102 lines
3.4 KiB
Python
102 lines
3.4 KiB
Python
|
# Copyright 2022 Lunar Ring. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import os, sys
|
||
|
dp_git = "/home/lugo/git/"
|
||
|
sys.path.append(os.path.join(dp_git,'garden4'))
|
||
|
sys.path.append('util')
|
||
|
import torch
|
||
|
torch.backends.cudnn.benchmark = False
|
||
|
import numpy as np
|
||
|
import warnings
|
||
|
warnings.filterwarnings('ignore')
|
||
|
import time
|
||
|
import subprocess
|
||
|
import warnings
|
||
|
import torch
|
||
|
from tqdm.auto import tqdm
|
||
|
from diffusers import StableDiffusionInpaintPipeline
|
||
|
from diffusers import StableDiffusionPipeline
|
||
|
from diffusers.schedulers import DDIMScheduler
|
||
|
from PIL import Image
|
||
|
import matplotlib.pyplot as plt
|
||
|
import torch
|
||
|
from movie_man import MovieSaver
|
||
|
import datetime
|
||
|
from typing import Callable, List, Optional, Union
|
||
|
import inspect
|
||
|
from latent_blending import LatentBlending, add_frames_linear_interp
|
||
|
torch.set_grad_enabled(False)
|
||
|
|
||
|
#%% First let us spawn a diffusers pipe using DDIMScheduler
|
||
|
device = "cuda:0"
|
||
|
model_path = "../stable_diffusion_models/stable-diffusion-v1-5"
|
||
|
|
||
|
scheduler = DDIMScheduler(beta_start=0.00085,
|
||
|
beta_end=0.012,
|
||
|
beta_schedule="scaled_linear",
|
||
|
clip_sample=False,
|
||
|
set_alpha_to_one=False)
|
||
|
|
||
|
pipe = StableDiffusionPipeline.from_pretrained(
|
||
|
model_path,
|
||
|
revision="fp16",
|
||
|
torch_dtype=torch.float16,
|
||
|
scheduler=scheduler,
|
||
|
use_auth_token=True
|
||
|
)
|
||
|
pipe = pipe.to(device)
|
||
|
|
||
|
#%% Next let's set up all parameters
|
||
|
|
||
|
# We want 20 diffusion steps, begin with 2 branches, have 3 branches at step 12 (=0.6*20)
|
||
|
# 10 branches at step 16 (=0.8*20) and 24 branches at step 18 (=0.9*20)
|
||
|
# Furthermore we want seed 993621550 for keyframeA and seed 54878562 for keyframeB ()
|
||
|
|
||
|
num_inference_steps = 30 # Number of diffusion interations
|
||
|
list_nmb_branches = [2, 6, 30, 100] # Specify the branching structure
|
||
|
list_injection_strength = [0.0, 0.3, 0.73, 0.93] # Specify the branching structure
|
||
|
width = 512
|
||
|
height = 512
|
||
|
guidance_scale = 5
|
||
|
#fixed_seeds = [993621550, 326814432]
|
||
|
#fixed_seeds = [993621550, 888839807]
|
||
|
fixed_seeds = [993621550, 753528763]
|
||
|
|
||
|
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale)
|
||
|
prompt1 = "photo of a beautiful forest covered in white flowers, ambient light, very detailed, magic"
|
||
|
prompt2 = "photo of a mystical sculpture in the middle of the desert, warm sunlight, sand, eery feeling"
|
||
|
lb.set_prompt1(prompt1)
|
||
|
lb.set_prompt2(prompt2)
|
||
|
|
||
|
imgs_transition = lb.run_transition(list_nmb_branches, list_injection_strength, fixed_seeds=fixed_seeds)
|
||
|
|
||
|
#%
|
||
|
|
||
|
# let's get more frames
|
||
|
duration_transition = 12
|
||
|
fps = 60
|
||
|
imgs_transition_ext = add_frames_linear_interp(imgs_transition, duration_transition, fps)
|
||
|
|
||
|
# movie saving
|
||
|
fp_movie = f"/home/lugo/tmp/latentblending/bobo_incoming.mp4"
|
||
|
if os.path.isfile(fp_movie):
|
||
|
os.remove(fp_movie)
|
||
|
ms = MovieSaver(fp_movie, fps=fps, profile='save')
|
||
|
for img in tqdm(imgs_transition_ext):
|
||
|
ms.write_frame(img)
|
||
|
ms.finalize()
|
||
|
|
||
|
|
||
|
# MOVIE TODO: ueberschreiben! bad prints.
|