# Copyright 2022 Lunar Ring. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os, sys dp_git = "/home/lugo/git/" sys.path.append(os.path.join(dp_git,'garden4')) sys.path.append('util') import torch torch.backends.cudnn.benchmark = False import numpy as np import warnings warnings.filterwarnings('ignore') import time import subprocess import warnings import torch from tqdm.auto import tqdm from diffusers import StableDiffusionInpaintPipeline from diffusers import StableDiffusionPipeline from diffusers.schedulers import DDIMScheduler from PIL import Image import matplotlib.pyplot as plt import torch from movie_man import MovieSaver import datetime from typing import Callable, List, Optional, Union import inspect from latent_blending import LatentBlending, add_frames_linear_interp torch.set_grad_enabled(False) #%% First let us spawn a diffusers pipe using DDIMScheduler device = "cuda:0" model_path = "../stable_diffusion_models/stable-diffusion-v1-5" scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False) pipe = StableDiffusionPipeline.from_pretrained( model_path, revision="fp16", torch_dtype=torch.float16, scheduler=scheduler, use_auth_token=True ) pipe = pipe.to(device) #%% Next let's set up all parameters # FIXME below fix numbers # We want 20 diffusion steps, begin with 2 branches, have 3 branches at step 12 (=0.6*20) # 10 branches at step 16 (=0.8*20) and 24 branches at step 18 (=0.9*20) # Furthermore we want seed 993621550 for keyframeA and seed 54878562 for keyframeB () num_inference_steps = 100 # Number of diffusion interations list_nmb_branches = [2, 12, 30, 100, 300] # Specify the branching structure list_injection_strength = [0.0, 0.75, 0.9, 0.93, 0.96] # Specify the branching structure width = 512 height = 512 guidance_scale = 5 fixed_seeds = [993621550, 280335986] lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale) prompt1 = "photo of a beautiful forest covered in white flowers, ambient light, very detailed, magic" prompt2 = "photo of an eerie statue surrounded by ferns and vines, analog photograph kodak portra, mystical ambience, incredible detail" lb.set_prompt1(prompt1) lb.set_prompt2(prompt2) imgs_transition = lb.run_transition(list_nmb_branches, list_injection_strength, fixed_seeds=fixed_seeds) # let's get more cheap frames via linear interpolation duration_transition = 12 fps = 60 imgs_transition_ext = add_frames_linear_interp(imgs_transition, duration_transition, fps) # movie saving fp_movie = f"/home/lugo/tmp/latentblending/bobo_incoming.mp4" if os.path.isfile(fp_movie): os.remove(fp_movie) ms = MovieSaver(fp_movie, fps=fps, profile='save') for img in tqdm(imgs_transition_ext): ms.write_frame(img) ms.finalize()