,
use_auth_token=True
)
pipe = pipe.to(device)
#%% Next let's set up all parameters
2022-11-21 15:24:06 +00:00
# FIXME below fix numbers
2022-11-21 09:49:33 +00:00
# We want 20 diffusion steps, begin with 2 branches, have 3 branches at step 12 (=0.6*20)
# 10 branches at step 16 (=0.8*20) and 24 branches at step 18 (=0.9*20)
# Furthermore we want seed 993621550 for keyframeA and seed 54878562 for keyframeB ()
2022-11-21 15:24:06 +00:00
num_inference_steps = 100 # Number of diffusion interations
list_nmb_branches = [2, 12, 30, 100, 300] # Specify the branching structure
list_injection_strength = [0.0, 0.75, 0.9, 0.93, 0.96] # Specify the branching structure
2022-11-21 09:49:33 +00:00
width = 512
height = 512
guidance_scale = 5
2022-11-21 15:24:06 +00:00
fixed_seeds = [993621550, 280335986]
2022-11-21 09:49:33 +00:00
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale)
prompt1 = "photo of a beautiful forest covered in white flowers, ambient light, very detailed, magic"
2022-11-21 15:24:06 +00:00
prompt2 = "photo of an eerie statue surrounded by ferns and vines, analog photograph kodak portra, mystical ambience, incredible detail"
2022-11-21 09:49:33 +00:00
lb.set_prompt1(prompt1)
lb.set_prompt2(prompt2)
2022-11-21 15:24:06 +00:00
imgs_transition = lb.run_transition(list_nmb_branches, list_injection_strength, fixed_seeds=fixed_seeds)
# let's get more cheap frames via linear interpolation
2022-11-21 09:49:33 +00:00
duration_transition = 12
fps = 60
imgs_transition_ext = add_frames_linear_interp(imgs_transition, duration_transition, fps)
# movie saving
fp_movie = f"/home/lugo/tmp/latentblending/bobo_incoming.mp4"
if os.path.isfile(fp_movie):
os.remove(fp_movie)
ms = MovieSaver(fp_movie, fps=fps, profile='save')
for img in tqdm(imgs_transition_ext):
ms.write_frame(img)
ms.finalize()