Compare commits
3 Commits
patterns
...
90e1511651
Author | SHA1 | Date | |
---|---|---|---|
90e1511651 | |||
9b96a6d4a9 | |||
d3f04dcc6d |
@@ -6,4 +6,4 @@ s = Settings()
|
||||
|
||||
name = s.get('name', 'led')
|
||||
password = s.get("ap_password", "")
|
||||
wifi.ap(name, password)
|
||||
# wifi.ap(name, password)
|
||||
|
73
src/main.py
73
src/main.py
@@ -10,45 +10,46 @@ import time
|
||||
import wifi
|
||||
import json
|
||||
from p2p import p2p
|
||||
import espnow
|
||||
import network
|
||||
|
||||
async def main():
|
||||
settings = Settings()
|
||||
settings = Settings()
|
||||
|
||||
patterns = Patterns(settings["led_pin"], settings["num_leds"], selected=settings["pattern"])
|
||||
if settings["color_order"] == "rbg": color_order = (1, 5, 3)
|
||||
else: color_order = (1, 3, 5)
|
||||
patterns.set_color1(tuple(int(settings["color1"][i:i+2], 16) for i in color_order))
|
||||
patterns.set_color2(tuple(int(settings["color2"][i:i+2], 16) for i in color_order))
|
||||
patterns.set_brightness(int(settings["brightness"]))
|
||||
patterns.set_delay(int(settings["delay"]))
|
||||
patterns = Patterns(settings["led_pin"], settings["num_leds"], selected=settings["pattern"])
|
||||
if settings["color_order"] == "rbg": color_order = (1, 5, 3)
|
||||
else: color_order = (1, 3, 5)
|
||||
patterns.set_color1(tuple(int(settings["color1"][i:i+2], 16) for i in color_order))
|
||||
patterns.set_color2(tuple(int(settings["color2"][i:i+2], 16) for i in color_order))
|
||||
patterns.set_brightness(int(settings["brightness"]))
|
||||
patterns.set_delay(int(settings["delay"]))
|
||||
|
||||
async def tick():
|
||||
while True:
|
||||
patterns.tick()
|
||||
await asyncio.sleep_ms(0)
|
||||
sta = network.WLAN(network.STA_IF)
|
||||
sta.active(True)
|
||||
sta.disconnect() # Because ESP8266 auto-connects to last Access Point
|
||||
|
||||
async def system():
|
||||
while True:
|
||||
gc.collect()
|
||||
for i in range(60):
|
||||
wdt.feed()
|
||||
await asyncio.sleep(1)
|
||||
e = espnow.ESPNow()
|
||||
e.active(True)
|
||||
|
||||
print(settings)
|
||||
# start the server in a bacakground task
|
||||
print("Starting")
|
||||
|
||||
wdt = machine.WDT(timeout=10000)
|
||||
|
||||
while True:
|
||||
|
||||
w = web(settings, patterns)
|
||||
print(settings)
|
||||
# start the server in a bacakground task
|
||||
print("Starting")
|
||||
server = asyncio.create_task(w.start_server(host="0.0.0.0", port=80))
|
||||
wdt = machine.WDT(timeout=10000)
|
||||
wdt.feed()
|
||||
|
||||
asyncio.create_task(tick())
|
||||
asyncio.create_task(p2p(settings, patterns))
|
||||
asyncio.create_task(system())
|
||||
|
||||
|
||||
|
||||
# cleanup before ending the application
|
||||
await server
|
||||
|
||||
asyncio.run(main())
|
||||
patterns.tick()
|
||||
host, msg = e.recv(0)
|
||||
if msg:
|
||||
try:
|
||||
data = json.loads(msg)
|
||||
except:
|
||||
print(f"Failed to load espnow data {msg}")
|
||||
continue
|
||||
print(data)
|
||||
if "names" not in data or settings.get("name") in data.get("names", []):
|
||||
if "step" in settings and isinstance(settings["step"], int):
|
||||
patterns.set_pattern_step(settings["step"])
|
||||
else:
|
||||
settings.set_settings(data.get("settings", {}), patterns, data.get("save", False))
|
||||
|
513
src/patterns.py
513
src/patterns.py
@@ -2,395 +2,226 @@ from machine import Pin
|
||||
from neopixel import NeoPixel
|
||||
import utime
|
||||
import random
|
||||
from patterns_base import PatternsBase
|
||||
|
||||
class Patterns:
|
||||
class Patterns(PatternsBase):
|
||||
def __init__(self, pin, num_leds, color1=(0,0,0), color2=(0,0,0), brightness=127, selected="rainbow_cycle", delay=100):
|
||||
self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds)
|
||||
self.num_leds = num_leds
|
||||
self.pattern_step = 0
|
||||
self.last_update = utime.ticks_ms()
|
||||
self.delay = delay
|
||||
self.brightness = brightness
|
||||
super().__init__(pin, num_leds, color1, color2, brightness, selected, delay)
|
||||
self.patterns = {
|
||||
"off": self.off,
|
||||
"on" : self.on,
|
||||
"color_wipe": self.color_wipe_step,
|
||||
"rainbow_cycle": self.rainbow_cycle_step,
|
||||
"theater_chase": self.theater_chase_step,
|
||||
"blink": self.blink_step,
|
||||
"color_transition": self.color_transition_step, # Added new pattern
|
||||
"flicker": self.flicker_step,
|
||||
"scanner": self.scanner_step, # New: Single direction scanner
|
||||
"bidirectional_scanner": self.bidirectional_scanner_step, # New: Bidirectional scanner
|
||||
"external": None
|
||||
"off": self.off(),
|
||||
"on" : self.on(),
|
||||
"color_wipe": self.color_wipe_step(),
|
||||
"rainbow_cycle": self.rainbow_cycle_step(),
|
||||
"theater_chase": self.theater_chase_step(),
|
||||
"blink": self.blink_step(),
|
||||
"color_transition": self.color_transition_step(), # Added new pattern
|
||||
"flicker": self.flicker_step(),
|
||||
"scanner": self.scanner_step(), # New: Single direction scanner
|
||||
"bidirectional_scanner": self.bidirectional_scanner_step(), # New: Bidirectional scanner
|
||||
}
|
||||
self.selected = selected
|
||||
# Ensure colors list always starts with at least two for robust transition handling
|
||||
self.colors = [color1, color2] if color1 != color2 else [color1, (255, 255, 255)] # Fallback if initial colors are same
|
||||
if not self.colors: # Ensure at least one color exists
|
||||
self.colors = [(0, 0, 0)]
|
||||
|
||||
self.transition_duration = delay * 50 # Default transition duration
|
||||
self.hold_duration = delay * 10 # Default hold duration at each color
|
||||
self.transition_step = 0 # Current step in the transition
|
||||
self.current_color_idx = 0 # Index of the color currently being held/transitioned from
|
||||
self.current_color = self.colors[self.current_color_idx] # The actual blended color
|
||||
|
||||
self.hold_start_time = utime.ticks_ms() # Time when the current color hold started
|
||||
|
||||
# New attributes for scanner patterns
|
||||
self.scanner_direction = 1 # 1 for forward, -1 for backward
|
||||
self.scanner_tail_length = 3 # Number of trailing pixels
|
||||
|
||||
def sync(self):
|
||||
self.pattern_step=0
|
||||
self.last_update = utime.ticks_ms() - self.delay
|
||||
if self.selected == "color_transition":
|
||||
self.transition_step = 0
|
||||
self.current_color_idx = 0
|
||||
self.current_color = self.colors[self.current_color_idx]
|
||||
self.hold_start_time = utime.ticks_ms() # Reset hold time
|
||||
# Reset scanner specific variables
|
||||
self.scanner_direction = 1
|
||||
self.tick()
|
||||
|
||||
def set_pattern_step(self, step):
|
||||
self.pattern_step = step
|
||||
|
||||
def tick(self):
|
||||
if self.patterns[self.selected]:
|
||||
self.patterns[self.selected]()
|
||||
|
||||
def update_num_leds(self, pin, num_leds):
|
||||
self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds)
|
||||
self.num_leds = num_leds
|
||||
self.pattern_step = 0
|
||||
|
||||
def set_delay(self, delay):
|
||||
self.delay = delay
|
||||
# Update transition duration and hold duration when delay changes
|
||||
self.transition_duration = self.delay * 50
|
||||
self.hold_duration = self.delay * 10
|
||||
|
||||
|
||||
def set_brightness(self, brightness):
|
||||
self.brightness = brightness
|
||||
|
||||
def set_color1(self, color):
|
||||
if len(self.colors) > 0:
|
||||
self.colors[0] = color
|
||||
if self.selected == "color_transition":
|
||||
# If the first color is changed, potentially reset transition
|
||||
# to start from this new color if we were about to transition from it
|
||||
if self.current_color_idx == 0:
|
||||
self.transition_step = 0
|
||||
self.current_color = self.colors[0]
|
||||
self.hold_start_time = utime.ticks_ms()
|
||||
else:
|
||||
self.colors.append(color)
|
||||
|
||||
|
||||
def set_color2(self, color):
|
||||
if len(self.colors) > 1:
|
||||
self.colors[1] = color
|
||||
elif len(self.colors) == 1:
|
||||
self.colors.append(color)
|
||||
else: # List is empty
|
||||
self.colors.append((0,0,0)) # Dummy color
|
||||
self.colors.append(color)
|
||||
|
||||
|
||||
def set_colors(self, colors):
|
||||
if colors and len(colors) >= 2:
|
||||
self.colors = colors
|
||||
if self.selected == "color_transition":
|
||||
self.sync() # Reset transition if new color list is provided
|
||||
elif colors and len(colors) == 1:
|
||||
self.colors = [colors[0], (255,255,255)] # Add a default second color
|
||||
if self.selected == "color_transition":
|
||||
print("Warning: 'color_transition' requires at least two colors. Adding a default second color.")
|
||||
self.sync()
|
||||
else:
|
||||
print("Error: set_colors requires a list of at least one color.")
|
||||
self.colors = [(0,0,0), (255,255,255)] # Fallback
|
||||
if self.selected == "color_transition":
|
||||
self.sync()
|
||||
|
||||
def set_color(self, num, color):
|
||||
# Changed: More robust index check
|
||||
if 0 <= num < len(self.colors):
|
||||
self.colors[num] = color
|
||||
# If the changed color is part of the current or next transition,
|
||||
# restart the transition for smoother updates
|
||||
if self.selected == "color_transition":
|
||||
current_from_idx = self.current_color_idx
|
||||
current_to_idx = (self.current_color_idx + 1) % len(self.colors)
|
||||
if num == current_from_idx or num == current_to_idx:
|
||||
# If we change a color involved in the current transition,
|
||||
# it's best to restart the transition state for smoothness.
|
||||
self.transition_step = 0
|
||||
self.current_color_idx = current_from_idx # Stay at the current starting color
|
||||
self.current_color = self.colors[self.current_color_idx]
|
||||
self.hold_start_time = utime.ticks_ms() # Reset hold
|
||||
return True
|
||||
elif num == len(self.colors): # Allow setting a new color at the end
|
||||
self.colors.append(color)
|
||||
return True
|
||||
return False
|
||||
|
||||
def add_color(self, color):
|
||||
self.colors.append(color)
|
||||
if self.selected == "color_transition" and len(self.colors) == 2:
|
||||
# If we just added the second color needed for transition
|
||||
self.sync()
|
||||
|
||||
|
||||
def del_color(self, num):
|
||||
# Changed: More robust index check and using del for lists
|
||||
if 0 <= num < len(self.colors):
|
||||
del self.colors[num]
|
||||
# If the color being deleted was part of the current transition,
|
||||
# re-evaluate the current_color_idx
|
||||
if self.selected == "color_transition":
|
||||
if len(self.colors) < 2: # Need at least two colors for transition
|
||||
print("Warning: Not enough colors for 'color_transition'. Switching to 'on'.")
|
||||
self.select("on") # Or some other default
|
||||
else:
|
||||
# Adjust index if it's out of bounds after deletion or was the one transitioning from
|
||||
self.current_color_idx %= len(self.colors)
|
||||
self.transition_step = 0
|
||||
self.current_color = self.colors[self.current_color_idx]
|
||||
self.hold_start_time = utime.ticks_ms()
|
||||
return True
|
||||
return False
|
||||
|
||||
def apply_brightness(self, color, brightness_override=None):
|
||||
effective_brightness = brightness_override if brightness_override is not None else self.brightness
|
||||
return tuple(int(c * effective_brightness / 255) for c in color)
|
||||
|
||||
def select(self, pattern):
|
||||
if pattern in self.patterns:
|
||||
self.selected = pattern
|
||||
self.sync() # Reset pattern state when selecting a new pattern
|
||||
if pattern == "color_transition":
|
||||
if len(self.colors) < 2:
|
||||
print("Warning: 'color_transition' requires at least two colors. Switching to 'on'.")
|
||||
self.selected = "on" # Fallback if not enough colors
|
||||
self.sync() # Re-sync for the new pattern
|
||||
else:
|
||||
self.transition_step = 0
|
||||
self.current_color_idx = 0 # Start from the first color in the list
|
||||
self.current_color = self.colors[self.current_color_idx]
|
||||
self.hold_start_time = utime.ticks_ms() # Reset hold timer
|
||||
self.transition_duration = self.delay * 50 # Initialize transition duration
|
||||
self.hold_duration = self.delay * 10 # Initialize hold duration
|
||||
return True
|
||||
return False
|
||||
|
||||
def set(self, i, color):
|
||||
self.n[i] = color
|
||||
|
||||
def write(self):
|
||||
self.n.write()
|
||||
|
||||
def fill(self, color=None):
|
||||
fill_color = color if color is not None else self.colors[0]
|
||||
for i in range(self.num_leds):
|
||||
self.n[i] = fill_color
|
||||
self.n.write()
|
||||
|
||||
def off(self):
|
||||
self.fill((0, 0, 0))
|
||||
|
||||
def on(self):
|
||||
self.fill(self.apply_brightness(self.colors[0]))
|
||||
|
||||
def color_wipe_step(self):
|
||||
color = self.apply_brightness(self.colors[0])
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
|
||||
if self.pattern_step < self.num_leds:
|
||||
for i in range(self.num_leds):
|
||||
self.n[i] = (0, 0, 0)
|
||||
self.n[self.pattern_step] = self.apply_brightness(color)
|
||||
self.n.write()
|
||||
self.pattern_step += 1
|
||||
else:
|
||||
self.pattern_step = 0
|
||||
self.last_update = current_time
|
||||
while True:
|
||||
color = self.apply_brightness(self.colors[0])
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
|
||||
if self.pattern_step < self.num_leds:
|
||||
for i in range(self.num_leds):
|
||||
self.n[i] = (0, 0, 0)
|
||||
self.n[self.pattern_step] = self.apply_brightness(color)
|
||||
self.n.write()
|
||||
self.pattern_step += 1
|
||||
else:
|
||||
self.pattern_step = 0
|
||||
self.last_update = current_time
|
||||
yield
|
||||
|
||||
def rainbow_cycle_step(self):
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay/5:
|
||||
def wheel(pos):
|
||||
if pos < 85:
|
||||
return (pos * 3, 255 - pos * 3, 0)
|
||||
elif pos < 170:
|
||||
pos -= 85
|
||||
return (255 - pos * 3, 0, pos * 3)
|
||||
else:
|
||||
pos -= 170
|
||||
return (0, pos * 3, 255 - pos * 3)
|
||||
while True:
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay/5:
|
||||
def wheel(pos):
|
||||
if pos < 85:
|
||||
return (pos * 3, 255 - pos * 3, 0)
|
||||
elif pos < 170:
|
||||
pos -= 85
|
||||
return (255 - pos * 3, 0, pos * 3)
|
||||
else:
|
||||
pos -= 170
|
||||
return (0, pos * 3, 255 - pos * 3)
|
||||
|
||||
for i in range(self.num_leds):
|
||||
rc_index = (i * 256 // self.num_leds) + self.pattern_step
|
||||
self.n[i] = self.apply_brightness(wheel(rc_index & 255))
|
||||
self.n.write()
|
||||
self.pattern_step = (self.pattern_step + 1) % 256
|
||||
self.last_update = current_time
|
||||
for i in range(self.num_leds):
|
||||
rc_index = (i * 256 // self.num_leds) + self.pattern_step
|
||||
self.n[i] = self.apply_brightness(wheel(rc_index & 255))
|
||||
self.n.write()
|
||||
self.pattern_step = (self.pattern_step + 1) % 256
|
||||
self.last_update = current_time
|
||||
yield
|
||||
|
||||
def theater_chase_step(self):
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
|
||||
for i in range(self.num_leds):
|
||||
if (i + self.pattern_step) % 3 == 0:
|
||||
self.n[i] = self.apply_brightness(self.colors[0])
|
||||
else:
|
||||
self.n[i] = (0, 0, 0)
|
||||
self.n.write()
|
||||
self.pattern_step = (self.pattern_step + 1) % 3
|
||||
self.last_update = current_time
|
||||
while True:
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
|
||||
for i in range(self.num_leds):
|
||||
if (i + self.pattern_step) % 3 == 0:
|
||||
self.n[i] = self.apply_brightness(self.colors[0])
|
||||
else:
|
||||
self.n[i] = (0, 0, 0)
|
||||
self.n.write()
|
||||
self.pattern_step = (self.pattern_step + 1) % 3
|
||||
self.last_update = current_time
|
||||
yield
|
||||
|
||||
def blink_step(self):
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
|
||||
if self.pattern_step % 2 == 0:
|
||||
self.fill(self.apply_brightness(self.colors[0]))
|
||||
else:
|
||||
self.fill((0, 0, 0))
|
||||
self.pattern_step = (self.pattern_step + 1) % 2
|
||||
self.last_update = current_time
|
||||
while True:
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
|
||||
if self.pattern_step % 2 == 0:
|
||||
self.fill(self.apply_brightness(self.colors[0]))
|
||||
else:
|
||||
self.fill((0, 0, 0))
|
||||
self.pattern_step = (self.pattern_step + 1) % 2
|
||||
self.last_update = current_time
|
||||
yield
|
||||
|
||||
def color_transition_step(self):
|
||||
current_time = utime.ticks_ms()
|
||||
while True:
|
||||
current_time = utime.ticks_ms()
|
||||
|
||||
# Check for hold duration first
|
||||
if utime.ticks_diff(current_time, self.hold_start_time) < self.hold_duration:
|
||||
# Still in hold phase, just display the current solid color
|
||||
self.fill(self.apply_brightness(self.current_color))
|
||||
self.last_update = current_time # Keep updating last_update to avoid skipping frames
|
||||
return
|
||||
# Check for hold duration first
|
||||
if utime.ticks_diff(current_time, self.hold_start_time) < self.hold_duration:
|
||||
# Still in hold phase, just display the current solid color
|
||||
self.fill(self.apply_brightness(self.current_color))
|
||||
self.last_update = current_time # Keep updating last_update to avoid skipping frames
|
||||
yield
|
||||
|
||||
# If hold duration is over, proceed with transition
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
|
||||
num_colors = len(self.colors)
|
||||
if num_colors < 2:
|
||||
# Should not happen if select handles it, but as a safeguard
|
||||
self.select("on")
|
||||
return
|
||||
# If hold duration is over, proceed with transition
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
|
||||
num_colors = len(self.colors)
|
||||
if num_colors < 2:
|
||||
# Should not happen if select handles it, but as a safeguard
|
||||
self.select("on")
|
||||
yield
|
||||
|
||||
from_color = self.colors[self.current_color_idx]
|
||||
to_color_idx = (self.current_color_idx + 1) % num_colors
|
||||
to_color = self.colors[to_color_idx]
|
||||
from_color = self.colors[self.current_color_idx]
|
||||
to_color_idx = (self.current_color_idx + 1) % num_colors
|
||||
to_color = self.colors[to_color_idx]
|
||||
|
||||
# Calculate interpolation factor (0.0 to 1.0)
|
||||
# transition_step goes from 0 to transition_duration - 1
|
||||
if self.transition_duration > 0:
|
||||
interp_factor = self.transition_step / self.transition_duration
|
||||
else:
|
||||
interp_factor = 1.0 # Immediately transition if duration is zero
|
||||
# Calculate interpolation factor (0.0 to 1.0)
|
||||
# transition_step goes from 0 to transition_duration - 1
|
||||
if self.transition_duration > 0:
|
||||
interp_factor = self.transition_step / self.transition_duration
|
||||
else:
|
||||
interp_factor = 1.0 # Immediately transition if duration is zero
|
||||
|
||||
# Interpolate each color component
|
||||
r = int(from_color[0] + (to_color[0] - from_color[0]) * interp_factor)
|
||||
g = int(from_color[1] + (to_color[1] - from_color[1]) * interp_factor)
|
||||
b = int(from_color[2] + (to_color[2] - from_color[2]) * interp_factor)
|
||||
# Interpolate each color component
|
||||
r = int(from_color[0] + (to_color[0] - from_color[0]) * interp_factor)
|
||||
g = int(from_color[1] + (to_color[1] - from_color[1]) * interp_factor)
|
||||
b = int(from_color[2] + (to_color[2] - from_color[2]) * interp_factor)
|
||||
|
||||
self.current_color = (r, g, b)
|
||||
self.fill(self.apply_brightness(self.current_color))
|
||||
self.current_color = (r, g, b)
|
||||
self.fill(self.apply_brightness(self.current_color))
|
||||
|
||||
self.transition_step += self.delay # Advance the transition step by the delay
|
||||
self.transition_step += self.delay # Advance the transition step by the delay
|
||||
|
||||
if self.transition_step >= self.transition_duration:
|
||||
# Transition complete, move to the next color and reset for hold phase
|
||||
self.current_color_idx = to_color_idx
|
||||
self.current_color = self.colors[self.current_color_idx] # Ensure current_color is the exact target color
|
||||
self.transition_step = 0 # Reset transition progress
|
||||
self.hold_start_time = current_time # Start hold phase for the new color
|
||||
if self.transition_step >= self.transition_duration:
|
||||
# Transition complete, move to the next color and reset for hold phase
|
||||
self.current_color_idx = to_color_idx
|
||||
self.current_color = self.colors[self.current_color_idx] # Ensure current_color is the exact target color
|
||||
self.transition_step = 0 # Reset transition progress
|
||||
self.hold_start_time = current_time # Start hold phase for the new color
|
||||
|
||||
self.last_update = current_time
|
||||
self.last_update = current_time
|
||||
yield
|
||||
|
||||
def flicker_step(self):
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay/5:
|
||||
base_color = self.colors[0]
|
||||
# Increase the range for flicker_brightness_offset
|
||||
# Changed from self.brightness // 4 to self.brightness // 2 (or even self.brightness for max intensity)
|
||||
flicker_brightness_offset = random.randint(-int(self.brightness // 1.5), int(self.brightness // 1.5))
|
||||
flicker_brightness = max(0, min(255, self.brightness + flicker_brightness_offset))
|
||||
while True:
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay/5:
|
||||
base_color = self.colors[0]
|
||||
# Increase the range for flicker_brightness_offset
|
||||
# Changed from self.brightness // 4 to self.brightness // 2 (or even self.brightness for max intensity)
|
||||
flicker_brightness_offset = random.randint(-int(self.brightness // 1.5), int(self.brightness // 1.5))
|
||||
flicker_brightness = max(0, min(255, self.brightness + flicker_brightness_offset))
|
||||
|
||||
flicker_color = self.apply_brightness(base_color, brightness_override=flicker_brightness)
|
||||
self.fill(flicker_color)
|
||||
self.last_update = current_time
|
||||
flicker_color = self.apply_brightness(base_color, brightness_override=flicker_brightness)
|
||||
self.fill(flicker_color)
|
||||
self.last_update = current_time
|
||||
yield
|
||||
|
||||
def scanner_step(self):
|
||||
"""
|
||||
Mimics a 'Knight Rider' style scanner, moving in one direction.
|
||||
"""
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
|
||||
self.fill((0, 0, 0)) # Clear all LEDs
|
||||
while True:
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
|
||||
self.fill((0, 0, 0)) # Clear all LEDs
|
||||
|
||||
# Calculate the head and tail position
|
||||
head_pos = self.pattern_step
|
||||
color = self.apply_brightness(self.colors[0])
|
||||
# Calculate the head and tail position
|
||||
head_pos = self.pattern_step
|
||||
color = self.apply_brightness(self.colors[0])
|
||||
|
||||
# Draw the head
|
||||
if 0 <= head_pos < self.num_leds:
|
||||
self.n[head_pos] = color
|
||||
# Draw the head
|
||||
if 0 <= head_pos < self.num_leds:
|
||||
self.n[head_pos] = color
|
||||
|
||||
# Draw the trailing pixels with decreasing brightness
|
||||
for i in range(1, self.scanner_tail_length + 1):
|
||||
tail_pos = head_pos - i
|
||||
if 0 <= tail_pos < self.num_leds:
|
||||
# Calculate fading color for tail
|
||||
# Example: linear fade from full brightness to off
|
||||
fade_factor = 1.0 - (i / (self.scanner_tail_length + 1))
|
||||
faded_color = tuple(int(c * fade_factor) for c in color)
|
||||
self.n[tail_pos] = faded_color
|
||||
# Draw the trailing pixels with decreasing brightness
|
||||
for i in range(1, self.scanner_tail_length + 1):
|
||||
tail_pos = head_pos - i
|
||||
if 0 <= tail_pos < self.num_leds:
|
||||
# Calculate fading color for tail
|
||||
# Example: linear fade from full brightness to off
|
||||
fade_factor = 1.0 - (i / (self.scanner_tail_length + 1))
|
||||
faded_color = tuple(int(c * fade_factor) for c in color)
|
||||
self.n[tail_pos] = faded_color
|
||||
|
||||
self.n.write()
|
||||
self.n.write()
|
||||
|
||||
self.pattern_step += 1
|
||||
if self.pattern_step >= self.num_leds + self.scanner_tail_length:
|
||||
self.pattern_step = 0 # Reset to start
|
||||
self.pattern_step += 1
|
||||
if self.pattern_step >= self.num_leds + self.scanner_tail_length:
|
||||
self.pattern_step = 0 # Reset to start
|
||||
|
||||
self.last_update = current_time
|
||||
self.last_update = current_time
|
||||
yield
|
||||
|
||||
def bidirectional_scanner_step(self):
|
||||
"""
|
||||
Mimics a 'Knight Rider' style scanner, moving back and forth.
|
||||
"""
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay/100:
|
||||
self.fill((0, 0, 0)) # Clear all LEDs
|
||||
while True:
|
||||
current_time = utime.ticks_ms()
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay/100:
|
||||
self.fill((0, 0, 0)) # Clear all LEDs
|
||||
|
||||
color = self.apply_brightness(self.colors[0])
|
||||
color = self.apply_brightness(self.colors[0])
|
||||
|
||||
# Calculate the head position based on direction
|
||||
head_pos = self.pattern_step
|
||||
# Calculate the head position based on direction
|
||||
head_pos = self.pattern_step
|
||||
|
||||
# Draw the head
|
||||
if 0 <= head_pos < self.num_leds:
|
||||
self.n[head_pos] = color
|
||||
# Draw the head
|
||||
if 0 <= head_pos < self.num_leds:
|
||||
self.n[head_pos] = color
|
||||
|
||||
# Draw the trailing pixels with decreasing brightness
|
||||
for i in range(1, self.scanner_tail_length + 1):
|
||||
tail_pos = head_pos - (i * self.scanner_direction)
|
||||
if 0 <= tail_pos < self.num_leds:
|
||||
fade_factor = 1.0 - (i / (self.scanner_tail_length + 1))
|
||||
faded_color = tuple(int(c * fade_factor) for c in color)
|
||||
self.n[tail_pos] = faded_color
|
||||
# Draw the trailing pixels with decreasing brightness
|
||||
for i in range(1, self.scanner_tail_length + 1):
|
||||
tail_pos = head_pos - (i * self.scanner_direction)
|
||||
if 0 <= tail_pos < self.num_leds:
|
||||
fade_factor = 1.0 - (i / (self.scanner_tail_length + 1))
|
||||
faded_color = tuple(int(c * fade_factor) for c in color)
|
||||
self.n[tail_pos] = faded_color
|
||||
|
||||
self.n.write()
|
||||
self.n.write()
|
||||
|
||||
self.pattern_step += self.scanner_direction
|
||||
self.pattern_step += self.scanner_direction
|
||||
|
||||
# Change direction if boundaries are reached
|
||||
if self.scanner_direction == 1 and self.pattern_step >= self.num_leds:
|
||||
self.scanner_direction = -1
|
||||
self.pattern_step = self.num_leds - 1 # Start moving back from the last LED
|
||||
elif self.scanner_direction == -1 and self.pattern_step < 0:
|
||||
self.scanner_direction = 1
|
||||
self.pattern_step = 0 # Start moving forward from the first LED
|
||||
# Change direction if boundaries are reached
|
||||
if self.scanner_direction == 1 and self.pattern_step >= self.num_leds:
|
||||
self.scanner_direction = -1
|
||||
self.pattern_step = self.num_leds - 1 # Start moving back from the last LED
|
||||
elif self.scanner_direction == -1 and self.pattern_step < 0:
|
||||
self.scanner_direction = 1
|
||||
self.pattern_step = 0 # Start moving forward from the first LED
|
||||
|
||||
self.last_update = current_time
|
||||
self.last_update = current_time
|
||||
yield
|
||||
|
205
src/patterns_base.py
Normal file
205
src/patterns_base.py
Normal file
@@ -0,0 +1,205 @@
|
||||
from machine import Pin
|
||||
from neopixel import NeoPixel
|
||||
import utime
|
||||
|
||||
class PatternsBase:
|
||||
def __init__(self, pin, num_leds, color1=(0,0,0), color2=(0,0,0), brightness=127, selected="rainbow_cycle", delay=100):
|
||||
|
||||
self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds)
|
||||
self.num_leds = num_leds
|
||||
self.pattern_step = 0
|
||||
self.last_update = utime.ticks_ms()
|
||||
self.delay = delay
|
||||
self.brightness = brightness
|
||||
self. run = True
|
||||
self.selected = selected
|
||||
# Ensure colors list always starts with at least two for robust transition handling
|
||||
self.colors = [color1, color2] if color1 != color2 else [color1, (255, 255, 255)] # Fallback if initial colors are same
|
||||
if not self.colors: # Ensure at least one color exists
|
||||
self.colors = [(0, 0, 0)]
|
||||
|
||||
self.transition_duration = delay * 50 # Default transition duration
|
||||
self.hold_duration = delay * 10 # Default hold duration at each color
|
||||
self.transition_step = 0 # Current step in the transition
|
||||
self.current_color_idx = 0 # Index of the color currently being held/transitioned from
|
||||
self.current_color = self.colors[self.current_color_idx] # The actual blended color
|
||||
|
||||
self.hold_start_time = utime.ticks_ms() # Time when the current color hold started
|
||||
|
||||
# New attributes for scanner patterns
|
||||
self.scanner_direction = 1 # 1 for forward, -1 for backward
|
||||
self.scanner_tail_length = 3 # Number of trailing pixels
|
||||
self.patterns = {}
|
||||
self.run = True
|
||||
|
||||
def sync(self):
|
||||
self.pattern_step=0
|
||||
self.last_update = utime.ticks_ms() - self.delay
|
||||
if self.selected == "color_transition":
|
||||
self.transition_step = 0
|
||||
self.current_color_idx = 0
|
||||
self.current_color = self.colors[self.current_color_idx]
|
||||
self.hold_start_time = utime.ticks_ms() # Reset hold time
|
||||
# Reset scanner specific variables
|
||||
self.scanner_direction = 1
|
||||
self.tick()
|
||||
|
||||
def set_pattern_step(self, step):
|
||||
self.pattern_step = step
|
||||
|
||||
def update_num_leds(self, pin, num_leds):
|
||||
self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds)
|
||||
self.num_leds = num_leds
|
||||
self.pattern_step = 0
|
||||
|
||||
def set_delay(self, delay):
|
||||
self.delay = delay
|
||||
# Update transition duration and hold duration when delay changes
|
||||
self.transition_duration = self.delay * 50
|
||||
self.hold_duration = self.delay * 10
|
||||
|
||||
def set_brightness(self, brightness):
|
||||
self.brightness = brightness
|
||||
|
||||
def set_color1(self, color):
|
||||
if len(self.colors) > 0:
|
||||
self.colors[0] = color
|
||||
if self.selected == "color_transition":
|
||||
# If the first color is changed, potentially reset transition
|
||||
# to start from this new color if we were about to transition from it
|
||||
if self.current_color_idx == 0:
|
||||
self.transition_step = 0
|
||||
self.current_color = self.colors[0]
|
||||
self.hold_start_time = utime.ticks_ms()
|
||||
else:
|
||||
self.colors.append(color)
|
||||
|
||||
|
||||
def set_color2(self, color):
|
||||
if len(self.colors) > 1:
|
||||
self.colors[1] = color
|
||||
elif len(self.colors) == 1:
|
||||
self.colors.append(color)
|
||||
else: # List is empty
|
||||
self.colors.append((0,0,0)) # Dummy color
|
||||
self.colors.append(color)
|
||||
|
||||
|
||||
def set_colors(self, colors):
|
||||
if colors and len(colors) >= 2:
|
||||
self.colors = colors
|
||||
if self.selected == "color_transition":
|
||||
self.sync() # Reset transition if new color list is provided
|
||||
elif colors and len(colors) == 1:
|
||||
self.colors = [colors[0], (255,255,255)] # Add a default second color
|
||||
if self.selected == "color_transition":
|
||||
print("Warning: 'color_transition' requires at least two colors. Adding a default second color.")
|
||||
self.sync()
|
||||
else:
|
||||
print("Error: set_colors requires a list of at least one color.")
|
||||
self.colors = [(0,0,0), (255,255,255)] # Fallback
|
||||
if self.selected == "color_transition":
|
||||
self.sync()
|
||||
|
||||
def set_color(self, num, color):
|
||||
# Changed: More robust index check
|
||||
if 0 <= num < len(self.colors):
|
||||
self.colors[num] = color
|
||||
# If the changed color is part of the current or next transition,
|
||||
# restart the transition for smoother updates
|
||||
if self.selected == "color_transition":
|
||||
current_from_idx = self.current_color_idx
|
||||
current_to_idx = (self.current_color_idx + 1) % len(self.colors)
|
||||
if num == current_from_idx or num == current_to_idx:
|
||||
# If we change a color involved in the current transition,
|
||||
# it's best to restart the transition state for smoothness.
|
||||
self.transition_step = 0
|
||||
self.current_color_idx = current_from_idx # Stay at the current starting color
|
||||
self.current_color = self.colors[self.current_color_idx]
|
||||
self.hold_start_time = utime.ticks_ms() # Reset hold
|
||||
return True
|
||||
elif num == len(self.colors): # Allow setting a new color at the end
|
||||
self.colors.append(color)
|
||||
return True
|
||||
return False
|
||||
|
||||
def add_color(self, color):
|
||||
self.colors.append(color)
|
||||
if self.selected == "color_transition" and len(self.colors) == 2:
|
||||
# If we just added the second color needed for transition
|
||||
self.sync()
|
||||
|
||||
|
||||
def del_color(self, num):
|
||||
# Changed: More robust index check and using del for lists
|
||||
if 0 <= num < len(self.colors):
|
||||
del self.colors[num]
|
||||
# If the color being deleted was part of the current transition,
|
||||
# re-evaluate the current_color_idx
|
||||
if self.selected == "color_transition":
|
||||
if len(self.colors) < 2: # Need at least two colors for transition
|
||||
print("Warning: Not enough colors for 'color_transition'. Switching to 'on'.")
|
||||
self.select("on") # Or some other default
|
||||
else:
|
||||
# Adjust index if it's out of bounds after deletion or was the one transitioning from
|
||||
self.current_color_idx %= len(self.colors)
|
||||
self.transition_step = 0
|
||||
self.current_color = self.colors[self.current_color_idx]
|
||||
self.hold_start_time = utime.ticks_ms()
|
||||
return True
|
||||
return False
|
||||
|
||||
def apply_brightness(self, color, brightness_override=None):
|
||||
effective_brightness = brightness_override if brightness_override is not None else self.brightness
|
||||
return tuple(int(c * effective_brightness / 255) for c in color)
|
||||
|
||||
def select(self, pattern):
|
||||
if pattern in self.patterns and hasattr(self.patterns[pattern], "__next__"):
|
||||
self.selected = pattern
|
||||
self.run = True
|
||||
self.sync() # Reset pattern state when selecting a new pattern
|
||||
if pattern == "color_transition":
|
||||
if len(self.colors) < 2:
|
||||
print("Warning: 'color_transition' requires at least two colors. Switching to 'on'.")
|
||||
self.selected = "on" # Fallback if not enough colors
|
||||
self.sync() # Re-sync for the new pattern
|
||||
else:
|
||||
self.transition_step = 0
|
||||
self.current_color_idx = 0 # Start from the first color in the list
|
||||
self.current_color = self.colors[self.current_color_idx]
|
||||
self.hold_start_time = utime.ticks_ms() # Reset hold timer
|
||||
self.transition_duration = self.delay * 50 # Initialize transition duration
|
||||
self.hold_duration = self.delay * 10 # Initialize hold duration
|
||||
return True
|
||||
return False
|
||||
|
||||
def tick(self):
|
||||
if self.run:
|
||||
try:
|
||||
next(self.patterns[self.selected])
|
||||
except StopIteration:
|
||||
self.run = False
|
||||
|
||||
def set(self, i, color):
|
||||
self.n[i] = color
|
||||
|
||||
def write(self):
|
||||
self.n.write()
|
||||
|
||||
def fill(self, color=None):
|
||||
fill_color = color if color is not None else self.colors[0]
|
||||
for i in range(self.num_leds):
|
||||
self.n[i] = fill_color
|
||||
self.n.write()
|
||||
|
||||
def off(self):
|
||||
while True:
|
||||
self.fill((0, 0, 0))
|
||||
self.run = False
|
||||
yield
|
||||
|
||||
def on(self):
|
||||
while True:
|
||||
self.fill(self.apply_brightness(self.colors[0]))
|
||||
self.run = False
|
||||
yield
|
Reference in New Issue
Block a user