2 Commits

Author SHA1 Message Date
90e1511651 Switch to using itterators 2025-08-30 21:31:24 +12:00
9b96a6d4a9 Serperate out the pattertns and the lower level methods 2025-08-30 20:18:45 +12:00
2 changed files with 377 additions and 341 deletions

View File

@@ -2,210 +2,26 @@ from machine import Pin
from neopixel import NeoPixel from neopixel import NeoPixel
import utime import utime
import random import random
from patterns_base import PatternsBase
class Patterns: class Patterns(PatternsBase):
def __init__(self, pin, num_leds, color1=(0,0,0), color2=(0,0,0), brightness=127, selected="rainbow_cycle", delay=100): def __init__(self, pin, num_leds, color1=(0,0,0), color2=(0,0,0), brightness=127, selected="rainbow_cycle", delay=100):
self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds) super().__init__(pin, num_leds, color1, color2, brightness, selected, delay)
self.num_leds = num_leds
self.pattern_step = 0
self.last_update = utime.ticks_ms()
self.delay = delay
self.brightness = brightness
self.patterns = { self.patterns = {
"off": self.off, "off": self.off(),
"on" : self.on, "on" : self.on(),
"color_wipe": self.color_wipe_step, "color_wipe": self.color_wipe_step(),
"rainbow_cycle": self.rainbow_cycle_step, "rainbow_cycle": self.rainbow_cycle_step(),
"theater_chase": self.theater_chase_step, "theater_chase": self.theater_chase_step(),
"blink": self.blink_step, "blink": self.blink_step(),
"color_transition": self.color_transition_step, # Added new pattern "color_transition": self.color_transition_step(), # Added new pattern
"flicker": self.flicker_step, "flicker": self.flicker_step(),
"scanner": self.scanner_step, # New: Single direction scanner "scanner": self.scanner_step(), # New: Single direction scanner
"bidirectional_scanner": self.bidirectional_scanner_step, # New: Bidirectional scanner "bidirectional_scanner": self.bidirectional_scanner_step(), # New: Bidirectional scanner
"external": None
} }
self.selected = selected
# Ensure colors list always starts with at least two for robust transition handling
self.colors = [color1, color2] if color1 != color2 else [color1, (255, 255, 255)] # Fallback if initial colors are same
if not self.colors: # Ensure at least one color exists
self.colors = [(0, 0, 0)]
self.transition_duration = delay * 50 # Default transition duration
self.hold_duration = delay * 10 # Default hold duration at each color
self.transition_step = 0 # Current step in the transition
self.current_color_idx = 0 # Index of the color currently being held/transitioned from
self.current_color = self.colors[self.current_color_idx] # The actual blended color
self.hold_start_time = utime.ticks_ms() # Time when the current color hold started
# New attributes for scanner patterns
self.scanner_direction = 1 # 1 for forward, -1 for backward
self.scanner_tail_length = 3 # Number of trailing pixels
def sync(self):
self.pattern_step=0
self.last_update = utime.ticks_ms() - self.delay
if self.selected == "color_transition":
self.transition_step = 0
self.current_color_idx = 0
self.current_color = self.colors[self.current_color_idx]
self.hold_start_time = utime.ticks_ms() # Reset hold time
# Reset scanner specific variables
self.scanner_direction = 1
self.tick()
def set_pattern_step(self, step):
self.pattern_step = step
def tick(self):
if self.patterns[self.selected]:
self.patterns[self.selected]()
def update_num_leds(self, pin, num_leds):
self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds)
self.num_leds = num_leds
self.pattern_step = 0
def set_delay(self, delay):
self.delay = delay
# Update transition duration and hold duration when delay changes
self.transition_duration = self.delay * 50
self.hold_duration = self.delay * 10
def set_brightness(self, brightness):
self.brightness = brightness
def set_color1(self, color):
if len(self.colors) > 0:
self.colors[0] = color
if self.selected == "color_transition":
# If the first color is changed, potentially reset transition
# to start from this new color if we were about to transition from it
if self.current_color_idx == 0:
self.transition_step = 0
self.current_color = self.colors[0]
self.hold_start_time = utime.ticks_ms()
else:
self.colors.append(color)
def set_color2(self, color):
if len(self.colors) > 1:
self.colors[1] = color
elif len(self.colors) == 1:
self.colors.append(color)
else: # List is empty
self.colors.append((0,0,0)) # Dummy color
self.colors.append(color)
def set_colors(self, colors):
if colors and len(colors) >= 2:
self.colors = colors
if self.selected == "color_transition":
self.sync() # Reset transition if new color list is provided
elif colors and len(colors) == 1:
self.colors = [colors[0], (255,255,255)] # Add a default second color
if self.selected == "color_transition":
print("Warning: 'color_transition' requires at least two colors. Adding a default second color.")
self.sync()
else:
print("Error: set_colors requires a list of at least one color.")
self.colors = [(0,0,0), (255,255,255)] # Fallback
if self.selected == "color_transition":
self.sync()
def set_color(self, num, color):
# Changed: More robust index check
if 0 <= num < len(self.colors):
self.colors[num] = color
# If the changed color is part of the current or next transition,
# restart the transition for smoother updates
if self.selected == "color_transition":
current_from_idx = self.current_color_idx
current_to_idx = (self.current_color_idx + 1) % len(self.colors)
if num == current_from_idx or num == current_to_idx:
# If we change a color involved in the current transition,
# it's best to restart the transition state for smoothness.
self.transition_step = 0
self.current_color_idx = current_from_idx # Stay at the current starting color
self.current_color = self.colors[self.current_color_idx]
self.hold_start_time = utime.ticks_ms() # Reset hold
return True
elif num == len(self.colors): # Allow setting a new color at the end
self.colors.append(color)
return True
return False
def add_color(self, color):
self.colors.append(color)
if self.selected == "color_transition" and len(self.colors) == 2:
# If we just added the second color needed for transition
self.sync()
def del_color(self, num):
# Changed: More robust index check and using del for lists
if 0 <= num < len(self.colors):
del self.colors[num]
# If the color being deleted was part of the current transition,
# re-evaluate the current_color_idx
if self.selected == "color_transition":
if len(self.colors) < 2: # Need at least two colors for transition
print("Warning: Not enough colors for 'color_transition'. Switching to 'on'.")
self.select("on") # Or some other default
else:
# Adjust index if it's out of bounds after deletion or was the one transitioning from
self.current_color_idx %= len(self.colors)
self.transition_step = 0
self.current_color = self.colors[self.current_color_idx]
self.hold_start_time = utime.ticks_ms()
return True
return False
def apply_brightness(self, color, brightness_override=None):
effective_brightness = brightness_override if brightness_override is not None else self.brightness
return tuple(int(c * effective_brightness / 255) for c in color)
def select(self, pattern):
if pattern in self.patterns:
self.selected = pattern
self.sync() # Reset pattern state when selecting a new pattern
if pattern == "color_transition":
if len(self.colors) < 2:
print("Warning: 'color_transition' requires at least two colors. Switching to 'on'.")
self.selected = "on" # Fallback if not enough colors
self.sync() # Re-sync for the new pattern
else:
self.transition_step = 0
self.current_color_idx = 0 # Start from the first color in the list
self.current_color = self.colors[self.current_color_idx]
self.hold_start_time = utime.ticks_ms() # Reset hold timer
self.transition_duration = self.delay * 50 # Initialize transition duration
self.hold_duration = self.delay * 10 # Initialize hold duration
return True
return False
def set(self, i, color):
self.n[i] = color
def write(self):
self.n.write()
def fill(self, color=None):
fill_color = color if color is not None else self.colors[0]
for i in range(self.num_leds):
self.n[i] = fill_color
self.n.write()
def off(self):
self.fill((0, 0, 0))
def on(self):
self.fill(self.apply_brightness(self.colors[0]))
def color_wipe_step(self): def color_wipe_step(self):
while True:
color = self.apply_brightness(self.colors[0]) color = self.apply_brightness(self.colors[0])
current_time = utime.ticks_ms() current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, self.last_update) >= self.delay: if utime.ticks_diff(current_time, self.last_update) >= self.delay:
@@ -218,8 +34,10 @@ class Patterns:
else: else:
self.pattern_step = 0 self.pattern_step = 0
self.last_update = current_time self.last_update = current_time
yield
def rainbow_cycle_step(self): def rainbow_cycle_step(self):
while True:
current_time = utime.ticks_ms() current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, self.last_update) >= self.delay/5: if utime.ticks_diff(current_time, self.last_update) >= self.delay/5:
def wheel(pos): def wheel(pos):
@@ -238,8 +56,10 @@ class Patterns:
self.n.write() self.n.write()
self.pattern_step = (self.pattern_step + 1) % 256 self.pattern_step = (self.pattern_step + 1) % 256
self.last_update = current_time self.last_update = current_time
yield
def theater_chase_step(self): def theater_chase_step(self):
while True:
current_time = utime.ticks_ms() current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, self.last_update) >= self.delay: if utime.ticks_diff(current_time, self.last_update) >= self.delay:
for i in range(self.num_leds): for i in range(self.num_leds):
@@ -250,8 +70,10 @@ class Patterns:
self.n.write() self.n.write()
self.pattern_step = (self.pattern_step + 1) % 3 self.pattern_step = (self.pattern_step + 1) % 3
self.last_update = current_time self.last_update = current_time
yield
def blink_step(self): def blink_step(self):
while True:
current_time = utime.ticks_ms() current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, self.last_update) >= self.delay: if utime.ticks_diff(current_time, self.last_update) >= self.delay:
if self.pattern_step % 2 == 0: if self.pattern_step % 2 == 0:
@@ -260,8 +82,10 @@ class Patterns:
self.fill((0, 0, 0)) self.fill((0, 0, 0))
self.pattern_step = (self.pattern_step + 1) % 2 self.pattern_step = (self.pattern_step + 1) % 2
self.last_update = current_time self.last_update = current_time
yield
def color_transition_step(self): def color_transition_step(self):
while True:
current_time = utime.ticks_ms() current_time = utime.ticks_ms()
# Check for hold duration first # Check for hold duration first
@@ -269,7 +93,7 @@ class Patterns:
# Still in hold phase, just display the current solid color # Still in hold phase, just display the current solid color
self.fill(self.apply_brightness(self.current_color)) self.fill(self.apply_brightness(self.current_color))
self.last_update = current_time # Keep updating last_update to avoid skipping frames self.last_update = current_time # Keep updating last_update to avoid skipping frames
return yield
# If hold duration is over, proceed with transition # If hold duration is over, proceed with transition
if utime.ticks_diff(current_time, self.last_update) >= self.delay: if utime.ticks_diff(current_time, self.last_update) >= self.delay:
@@ -277,7 +101,7 @@ class Patterns:
if num_colors < 2: if num_colors < 2:
# Should not happen if select handles it, but as a safeguard # Should not happen if select handles it, but as a safeguard
self.select("on") self.select("on")
return yield
from_color = self.colors[self.current_color_idx] from_color = self.colors[self.current_color_idx]
to_color_idx = (self.current_color_idx + 1) % num_colors to_color_idx = (self.current_color_idx + 1) % num_colors
@@ -308,8 +132,10 @@ class Patterns:
self.hold_start_time = current_time # Start hold phase for the new color self.hold_start_time = current_time # Start hold phase for the new color
self.last_update = current_time self.last_update = current_time
yield
def flicker_step(self): def flicker_step(self):
while True:
current_time = utime.ticks_ms() current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, self.last_update) >= self.delay/5: if utime.ticks_diff(current_time, self.last_update) >= self.delay/5:
base_color = self.colors[0] base_color = self.colors[0]
@@ -321,11 +147,13 @@ class Patterns:
flicker_color = self.apply_brightness(base_color, brightness_override=flicker_brightness) flicker_color = self.apply_brightness(base_color, brightness_override=flicker_brightness)
self.fill(flicker_color) self.fill(flicker_color)
self.last_update = current_time self.last_update = current_time
yield
def scanner_step(self): def scanner_step(self):
""" """
Mimics a 'Knight Rider' style scanner, moving in one direction. Mimics a 'Knight Rider' style scanner, moving in one direction.
""" """
while True:
current_time = utime.ticks_ms() current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, self.last_update) >= self.delay: if utime.ticks_diff(current_time, self.last_update) >= self.delay:
self.fill((0, 0, 0)) # Clear all LEDs self.fill((0, 0, 0)) # Clear all LEDs
@@ -355,11 +183,13 @@ class Patterns:
self.pattern_step = 0 # Reset to start self.pattern_step = 0 # Reset to start
self.last_update = current_time self.last_update = current_time
yield
def bidirectional_scanner_step(self): def bidirectional_scanner_step(self):
""" """
Mimics a 'Knight Rider' style scanner, moving back and forth. Mimics a 'Knight Rider' style scanner, moving back and forth.
""" """
while True:
current_time = utime.ticks_ms() current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, self.last_update) >= self.delay/100: if utime.ticks_diff(current_time, self.last_update) >= self.delay/100:
self.fill((0, 0, 0)) # Clear all LEDs self.fill((0, 0, 0)) # Clear all LEDs
@@ -394,3 +224,4 @@ class Patterns:
self.pattern_step = 0 # Start moving forward from the first LED self.pattern_step = 0 # Start moving forward from the first LED
self.last_update = current_time self.last_update = current_time
yield

205
src/patterns_base.py Normal file
View File

@@ -0,0 +1,205 @@
from machine import Pin
from neopixel import NeoPixel
import utime
class PatternsBase:
def __init__(self, pin, num_leds, color1=(0,0,0), color2=(0,0,0), brightness=127, selected="rainbow_cycle", delay=100):
self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds)
self.num_leds = num_leds
self.pattern_step = 0
self.last_update = utime.ticks_ms()
self.delay = delay
self.brightness = brightness
self. run = True
self.selected = selected
# Ensure colors list always starts with at least two for robust transition handling
self.colors = [color1, color2] if color1 != color2 else [color1, (255, 255, 255)] # Fallback if initial colors are same
if not self.colors: # Ensure at least one color exists
self.colors = [(0, 0, 0)]
self.transition_duration = delay * 50 # Default transition duration
self.hold_duration = delay * 10 # Default hold duration at each color
self.transition_step = 0 # Current step in the transition
self.current_color_idx = 0 # Index of the color currently being held/transitioned from
self.current_color = self.colors[self.current_color_idx] # The actual blended color
self.hold_start_time = utime.ticks_ms() # Time when the current color hold started
# New attributes for scanner patterns
self.scanner_direction = 1 # 1 for forward, -1 for backward
self.scanner_tail_length = 3 # Number of trailing pixels
self.patterns = {}
self.run = True
def sync(self):
self.pattern_step=0
self.last_update = utime.ticks_ms() - self.delay
if self.selected == "color_transition":
self.transition_step = 0
self.current_color_idx = 0
self.current_color = self.colors[self.current_color_idx]
self.hold_start_time = utime.ticks_ms() # Reset hold time
# Reset scanner specific variables
self.scanner_direction = 1
self.tick()
def set_pattern_step(self, step):
self.pattern_step = step
def update_num_leds(self, pin, num_leds):
self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds)
self.num_leds = num_leds
self.pattern_step = 0
def set_delay(self, delay):
self.delay = delay
# Update transition duration and hold duration when delay changes
self.transition_duration = self.delay * 50
self.hold_duration = self.delay * 10
def set_brightness(self, brightness):
self.brightness = brightness
def set_color1(self, color):
if len(self.colors) > 0:
self.colors[0] = color
if self.selected == "color_transition":
# If the first color is changed, potentially reset transition
# to start from this new color if we were about to transition from it
if self.current_color_idx == 0:
self.transition_step = 0
self.current_color = self.colors[0]
self.hold_start_time = utime.ticks_ms()
else:
self.colors.append(color)
def set_color2(self, color):
if len(self.colors) > 1:
self.colors[1] = color
elif len(self.colors) == 1:
self.colors.append(color)
else: # List is empty
self.colors.append((0,0,0)) # Dummy color
self.colors.append(color)
def set_colors(self, colors):
if colors and len(colors) >= 2:
self.colors = colors
if self.selected == "color_transition":
self.sync() # Reset transition if new color list is provided
elif colors and len(colors) == 1:
self.colors = [colors[0], (255,255,255)] # Add a default second color
if self.selected == "color_transition":
print("Warning: 'color_transition' requires at least two colors. Adding a default second color.")
self.sync()
else:
print("Error: set_colors requires a list of at least one color.")
self.colors = [(0,0,0), (255,255,255)] # Fallback
if self.selected == "color_transition":
self.sync()
def set_color(self, num, color):
# Changed: More robust index check
if 0 <= num < len(self.colors):
self.colors[num] = color
# If the changed color is part of the current or next transition,
# restart the transition for smoother updates
if self.selected == "color_transition":
current_from_idx = self.current_color_idx
current_to_idx = (self.current_color_idx + 1) % len(self.colors)
if num == current_from_idx or num == current_to_idx:
# If we change a color involved in the current transition,
# it's best to restart the transition state for smoothness.
self.transition_step = 0
self.current_color_idx = current_from_idx # Stay at the current starting color
self.current_color = self.colors[self.current_color_idx]
self.hold_start_time = utime.ticks_ms() # Reset hold
return True
elif num == len(self.colors): # Allow setting a new color at the end
self.colors.append(color)
return True
return False
def add_color(self, color):
self.colors.append(color)
if self.selected == "color_transition" and len(self.colors) == 2:
# If we just added the second color needed for transition
self.sync()
def del_color(self, num):
# Changed: More robust index check and using del for lists
if 0 <= num < len(self.colors):
del self.colors[num]
# If the color being deleted was part of the current transition,
# re-evaluate the current_color_idx
if self.selected == "color_transition":
if len(self.colors) < 2: # Need at least two colors for transition
print("Warning: Not enough colors for 'color_transition'. Switching to 'on'.")
self.select("on") # Or some other default
else:
# Adjust index if it's out of bounds after deletion or was the one transitioning from
self.current_color_idx %= len(self.colors)
self.transition_step = 0
self.current_color = self.colors[self.current_color_idx]
self.hold_start_time = utime.ticks_ms()
return True
return False
def apply_brightness(self, color, brightness_override=None):
effective_brightness = brightness_override if brightness_override is not None else self.brightness
return tuple(int(c * effective_brightness / 255) for c in color)
def select(self, pattern):
if pattern in self.patterns and hasattr(self.patterns[pattern], "__next__"):
self.selected = pattern
self.run = True
self.sync() # Reset pattern state when selecting a new pattern
if pattern == "color_transition":
if len(self.colors) < 2:
print("Warning: 'color_transition' requires at least two colors. Switching to 'on'.")
self.selected = "on" # Fallback if not enough colors
self.sync() # Re-sync for the new pattern
else:
self.transition_step = 0
self.current_color_idx = 0 # Start from the first color in the list
self.current_color = self.colors[self.current_color_idx]
self.hold_start_time = utime.ticks_ms() # Reset hold timer
self.transition_duration = self.delay * 50 # Initialize transition duration
self.hold_duration = self.delay * 10 # Initialize hold duration
return True
return False
def tick(self):
if self.run:
try:
next(self.patterns[self.selected])
except StopIteration:
self.run = False
def set(self, i, color):
self.n[i] = color
def write(self):
self.n.write()
def fill(self, color=None):
fill_color = color if color is not None else self.colors[0]
for i in range(self.num_leds):
self.n[i] = fill_color
self.n.write()
def off(self):
while True:
self.fill((0, 0, 0))
self.run = False
yield
def on(self):
while True:
self.fill(self.apply_brightness(self.colors[0]))
self.run = False
yield