Compare commits
No commits in common. "main" and "package" have entirely different histories.
|
@ -7,7 +7,6 @@ __pycache__/
|
|||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
*.json
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
|
|
51
Dockerfile
51
Dockerfile
|
@ -1,51 +0,0 @@
|
|||
FROM nvidia/cuda:12.1.1-cudnn8-devel-ubuntu22.04
|
||||
|
||||
# Configure environment
|
||||
ENV DEBIAN_FRONTEND=noninteractive \
|
||||
PIP_PREFER_BINARY=1 \
|
||||
CUDA_HOME=/usr/local/cuda-12.1 \
|
||||
TORCH_CUDA_ARCH_LIST="8.6"
|
||||
|
||||
# Redirect shell
|
||||
RUN rm /bin/sh && ln -s /bin/bash /bin/sh
|
||||
|
||||
# Install prereqs
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
curl \
|
||||
git-lfs \
|
||||
ffmpeg \
|
||||
libgl1-mesa-dev \
|
||||
libglib2.0-0 \
|
||||
git \
|
||||
python3-dev \
|
||||
python3-pip \
|
||||
# Lunar Tools prereqs
|
||||
libasound2-dev \
|
||||
libportaudio2 \
|
||||
&& apt clean && rm -rf /var/lib/apt/lists/* \
|
||||
&& ln -s /usr/bin/python3 /usr/bin/python
|
||||
|
||||
# Set symbolic links
|
||||
RUN echo "export PATH=/usr/local/cuda/bin:$PATH" >> /etc/bash.bashrc \
|
||||
&& echo "export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH" >> /etc/bash. bashrc \
|
||||
&& echo "export CUDA_HOME=/usr/local/cuda-12.1" >> /etc/bash.bashrc
|
||||
|
||||
# Install Python packages: Basic, then CUDA-compatible, then custom
|
||||
RUN pip3 install \
|
||||
wheel \
|
||||
ninja && \
|
||||
pip3 install \
|
||||
torch==2.1.0 \
|
||||
torchvision==0.16.0 \
|
||||
xformers>=0.0.22 \
|
||||
triton>=2.1.0 \
|
||||
--index-url https://download.pytorch.org/whl/cu121 && \
|
||||
pip3 install git+https://github.com/lunarring/latentblending \
|
||||
git+https://github.com/chengzeyi/stable-fast.git@main#egg=stable-fast
|
||||
|
||||
# Optionally store weights in image
|
||||
# RUN mkdir -p /root/.cache/torch/hub/checkpoints/ && curl -o /root/.cache/torch/hub/checkpoints//alexnet-owt-7be5be79.pth https://download.pytorch.org/models/alexnet-owt-7be5be79.pth
|
||||
# RUN git lfs install && git clone https://huggingface.co/stabilityai/sdxl-turbo /sdxl-turbo
|
||||
|
||||
# Clone base repo because why not
|
||||
RUN git clone https://github.com/lunarring/latentblending.git
|
75
README.md
75
README.md
|
@ -2,53 +2,32 @@
|
|||
|
||||
Latent blending enables video transitions with incredible smoothness between prompts, computed within seconds. Powered by [stable diffusion XL](https://stability.ai/stable-diffusion), this method involves specific mixing of intermediate latent representations to create a seamless transition – with users having the option to fully customize the transition directly in high-resolution. The new version also supports SDXL Turbo, allowing to generate transitions faster than they are typically played back!
|
||||
|
||||
```python
|
||||
import torch
|
||||
from diffusers import AutoPipelineForText2Image
|
||||
from latentblending.blending_engine import BlendingEngine
|
||||
from latentblending.diffusers_holder import DiffusersHolder
|
||||
|
||||
```python
|
||||
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16").to("cuda")
|
||||
be = BlendingEngine(pipe)
|
||||
be.set_prompt1("photo of underwater landscape, fish, und the sea, incredible detail, high resolution")
|
||||
be.set_prompt2("rendering of an alien planet, strange plants, strange creatures, surreal")
|
||||
be.set_negative_prompt("blurry, ugly, pale")
|
||||
dh = DiffusersHolder(pipe)
|
||||
lb = LatentBlending(dh)
|
||||
lb.set_prompt1("photo of underwater landscape, fish, und the sea, incredible detail, high resolution")
|
||||
lb.set_prompt2("rendering of an alien planet, strange plants, strange creatures, surreal")
|
||||
lb.set_negative_prompt("blurry, ugly, pale")
|
||||
|
||||
# Run latent blending
|
||||
be.run_transition()
|
||||
lb.run_transition()
|
||||
|
||||
# Save movie
|
||||
be.write_movie_transition('movie_example1.mp4', duration_transition=12)
|
||||
lb.write_movie_transition('movie_example1.mp4', duration_transition=12)
|
||||
|
||||
```
|
||||
|
||||
# Installation
|
||||
```commandline
|
||||
pip install git+https://github.com/lunarring/latentblending
|
||||
```
|
||||
|
||||
# Extra speedup with stable_fast compile
|
||||
Install https://github.com/chengzeyi/stable-fast
|
||||
|
||||
Then enable pipe compilation by setting *do_compile=True*
|
||||
```python
|
||||
be = BlendingEngine(pipe, do_compile=True)
|
||||
```
|
||||
|
||||
## Gradio UI
|
||||
We can launch the a user-interface version with:
|
||||
```commandline
|
||||
python latentblending/gradio_ui.py
|
||||
```
|
||||
|
||||
With the UI, you can iteratively generate your desired keyframes, and then render the movie with latent blending it at the end.
|
||||
Coming soon again :)
|
||||
|
||||
## Example 1: Simple transition
|
||||
![](example1.jpg)
|
||||
To run a simple transition between two prompts, see `examples/single_trans.py`, or [check this volcano eruption ](https://youtu.be/O_2fpWHdnm4).
|
||||
To run a simple transition between two prompts, run `example1_standard.py`
|
||||
|
||||
## Example 2: Multi transition
|
||||
To run multiple transition between K prompts, resulting in a stitched video, see `examples/multi_trans.py`.
|
||||
[View a longer example video here.](https://youtu.be/RLF-yW5dR_Q)
|
||||
To run multiple transition between K prompts, resulting in a stitched video, run `example2_multitrans.py`.
|
||||
[View a longer example video here.](https://vimeo.com/789052336/80dcb545b2)
|
||||
|
||||
|
||||
# Customization
|
||||
|
@ -56,19 +35,19 @@ To run multiple transition between K prompts, resulting in a stitched video, see
|
|||
### Change the height/width
|
||||
```python
|
||||
size_output = (1024, 768)
|
||||
be.set_dimensions(size_output)
|
||||
lb.set_dimensions(size_output)
|
||||
```
|
||||
|
||||
### Change the number of diffusion steps (set_num_inference_steps)
|
||||
```python
|
||||
be.set_num_inference_steps(50)
|
||||
lb.set_num_inference_steps(50)
|
||||
```
|
||||
For SDXL this is set as default=30, for SDXL Turbo a value of 4 is taken.
|
||||
|
||||
|
||||
### Change the guidance scale
|
||||
```python
|
||||
be.set_guidance_scale(3.0)
|
||||
lb.set_guidance_scale(3.0)
|
||||
```
|
||||
For SDXL this is set as default=4.0, for SDXL Turbo a value of 0 is taken.
|
||||
|
||||
|
@ -76,7 +55,7 @@ For SDXL this is set as default=4.0, for SDXL Turbo a value of 0 is taken.
|
|||
```python
|
||||
depth_strength = 0.5
|
||||
nmb_max_branches = 15
|
||||
be.set_branching(depth_strength=depth_strength, t_compute_max_allowed=None, nmb_max_branches=None)
|
||||
lb.set_branching(depth_strength=depth_strength, t_compute_max_allowed=None, nmb_max_branches=None)
|
||||
```
|
||||
* depth_strength: The strength of the diffusion iterations determines when the blending process will begin. A value close to zero results in more creative and intricate outcomes, while a value closer to one indicates a simpler alpha blending. However, low values may also bring about the introduction of additional objects and motion.
|
||||
* t_compute_max_allowed: maximum time allowed for computation. Higher values give better results but take longer. Either provide t_compute_max_allowed or nmb_max_branches. Does not work for SDXL Turbo.
|
||||
|
@ -87,7 +66,7 @@ You can find the [most relevant parameters here.](parameters.md)
|
|||
|
||||
### Change guidance scale
|
||||
```python
|
||||
be.set_guidance_scale(5.0)
|
||||
lb.set_guidance_scale(5.0)
|
||||
```
|
||||
|
||||
### Crossfeeding to the last image.
|
||||
|
@ -97,7 +76,7 @@ Cross-feeding latents is a key feature of latent blending. Here, you can set how
|
|||
crossfeed_power = 0.5 # 50% of the latents in the last branch are copied from branch1
|
||||
crossfeed_range = 0.7 # The crossfeed is active until 70% of num_iteration, then switched off
|
||||
crossfeed_decay = 0.2 # The power of the crossfeed decreases over diffusion iterations, here it would be 0.5*0.2=0.1 in the end of the range.
|
||||
be.set_branch1_crossfeed(crossfeed_power, crossfeed_range, crossfeed_decay)
|
||||
lb.set_branch1_crossfeed(crossfeed_power, crossfeed_range, crossfeed_decay)
|
||||
```
|
||||
|
||||
### Crossfeeding to all transition images
|
||||
|
@ -107,10 +86,16 @@ Here, you can set how much the parent branches influence the mixed one. In the a
|
|||
crossfeed_power = 0.5 # 50% of the latents in the last branch are copied from the parents
|
||||
crossfeed_range = 0.7 # The crossfeed is active until 70% of num_iteration, then switched off
|
||||
crossfeed_decay = 0.2 # The power of the crossfeed decreases over diffusion iterations, here it would be 0.5*0.2=0.1 in the end of the range.
|
||||
be.set_parental_crossfeed(crossfeed_power, crossfeed_range, crossfeed_decay)
|
||||
lb.set_parental_crossfeed(crossfeed_power, crossfeed_range, crossfeed_decay)
|
||||
```
|
||||
|
||||
|
||||
# Installation
|
||||
#### Packages
|
||||
```commandline
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
# How does latent blending work?
|
||||
## Method
|
||||
![](animation.gif)
|
||||
|
@ -119,9 +104,9 @@ In the figure above, a diffusion tree is illustrated. The diffusion steps are re
|
|||
|
||||
The concrete parameters for the transition above would be:
|
||||
```
|
||||
be.set_branch1_crossfeed(crossfeed_power=0.8, crossfeed_range=0.6, crossfeed_decay=0.4)
|
||||
be.set_parental_crossfeed(crossfeed_power=0.8, crossfeed_range=0.8, crossfeed_decay=0.2)
|
||||
imgs_transition = be.run_transition(num_inference_steps=10, depth_strength=0.2, nmb_max_branches=7)
|
||||
lb.set_branch1_crossfeed(crossfeed_power=0.8, crossfeed_range=0.6, crossfeed_decay=0.4)
|
||||
lb.set_parental_crossfeed(crossfeed_power=0.8, crossfeed_range=0.8, crossfeed_decay=0.2)
|
||||
imgs_transition = lb.run_transition(num_inference_steps=10, depth_strength=0.2, nmb_max_branches=7)
|
||||
```
|
||||
|
||||
## Perceptual aspects
|
||||
|
@ -139,7 +124,7 @@ With latent blending, we can create transitions that appear to defy the laws of
|
|||
* Inpaint support dropped (as it only makes sense for a single transition)
|
||||
|
||||
# Coming soon...
|
||||
- [ ] MacOS support
|
||||
- [ ] Gradio interface
|
||||
- [ ] Huggingface Space
|
||||
- [ ] Controlnet
|
||||
- [ ] IP-Adapter
|
||||
|
|
|
@ -1,75 +0,0 @@
|
|||
import torch
|
||||
import warnings
|
||||
from diffusers import AutoPipelineForText2Image
|
||||
from latentblending.blending_engine import BlendingEngine
|
||||
from lunar_tools import concatenate_movies
|
||||
import numpy as np
|
||||
torch.set_grad_enabled(False)
|
||||
torch.backends.cudnn.benchmark = False
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
import json
|
||||
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice.
|
||||
# pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||
pretrained_model_name_or_path = "stabilityai/sdxl-turbo"
|
||||
|
||||
pipe = AutoPipelineForText2Image.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16, variant="fp16")
|
||||
pipe.to('cuda')
|
||||
be = BlendingEngine(pipe, do_compile=False)
|
||||
|
||||
fp_movie = f'test.mp4'
|
||||
fp_json = "movie_240221_1520.json"
|
||||
duration_single_trans = 10
|
||||
|
||||
# Load the JSON data from the file
|
||||
with open(fp_json, 'r') as file:
|
||||
data = json.load(file)
|
||||
|
||||
# Set up width, height, num_inference steps
|
||||
width = data[0]["width"]
|
||||
height = data[0]["height"]
|
||||
num_inference_steps = data[0]["num_inference_steps"]
|
||||
|
||||
be.set_dimensions((width, height))
|
||||
be.set_num_inference_steps(num_inference_steps)
|
||||
|
||||
# Initialize lists for prompts, negative prompts, and seeds
|
||||
list_prompts = []
|
||||
list_negative_prompts = []
|
||||
list_seeds = []
|
||||
|
||||
# Extract prompts, negative prompts, and seeds from the data
|
||||
for item in data[1:]: # Skip the first item as it contains settings
|
||||
list_prompts.append(item["prompt"])
|
||||
list_negative_prompts.append(item["negative_prompt"])
|
||||
list_seeds.append(item["seed"])
|
||||
|
||||
|
||||
list_movie_parts = []
|
||||
for i in range(len(list_prompts) - 1):
|
||||
# For a multi transition we can save some computation time and recycle the latents
|
||||
if i == 0:
|
||||
be.set_prompt1(list_prompts[i])
|
||||
be.set_negative_prompt(list_negative_prompts[i])
|
||||
be.set_prompt2(list_prompts[i + 1])
|
||||
recycle_img1 = False
|
||||
else:
|
||||
be.swap_forward()
|
||||
be.set_negative_prompt(list_negative_prompts[i+1])
|
||||
be.set_prompt2(list_prompts[i + 1])
|
||||
recycle_img1 = True
|
||||
|
||||
fp_movie_part = f"tmp_part_{str(i).zfill(3)}.mp4"
|
||||
fixed_seeds = list_seeds[i:i + 2]
|
||||
# Run latent blending
|
||||
be.run_transition(
|
||||
recycle_img1=recycle_img1,
|
||||
fixed_seeds=fixed_seeds)
|
||||
|
||||
# Save movie
|
||||
be.write_movie_transition(fp_movie_part, duration_single_trans)
|
||||
list_movie_parts.append(fp_movie_part)
|
||||
|
||||
# Finally, concatente the result
|
||||
concatenate_movies(fp_movie, list_movie_parts)
|
||||
print(f"DONE! MOVIE SAVED IN {fp_movie}")
|
|
@ -1,3 +1,4 @@
|
|||
from .blending_engine import BlendingEngine
|
||||
from .diffusers_holder import DiffusersHolder
|
||||
from .movie_util import MovieSaver
|
||||
from .utils import interpolate_spherical, add_frames_linear_interp, interpolate_linear, get_spacing, get_time, yml_load, yml_save
|
||||
|
|
|
@ -5,12 +5,10 @@ import warnings
|
|||
import time
|
||||
from tqdm.auto import tqdm
|
||||
from PIL import Image
|
||||
from latentblending.movie_util import MovieSaver
|
||||
from typing import List, Optional
|
||||
import lpips
|
||||
import platform
|
||||
from latentblending.diffusers_holder import DiffusersHolder
|
||||
from latentblending.utils import interpolate_spherical, interpolate_linear, add_frames_linear_interp
|
||||
from lunar_tools import MovieSaver, fill_up_frames_linear_interpolation
|
||||
from latentblending.utils import interpolate_spherical, interpolate_linear, add_frames_linear_interp, yml_load, yml_save
|
||||
warnings.filterwarnings('ignore')
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.set_grad_enabled(False)
|
||||
|
@ -19,15 +17,12 @@ torch.set_grad_enabled(False)
|
|||
class BlendingEngine():
|
||||
def __init__(
|
||||
self,
|
||||
pipe: None,
|
||||
do_compile: bool = False,
|
||||
dh: None,
|
||||
guidance_scale_mid_damper: float = 0.5,
|
||||
mid_compression_scaler: float = 1.2):
|
||||
r"""
|
||||
Initializes the latent blending class.
|
||||
Args:
|
||||
pipe: diffusers pipeline (SDXL)
|
||||
do_compile: compile pipeline for faster inference using stable fast
|
||||
guidance_scale_mid_damper: float = 0.5
|
||||
Reduces the guidance scale towards the middle of the transition.
|
||||
A value of 0.5 would decrease the guidance_scale towards the middle linearly by 0.5.
|
||||
|
@ -40,8 +35,7 @@ class BlendingEngine():
|
|||
and guidance_scale_mid_damper <= 1.0, \
|
||||
f"guidance_scale_mid_damper neees to be in interval (0,1], you provided {guidance_scale_mid_damper}"
|
||||
|
||||
|
||||
self.dh = DiffusersHolder(pipe)
|
||||
self.dh = dh
|
||||
self.device = self.dh.device
|
||||
self.set_dimensions()
|
||||
|
||||
|
@ -70,10 +64,7 @@ class BlendingEngine():
|
|||
self.multi_transition_img_first = None
|
||||
self.multi_transition_img_last = None
|
||||
self.dt_unet_step = 0
|
||||
if platform.system() == "Darwin":
|
||||
self.lpips = lpips.LPIPS(net='alex')
|
||||
else:
|
||||
self.lpips = lpips.LPIPS(net='alex').cuda(self.device)
|
||||
self.lpips = lpips.LPIPS(net='alex').cuda(self.device)
|
||||
|
||||
self.set_prompt1("")
|
||||
self.set_prompt2("")
|
||||
|
@ -85,23 +76,13 @@ class BlendingEngine():
|
|||
self.benchmark_speed()
|
||||
self.set_branching()
|
||||
|
||||
if do_compile:
|
||||
print("starting compilation")
|
||||
from sfast.compilers.diffusion_pipeline_compiler import (compile, CompilationConfig)
|
||||
self.dh.pipe.enable_xformers_memory_efficient_attention()
|
||||
config = CompilationConfig.Default()
|
||||
config.enable_xformers = True
|
||||
config.enable_triton = True
|
||||
config.enable_cuda_graph = True
|
||||
self.dh.pipe = compile(self.dh.pipe, config)
|
||||
|
||||
|
||||
|
||||
def benchmark_speed(self):
|
||||
"""
|
||||
Measures the time per diffusion step and for the vae decoding
|
||||
"""
|
||||
print("starting speed benchmark...")
|
||||
|
||||
text_embeddings = self.dh.get_text_embedding("test")
|
||||
latents_start = self.dh.get_noise(np.random.randint(111111))
|
||||
# warmup
|
||||
|
@ -115,7 +96,6 @@ class BlendingEngine():
|
|||
t0 = time.time()
|
||||
img = self.dh.latent2image(list_latents[-1])
|
||||
self.dt_vae = time.time() - t0
|
||||
print(f"time per unet iteration: {self.dt_unet_step} time for vae: {self.dt_vae}")
|
||||
|
||||
def set_dimensions(self, size_output=None):
|
||||
r"""
|
||||
|
@ -680,6 +660,7 @@ class BlendingEngine():
|
|||
img_leaf = Image.fromarray(img)
|
||||
img_leaf.save(os.path.join(dp_img, f"lowres_img_{str(i).zfill(4)}.jpg"))
|
||||
fp_yml = os.path.join(dp_img, "lowres.yaml")
|
||||
self.save_statedict(fp_yml)
|
||||
|
||||
def write_movie_transition(self, fp_movie, duration_transition, fps=30):
|
||||
r"""
|
||||
|
@ -695,7 +676,7 @@ class BlendingEngine():
|
|||
"""
|
||||
|
||||
# Let's get more cheap frames via linear interpolation (duration_transition*fps frames)
|
||||
imgs_transition_ext = fill_up_frames_linear_interpolation(self.tree_final_imgs, duration_transition, fps)
|
||||
imgs_transition_ext = add_frames_linear_interp(self.tree_final_imgs, duration_transition, fps)
|
||||
|
||||
# Save as MP4
|
||||
if os.path.isfile(fp_movie):
|
||||
|
@ -705,6 +686,12 @@ class BlendingEngine():
|
|||
ms.write_frame(img)
|
||||
ms.finalize()
|
||||
|
||||
def save_statedict(self, fp_yml):
|
||||
# Dump everything relevant into yaml
|
||||
imgs_transition = self.tree_final_imgs
|
||||
state_dict = self.get_state_dict()
|
||||
state_dict['nmb_images'] = len(imgs_transition)
|
||||
yml_save(fp_yml, state_dict)
|
||||
|
||||
def get_state_dict(self):
|
||||
state_dict = {}
|
||||
|
@ -727,6 +714,35 @@ class BlendingEngine():
|
|||
pass
|
||||
return state_dict
|
||||
|
||||
def randomize_seed(self):
|
||||
r"""
|
||||
Set a random seed for a fresh start.
|
||||
"""
|
||||
seed = np.random.randint(999999999)
|
||||
self.set_seed(seed)
|
||||
|
||||
def set_seed(self, seed: int):
|
||||
r"""
|
||||
Set a the seed for a fresh start.
|
||||
"""
|
||||
self.seed = seed
|
||||
self.dh.seed = seed
|
||||
|
||||
def set_width(self, width):
|
||||
r"""
|
||||
Set the width of the resulting image.
|
||||
"""
|
||||
assert np.mod(width, 64) == 0, "set_width: value needs to be divisible by 64"
|
||||
self.width = width
|
||||
self.dh.width = width
|
||||
|
||||
def set_height(self, height):
|
||||
r"""
|
||||
Set the height of the resulting image.
|
||||
"""
|
||||
assert np.mod(height, 64) == 0, "set_height: value needs to be divisible by 64"
|
||||
self.height = height
|
||||
self.dh.height = height
|
||||
|
||||
def swap_forward(self):
|
||||
r"""
|
||||
|
@ -797,18 +813,14 @@ if __name__ == "__main__":
|
|||
from diffusers import AutoencoderTiny
|
||||
# pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||
pretrained_model_name_or_path = "stabilityai/sdxl-turbo"
|
||||
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path)
|
||||
|
||||
|
||||
# pipe.to("mps")
|
||||
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16, variant="fp16")
|
||||
pipe.to("cuda")
|
||||
|
||||
# pipe.vae = AutoencoderTiny.from_pretrained('madebyollin/taesdxl', torch_device='cuda', torch_dtype=torch.float16)
|
||||
# pipe.vae = pipe.vae.cuda()
|
||||
pipe.vae = AutoencoderTiny.from_pretrained('madebyollin/taesdxl', torch_device='cuda', torch_dtype=torch.float16)
|
||||
pipe.vae = pipe.vae.cuda()
|
||||
|
||||
dh = DiffusersHolder(pipe)
|
||||
|
||||
xxx
|
||||
# %% Next let's set up all parameters
|
||||
prompt1 = "photo of underwater landscape, fish, und the sea, incredible detail, high resolution"
|
||||
prompt2 = "rendering of an alien planet, strange plants, strange creatures, surreal"
|
||||
|
@ -817,20 +829,19 @@ if __name__ == "__main__":
|
|||
duration_transition = 12 # In seconds
|
||||
|
||||
# Spawn latent blending
|
||||
be = BlendingEngine(dh)
|
||||
be.set_prompt1(prompt1)
|
||||
be.set_prompt2(prompt2)
|
||||
be.set_negative_prompt(negative_prompt)
|
||||
lb = LatentBlending(dh)
|
||||
lb.set_prompt1(prompt1)
|
||||
lb.set_prompt2(prompt2)
|
||||
lb.set_negative_prompt(negative_prompt)
|
||||
|
||||
# Run latent blending
|
||||
t0 = time.time()
|
||||
be.run_transition(fixed_seeds=[420, 421])
|
||||
lb.run_transition(fixed_seeds=[420, 421])
|
||||
dt = time.time() - t0
|
||||
print(f"dt = {dt}")
|
||||
|
||||
# Save movie
|
||||
fp_movie = f'test.mp4'
|
||||
be.write_movie_transition(fp_movie, duration_transition)
|
||||
lb.write_movie_transition(fp_movie, duration_transition)
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
import torch
|
||||
import warnings
|
||||
from blending_engine import BlendingEngine
|
||||
from diffusers_holder import DiffusersHolder
|
||||
from diffusers import AutoPipelineForText2Image
|
||||
from latentblending.blending_engine import BlendingEngine
|
||||
|
||||
warnings.filterwarnings('ignore')
|
||||
torch.set_grad_enabled(False)
|
||||
|
@ -11,7 +12,9 @@ torch.backends.cudnn.benchmark = False
|
|||
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
|
||||
pipe.to("cuda")
|
||||
|
||||
be = BlendingEngine(pipe)
|
||||
dh = DiffusersHolder(pipe)
|
||||
|
||||
be = BlendingEngine(dh)
|
||||
be.set_prompt1("photo of underwater landscape, fish, und the sea, incredible detail, high resolution")
|
||||
be.set_prompt2("rendering of an alien planet, strange plants, strange creatures, surreal")
|
||||
be.set_negative_prompt("blurry, ugly, pale")
|
|
@ -1,39 +1,33 @@
|
|||
import torch
|
||||
import warnings
|
||||
from blending_engine import BlendingEngine
|
||||
from diffusers_holder import DiffusersHolder
|
||||
from diffusers import AutoPipelineForText2Image
|
||||
from lunar_tools import concatenate_movies
|
||||
from latentblending.blending_engine import BlendingEngine
|
||||
import numpy as np
|
||||
from movie_util import concatenate_movies
|
||||
torch.set_grad_enabled(False)
|
||||
torch.backends.cudnn.benchmark = False
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice.
|
||||
pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||
# pretrained_model_name_or_path = "stabilityai/sdxl-turbo"
|
||||
|
||||
pipe = AutoPipelineForText2Image.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16, variant="fp16")
|
||||
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
|
||||
pipe.to('cuda')
|
||||
be = BlendingEngine(pipe, do_compile=True)
|
||||
be.set_negative_prompt("blurry, pale, low-res, lofi")
|
||||
dh = DiffusersHolder(pipe)
|
||||
|
||||
# %% Let's setup the multi transition
|
||||
fps = 30
|
||||
duration_single_trans = 10
|
||||
be.set_dimensions((1024, 1024))
|
||||
nmb_prompts = 20
|
||||
|
||||
|
||||
# Specify a list of prompts below
|
||||
#%%
|
||||
|
||||
list_prompts = []
|
||||
list_prompts.append("high resolution ultra 8K image with lake and forest")
|
||||
list_prompts.append("strange and alien desolate lanscapes 8K")
|
||||
list_prompts.append("ultra high res psychedelic skyscraper city landscape 8K unreal engine")
|
||||
#%%
|
||||
fp_movie = f'surreal_nmb{len(list_prompts)}.mp4'
|
||||
# Specify the seeds
|
||||
list_seeds = np.random.randint(0, np.iinfo(np.int32).max, len(list_prompts))
|
||||
list_prompts.append("Photo of a house, high detail")
|
||||
list_prompts.append("Photo of an elephant in african savannah")
|
||||
list_prompts.append("photo of a house, high detail")
|
||||
|
||||
|
||||
# You can optionally specify the seeds
|
||||
list_seeds = [95437579, 33259350, 956051013]
|
||||
fp_movie = 'movie_example2.mp4'
|
||||
be = BlendingEngine(dh)
|
||||
|
||||
list_movie_parts = []
|
||||
for i in range(len(list_prompts) - 1):
|
|
@ -1,3 +1,18 @@
|
|||
# Copyright 2022 Lunar Ring. All rights reserved.
|
||||
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import torch
|
||||
torch.backends.cudnn.benchmark = False
|
||||
|
@ -5,340 +20,481 @@ torch.set_grad_enabled(False)
|
|||
import numpy as np
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore')
|
||||
import warnings
|
||||
from tqdm.auto import tqdm
|
||||
from PIL import Image
|
||||
from movie_util import MovieSaver, concatenate_movies
|
||||
from latent_blending import LatentBlending
|
||||
from stable_diffusion_holder import StableDiffusionHolder
|
||||
import gradio as gr
|
||||
from dotenv import find_dotenv, load_dotenv
|
||||
import shutil
|
||||
import uuid
|
||||
from diffusers import AutoPipelineForText2Image
|
||||
from latentblending.blending_engine import BlendingEngine
|
||||
import datetime
|
||||
import tempfile
|
||||
import json
|
||||
from lunar_tools import concatenate_movies
|
||||
import argparse
|
||||
from utils import get_time, add_frames_linear_interp
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
"""
|
||||
TODO
|
||||
- time per segment
|
||||
- init phase (model, res, nmb iter)
|
||||
- recycle existing movies
|
||||
- hf spaces integration
|
||||
"""
|
||||
|
||||
class MultiUserRouter():
|
||||
class BlendingFrontend():
|
||||
def __init__(
|
||||
self,
|
||||
do_compile=False
|
||||
):
|
||||
self.user_blendingvariableholder = {}
|
||||
self.do_compile = do_compile
|
||||
self.list_models = ["stabilityai/sdxl-turbo", "stabilityai/stable-diffusion-xl-base-1.0"]
|
||||
|
||||
self.init_models()
|
||||
|
||||
def init_models(self):
|
||||
self.dict_blendingengines = {}
|
||||
for m in self.list_models:
|
||||
pipe = AutoPipelineForText2Image.from_pretrained(m, torch_dtype=torch.float16, variant="fp16")
|
||||
pipe.to("cuda")
|
||||
be = BlendingEngine(pipe, do_compile=self.do_compile)
|
||||
|
||||
self.dict_blendingengines[m] = be
|
||||
|
||||
def register_new_user(self, model, width, height):
|
||||
user_id = str(uuid.uuid4().hex.upper()[0:8])
|
||||
be = self.dict_blendingengines[model]
|
||||
be.set_dimensions((width, height))
|
||||
self.user_blendingvariableholder[user_id] = BlendingVariableHolder(be)
|
||||
return user_id
|
||||
|
||||
def user_overflow_protection(self):
|
||||
pass
|
||||
|
||||
def preview_img_selected(self, user_id, data: gr.SelectData, button):
|
||||
return self.user_blendingvariableholder[user_id].preview_img_selected(data, button)
|
||||
|
||||
def movie_img_selected(self, user_id, data: gr.SelectData, button):
|
||||
return self.user_blendingvariableholder[user_id].movie_img_selected(data, button)
|
||||
|
||||
def compute_imgs(self, user_id, prompt, negative_prompt):
|
||||
return self.user_blendingvariableholder[user_id].compute_imgs(prompt, negative_prompt)
|
||||
|
||||
def get_list_images_movie(self, user_id):
|
||||
return self.user_blendingvariableholder[user_id].get_list_images_movie()
|
||||
|
||||
def init_new_movie(self, user_id):
|
||||
return self.user_blendingvariableholder[user_id].init_new_movie()
|
||||
|
||||
def write_json(self, user_id):
|
||||
return self.user_blendingvariableholder[user_id].write_json()
|
||||
|
||||
def add_image_to_video(self, user_id):
|
||||
return self.user_blendingvariableholder[user_id].add_image_to_video()
|
||||
|
||||
def img_movie_delete(self, user_id):
|
||||
return self.user_blendingvariableholder[user_id].img_movie_delete()
|
||||
|
||||
def img_movie_later(self, user_id):
|
||||
return self.user_blendingvariableholder[user_id].img_movie_later()
|
||||
|
||||
def img_movie_earlier(self, user_id):
|
||||
return self.user_blendingvariableholder[user_id].img_movie_earlier()
|
||||
|
||||
def generate_movie(self, user_id, t_per_segment):
|
||||
return self.user_blendingvariableholder[user_id].generate_movie(t_per_segment)
|
||||
|
||||
#%% BlendingVariableHolder Class
|
||||
class BlendingVariableHolder():
|
||||
def __init__(
|
||||
self,
|
||||
be):
|
||||
sdh,
|
||||
share=False):
|
||||
r"""
|
||||
Gradio Helper Class to collect UI data and start latent blending.
|
||||
Args:
|
||||
be:
|
||||
Blendingengine
|
||||
sdh:
|
||||
StableDiffusionHolder
|
||||
share: bool
|
||||
Set true to get a shareable gradio link (e.g. for running a remote server)
|
||||
"""
|
||||
self.be = be
|
||||
self.share = share
|
||||
|
||||
# UI Defaults
|
||||
self.num_inference_steps = 30
|
||||
self.depth_strength = 0.25
|
||||
self.seed1 = 420
|
||||
self.seed2 = 420
|
||||
self.prompt1 = ""
|
||||
self.prompt2 = ""
|
||||
self.negative_prompt = ""
|
||||
self.nmb_preview_images = 4
|
||||
self.fps = 30
|
||||
self.duration_video = 8
|
||||
self.t_compute_max_allowed = 10
|
||||
|
||||
self.lb = LatentBlending(sdh)
|
||||
self.lb.sdh.num_inference_steps = self.num_inference_steps
|
||||
self.init_parameters_from_lb()
|
||||
self.init_save_dir()
|
||||
|
||||
# Vars
|
||||
self.prompt = None
|
||||
self.negative_prompt = None
|
||||
self.list_seeds = []
|
||||
self.idx_movie = 0
|
||||
self.list_seeds = []
|
||||
self.list_images_preview = []
|
||||
self.data = []
|
||||
self.idx_img_preview_selected = None
|
||||
self.idx_img_movie_selected = None
|
||||
self.jpg_quality = 80
|
||||
self.fp_movie = ''
|
||||
self.list_fp_imgs_current = []
|
||||
self.recycle_img1 = False
|
||||
self.recycle_img2 = False
|
||||
self.list_all_segments = []
|
||||
self.dp_session = ""
|
||||
self.user_id = None
|
||||
|
||||
def preview_img_selected(self, data: gr.SelectData, button):
|
||||
self.idx_img_preview_selected = data.index
|
||||
print(f"preview image {self.idx_img_preview_selected} selected, seed {self.list_seeds[self.idx_img_preview_selected]}")
|
||||
def init_parameters_from_lb(self):
|
||||
r"""
|
||||
Automatically init parameters from latentblending instance
|
||||
"""
|
||||
self.height = self.lb.sdh.height
|
||||
self.width = self.lb.sdh.width
|
||||
self.guidance_scale = self.lb.guidance_scale
|
||||
self.guidance_scale_mid_damper = self.lb.guidance_scale_mid_damper
|
||||
self.mid_compression_scaler = self.lb.mid_compression_scaler
|
||||
self.branch1_crossfeed_power = self.lb.branch1_crossfeed_power
|
||||
self.branch1_crossfeed_range = self.lb.branch1_crossfeed_range
|
||||
self.branch1_crossfeed_decay = self.lb.branch1_crossfeed_decay
|
||||
self.parental_crossfeed_power = self.lb.parental_crossfeed_power
|
||||
self.parental_crossfeed_range = self.lb.parental_crossfeed_range
|
||||
self.parental_crossfeed_power_decay = self.lb.parental_crossfeed_power_decay
|
||||
|
||||
def movie_img_selected(self, data: gr.SelectData, button):
|
||||
self.idx_img_movie_selected = data.index
|
||||
print(f"movie image {self.idx_img_movie_selected} selected")
|
||||
def init_save_dir(self):
|
||||
r"""
|
||||
Initializes the directory where stuff is being saved.
|
||||
You can specify this directory in a ".env" file in your latentblending root, setting
|
||||
DIR_OUT='/path/to/saving'
|
||||
"""
|
||||
load_dotenv(find_dotenv(), verbose=False)
|
||||
self.dp_out = os.getenv("DIR_OUT")
|
||||
if self.dp_out is None:
|
||||
self.dp_out = ""
|
||||
self.dp_imgs = os.path.join(self.dp_out, "imgs")
|
||||
os.makedirs(self.dp_imgs, exist_ok=True)
|
||||
self.dp_movies = os.path.join(self.dp_out, "movies")
|
||||
os.makedirs(self.dp_movies, exist_ok=True)
|
||||
self.save_empty_image()
|
||||
|
||||
def compute_imgs(self, prompt, negative_prompt):
|
||||
self.prompt = prompt
|
||||
self.negative_prompt = negative_prompt
|
||||
self.be.set_prompt1(prompt)
|
||||
self.be.set_prompt2(prompt)
|
||||
self.be.set_negative_prompt(negative_prompt)
|
||||
self.list_seeds = []
|
||||
self.list_images_preview = []
|
||||
self.idx_img_preview_selected = None
|
||||
for i in range(self.nmb_preview_images):
|
||||
seed = np.random.randint(0, np.iinfo(np.int32).max)
|
||||
self.be.seed1 = seed
|
||||
self.list_seeds.append(seed)
|
||||
img = self.be.compute_latents1(return_image=True)
|
||||
fn_img_tmp = f"image_{uuid.uuid4()}.jpg"
|
||||
temp_img_path = os.path.join(tempfile.gettempdir(), fn_img_tmp)
|
||||
img.save(temp_img_path)
|
||||
img.save(temp_img_path, quality=self.jpg_quality, optimize=True)
|
||||
self.list_images_preview.append(temp_img_path)
|
||||
return self.list_images_preview
|
||||
|
||||
def save_empty_image(self):
|
||||
r"""
|
||||
Saves an empty/black dummy image.
|
||||
"""
|
||||
self.fp_img_empty = os.path.join(self.dp_imgs, 'empty.jpg')
|
||||
Image.fromarray(np.zeros((self.height, self.width, 3), dtype=np.uint8)).save(self.fp_img_empty, quality=5)
|
||||
|
||||
def get_list_images_movie(self):
|
||||
return [entry["preview_image"] for entry in self.data]
|
||||
def randomize_seed1(self):
|
||||
r"""
|
||||
Randomizes the first seed
|
||||
"""
|
||||
seed = np.random.randint(0, 10000000)
|
||||
self.seed1 = int(seed)
|
||||
print(f"randomize_seed1: new seed = {self.seed1}")
|
||||
return seed
|
||||
|
||||
def randomize_seed2(self):
|
||||
r"""
|
||||
Randomizes the second seed
|
||||
"""
|
||||
seed = np.random.randint(0, 10000000)
|
||||
self.seed2 = int(seed)
|
||||
print(f"randomize_seed2: new seed = {self.seed2}")
|
||||
return seed
|
||||
|
||||
def init_new_movie(self):
|
||||
current_time = datetime.datetime.now()
|
||||
self.fp_movie = "movie_" + current_time.strftime("%y%m%d_%H%M") + ".mp4"
|
||||
self.fp_json = "movie_" + current_time.strftime("%y%m%d_%H%M") + ".json"
|
||||
|
||||
def setup_lb(self, list_ui_vals):
|
||||
r"""
|
||||
Sets all parameters from the UI. Since gradio does not support to pass dictionaries,
|
||||
we have to instead pass keys (list_ui_keys, global) and values (list_ui_vals)
|
||||
"""
|
||||
# Collect latent blending variables
|
||||
self.lb.set_width(list_ui_vals[list_ui_keys.index('width')])
|
||||
self.lb.set_height(list_ui_vals[list_ui_keys.index('height')])
|
||||
self.lb.set_prompt1(list_ui_vals[list_ui_keys.index('prompt1')])
|
||||
self.lb.set_prompt2(list_ui_vals[list_ui_keys.index('prompt2')])
|
||||
self.lb.set_negative_prompt(list_ui_vals[list_ui_keys.index('negative_prompt')])
|
||||
self.lb.guidance_scale = list_ui_vals[list_ui_keys.index('guidance_scale')]
|
||||
self.lb.guidance_scale_mid_damper = list_ui_vals[list_ui_keys.index('guidance_scale_mid_damper')]
|
||||
self.t_compute_max_allowed = list_ui_vals[list_ui_keys.index('duration_compute')]
|
||||
self.lb.num_inference_steps = list_ui_vals[list_ui_keys.index('num_inference_steps')]
|
||||
self.lb.sdh.num_inference_steps = list_ui_vals[list_ui_keys.index('num_inference_steps')]
|
||||
self.duration_video = list_ui_vals[list_ui_keys.index('duration_video')]
|
||||
self.lb.seed1 = list_ui_vals[list_ui_keys.index('seed1')]
|
||||
self.lb.seed2 = list_ui_vals[list_ui_keys.index('seed2')]
|
||||
self.lb.branch1_crossfeed_power = list_ui_vals[list_ui_keys.index('branch1_crossfeed_power')]
|
||||
self.lb.branch1_crossfeed_range = list_ui_vals[list_ui_keys.index('branch1_crossfeed_range')]
|
||||
self.lb.branch1_crossfeed_decay = list_ui_vals[list_ui_keys.index('branch1_crossfeed_decay')]
|
||||
self.lb.parental_crossfeed_power = list_ui_vals[list_ui_keys.index('parental_crossfeed_power')]
|
||||
self.lb.parental_crossfeed_range = list_ui_vals[list_ui_keys.index('parental_crossfeed_range')]
|
||||
self.lb.parental_crossfeed_power_decay = list_ui_vals[list_ui_keys.index('parental_crossfeed_power_decay')]
|
||||
self.num_inference_steps = list_ui_vals[list_ui_keys.index('num_inference_steps')]
|
||||
self.depth_strength = list_ui_vals[list_ui_keys.index('depth_strength')]
|
||||
|
||||
def write_json(self):
|
||||
# Write the data list to a JSON file
|
||||
data_copy = self.data.copy()
|
||||
data_copy.insert(0, {"settings": "sdxl", "width": self.be.dh.width_img, "height": self.be.dh.height_img, "num_inference_steps": self.be.dh.num_inference_steps})
|
||||
with open(self.fp_json, 'w') as f:
|
||||
json.dump(data_copy, f, indent=4)
|
||||
|
||||
def add_image_to_video(self):
|
||||
if self.prompt is None:
|
||||
print("Cannot take because no prompt was set!")
|
||||
return self.get_list_images_movie()
|
||||
if self.idx_movie == 0:
|
||||
self.init_new_movie()
|
||||
|
||||
self.data.append({"iteration": self.idx_movie,
|
||||
"seed": self.list_seeds[self.idx_img_preview_selected],
|
||||
"prompt": self.prompt,
|
||||
"negative_prompt": self.negative_prompt,
|
||||
"preview_image": self.list_images_preview[self.idx_img_preview_selected]
|
||||
})
|
||||
|
||||
self.write_json()
|
||||
self.idx_movie += 1
|
||||
return self.get_list_images_movie()
|
||||
|
||||
def img_movie_delete(self):
|
||||
if self.idx_img_movie_selected is not None and 0 <= self.idx_img_movie_selected < len(self.data)+1:
|
||||
del self.data[self.idx_img_movie_selected]
|
||||
self.idx_img_movie_selected = None
|
||||
if len(list_ui_vals[list_ui_keys.index('user_id')]) > 1:
|
||||
self.user_id = list_ui_vals[list_ui_keys.index('user_id')]
|
||||
else:
|
||||
print(f"Invalid movie image index for deletion: {self.idx_img_movie_selected}")
|
||||
return self.get_list_images_movie()
|
||||
# generate new user id
|
||||
self.user_id = uuid.uuid4().hex
|
||||
print(f"made new user_id: {self.user_id} at {get_time('second')}")
|
||||
|
||||
def img_movie_later(self):
|
||||
if self.idx_img_movie_selected is not None and self.idx_img_movie_selected < len(self.data):
|
||||
# Swap the selected image with the next one
|
||||
self.data[self.idx_img_movie_selected], self.data[self.idx_img_movie_selected + 1] = \
|
||||
self.data[self.idx_img_movie_selected+1], self.data[self.idx_img_movie_selected]
|
||||
self.idx_img_movie_selected = None
|
||||
def save_latents(self, fp_latents, list_latents):
|
||||
r"""
|
||||
Saves a latent trajectory on disk, in npy format.
|
||||
"""
|
||||
list_latents_cpu = [l.cpu().numpy() for l in list_latents]
|
||||
np.save(fp_latents, list_latents_cpu)
|
||||
|
||||
def load_latents(self, fp_latents):
|
||||
r"""
|
||||
Loads a latent trajectory from disk, converts to torch tensor.
|
||||
"""
|
||||
list_latents_cpu = np.load(fp_latents)
|
||||
list_latents = [torch.from_numpy(l).to(self.lb.device) for l in list_latents_cpu]
|
||||
return list_latents
|
||||
|
||||
def compute_img1(self, *args):
|
||||
r"""
|
||||
Computes the first transition image and returns it for display.
|
||||
Sets all other transition images and last image to empty (as they are obsolete with this operation)
|
||||
"""
|
||||
list_ui_vals = args
|
||||
self.setup_lb(list_ui_vals)
|
||||
fp_img1 = os.path.join(self.dp_imgs, f"img1_{self.user_id}")
|
||||
img1 = Image.fromarray(self.lb.compute_latents1(return_image=True))
|
||||
img1.save(fp_img1 + ".jpg")
|
||||
self.save_latents(fp_img1 + ".npy", self.lb.tree_latents[0])
|
||||
self.recycle_img1 = True
|
||||
self.recycle_img2 = False
|
||||
return [fp_img1 + ".jpg", self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.user_id]
|
||||
|
||||
def compute_img2(self, *args):
|
||||
r"""
|
||||
Computes the last transition image and returns it for display.
|
||||
Sets all other transition images to empty (as they are obsolete with this operation)
|
||||
"""
|
||||
if not os.path.isfile(os.path.join(self.dp_imgs, f"img1_{self.user_id}.jpg")): # don't do anything
|
||||
return [self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.user_id]
|
||||
list_ui_vals = args
|
||||
self.setup_lb(list_ui_vals)
|
||||
|
||||
self.lb.tree_latents[0] = self.load_latents(os.path.join(self.dp_imgs, f"img1_{self.user_id}.npy"))
|
||||
fp_img2 = os.path.join(self.dp_imgs, f"img2_{self.user_id}")
|
||||
img2 = Image.fromarray(self.lb.compute_latents2(return_image=True))
|
||||
img2.save(fp_img2 + '.jpg')
|
||||
self.save_latents(fp_img2 + ".npy", self.lb.tree_latents[-1])
|
||||
self.recycle_img2 = True
|
||||
# fixme save seeds. change filenames?
|
||||
return [self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, fp_img2 + ".jpg", self.user_id]
|
||||
|
||||
def compute_transition(self, *args):
|
||||
r"""
|
||||
Computes transition images and movie.
|
||||
"""
|
||||
list_ui_vals = args
|
||||
self.setup_lb(list_ui_vals)
|
||||
print("STARTING TRANSITION...")
|
||||
fixed_seeds = [self.seed1, self.seed2]
|
||||
# Inject loaded latents (other user interference)
|
||||
self.lb.tree_latents[0] = self.load_latents(os.path.join(self.dp_imgs, f"img1_{self.user_id}.npy"))
|
||||
self.lb.tree_latents[-1] = self.load_latents(os.path.join(self.dp_imgs, f"img2_{self.user_id}.npy"))
|
||||
imgs_transition = self.lb.run_transition(
|
||||
recycle_img1=self.recycle_img1,
|
||||
recycle_img2=self.recycle_img2,
|
||||
num_inference_steps=self.num_inference_steps,
|
||||
depth_strength=self.depth_strength,
|
||||
t_compute_max_allowed=self.t_compute_max_allowed,
|
||||
fixed_seeds=fixed_seeds)
|
||||
print(f"Latent Blending pass finished ({get_time('second')}). Resulted in {len(imgs_transition)} images")
|
||||
|
||||
# Subselect three preview images
|
||||
idx_img_prev = np.round(np.linspace(0, len(imgs_transition) - 1, 5)[1:-1]).astype(np.int32)
|
||||
|
||||
list_imgs_preview = []
|
||||
for j in idx_img_prev:
|
||||
list_imgs_preview.append(Image.fromarray(imgs_transition[j]))
|
||||
|
||||
# Save the preview imgs as jpgs on disk so we are not sending umcompressed data around
|
||||
current_timestamp = get_time('second')
|
||||
self.list_fp_imgs_current = []
|
||||
for i in range(len(list_imgs_preview)):
|
||||
fp_img = os.path.join(self.dp_imgs, f"img_preview_{i}_{current_timestamp}.jpg")
|
||||
list_imgs_preview[i].save(fp_img)
|
||||
self.list_fp_imgs_current.append(fp_img)
|
||||
# Insert cheap frames for the movie
|
||||
imgs_transition_ext = add_frames_linear_interp(imgs_transition, self.duration_video, self.fps)
|
||||
|
||||
# Save as movie
|
||||
self.fp_movie = self.get_fp_video_last()
|
||||
if os.path.isfile(self.fp_movie):
|
||||
os.remove(self.fp_movie)
|
||||
ms = MovieSaver(self.fp_movie, fps=self.fps)
|
||||
for img in tqdm(imgs_transition_ext):
|
||||
ms.write_frame(img)
|
||||
ms.finalize()
|
||||
print("DONE SAVING MOVIE! SENDING BACK...")
|
||||
|
||||
# Assemble Output, updating the preview images and le movie
|
||||
list_return = self.list_fp_imgs_current + [self.fp_movie]
|
||||
return list_return
|
||||
|
||||
def stack_forward(self, prompt2, seed2):
|
||||
r"""
|
||||
Allows to generate multi-segment movies. Sets last image -> first image with all
|
||||
relevant parameters.
|
||||
"""
|
||||
# Save preview images, prompts and seeds into dictionary for stacking
|
||||
if len(self.list_all_segments) == 0:
|
||||
timestamp_session = get_time('second')
|
||||
self.dp_session = os.path.join(self.dp_out, f"session_{timestamp_session}")
|
||||
os.makedirs(self.dp_session)
|
||||
|
||||
idx_segment = len(self.list_all_segments)
|
||||
dp_segment = os.path.join(self.dp_session, f"segment_{str(idx_segment).zfill(3)}")
|
||||
|
||||
self.list_all_segments.append(dp_segment)
|
||||
self.lb.write_imgs_transition(dp_segment)
|
||||
|
||||
fp_movie_last = self.get_fp_video_last()
|
||||
fp_movie_next = self.get_fp_video_next()
|
||||
|
||||
shutil.copyfile(fp_movie_last, fp_movie_next)
|
||||
|
||||
self.lb.tree_latents[0] = self.load_latents(os.path.join(self.dp_imgs, f"img1_{self.user_id}.npy"))
|
||||
self.lb.tree_latents[-1] = self.load_latents(os.path.join(self.dp_imgs, f"img2_{self.user_id}.npy"))
|
||||
self.lb.swap_forward()
|
||||
|
||||
shutil.copyfile(os.path.join(self.dp_imgs, f"img2_{self.user_id}.npy"), os.path.join(self.dp_imgs, f"img1_{self.user_id}.npy"))
|
||||
fp_multi = self.multi_concat()
|
||||
list_out = [fp_multi]
|
||||
|
||||
list_out.extend([os.path.join(self.dp_imgs, f"img2_{self.user_id}.jpg")])
|
||||
list_out.extend([self.fp_img_empty] * 4)
|
||||
list_out.append(gr.update(interactive=False, value=prompt2))
|
||||
list_out.append(gr.update(interactive=False, value=seed2))
|
||||
list_out.append("")
|
||||
list_out.append(np.random.randint(0, 10000000))
|
||||
print(f"stack_forward: fp_multi {fp_multi}")
|
||||
return list_out
|
||||
|
||||
def multi_concat(self):
|
||||
r"""
|
||||
Concatentates all stacked segments into one long movie.
|
||||
"""
|
||||
list_fp_movies = self.get_fp_video_all()
|
||||
# Concatenate movies and save
|
||||
fp_final = os.path.join(self.dp_session, f"concat_{self.user_id}.mp4")
|
||||
concatenate_movies(fp_final, list_fp_movies)
|
||||
return fp_final
|
||||
|
||||
def get_fp_video_all(self):
|
||||
r"""
|
||||
Collects all stacked movie segments.
|
||||
"""
|
||||
list_all = os.listdir(self.dp_movies)
|
||||
str_beg = f"movie_{self.user_id}_"
|
||||
list_user = [l for l in list_all if str_beg in l]
|
||||
list_user.sort()
|
||||
list_user = [os.path.join(self.dp_movies, l) for l in list_user]
|
||||
return list_user
|
||||
|
||||
def get_fp_video_next(self):
|
||||
r"""
|
||||
Gets the filepath of the next movie segment.
|
||||
"""
|
||||
list_videos = self.get_fp_video_all()
|
||||
if len(list_videos) == 0:
|
||||
idx_next = 0
|
||||
else:
|
||||
print("Cannot move the image later in the sequence.")
|
||||
return self.get_list_images_movie()
|
||||
idx_next = len(list_videos)
|
||||
fp_video_next = os.path.join(self.dp_movies, f"movie_{self.user_id}_{str(idx_next).zfill(3)}.mp4")
|
||||
return fp_video_next
|
||||
|
||||
def img_movie_earlier(self):
|
||||
if self.idx_img_movie_selected is not None and self.idx_img_movie_selected > 0:
|
||||
# Swap the selected image with the previous one
|
||||
self.data[self.idx_img_movie_selected-1], self.data[self.idx_img_movie_selected] = \
|
||||
self.data[self.idx_img_movie_selected], self.data[self.idx_img_movie_selected-1]
|
||||
self.idx_img_movie_selected = None
|
||||
else:
|
||||
print("Cannot move the image earlier in the sequence.")
|
||||
return self.get_list_images_movie()
|
||||
|
||||
def get_fp_video_last(self):
|
||||
r"""
|
||||
Gets the current video that was saved.
|
||||
"""
|
||||
fp_video_last = os.path.join(self.dp_movies, f"last_{self.user_id}.mp4")
|
||||
return fp_video_last
|
||||
|
||||
def generate_movie(self, t_per_segment=10):
|
||||
print("starting movie gen")
|
||||
list_prompts = []
|
||||
list_negative_prompts = []
|
||||
list_seeds = []
|
||||
|
||||
# Extract prompts, negative prompts, and seeds from the data
|
||||
for item in self.data:
|
||||
list_prompts.append(item["prompt"])
|
||||
list_negative_prompts.append(item["negative_prompt"])
|
||||
list_seeds.append(item["seed"])
|
||||
|
||||
list_movie_parts = []
|
||||
for i in range(len(list_prompts) - 1):
|
||||
# For a multi transition we can save some computation time and recycle the latents
|
||||
if i == 0:
|
||||
self.be.set_prompt1(list_prompts[i])
|
||||
self.be.set_negative_prompt(list_negative_prompts[i])
|
||||
self.be.set_prompt2(list_prompts[i + 1])
|
||||
recycle_img1 = False
|
||||
else:
|
||||
self.be.swap_forward()
|
||||
self.be.set_negative_prompt(list_negative_prompts[i+1])
|
||||
self.be.set_prompt2(list_prompts[i + 1])
|
||||
recycle_img1 = True
|
||||
|
||||
fp_movie_part = f"tmp_part_{str(i).zfill(3)}.mp4"
|
||||
fixed_seeds = list_seeds[i:i + 2]
|
||||
# Run latent blending
|
||||
self.be.run_transition(
|
||||
recycle_img1=recycle_img1,
|
||||
fixed_seeds=fixed_seeds)
|
||||
|
||||
# Save movie
|
||||
self.be.write_movie_transition(fp_movie_part, t_per_segment)
|
||||
list_movie_parts.append(fp_movie_part)
|
||||
|
||||
# Finally, concatenate the result
|
||||
concatenate_movies(self.fp_movie, list_movie_parts)
|
||||
print(f"DONE! MOVIE SAVED IN {self.fp_movie}")
|
||||
return self.fp_movie
|
||||
|
||||
#%% Runtime engine
|
||||
|
||||
if __name__ == "__main__":
|
||||
# fp_ckpt = hf_hub_download(repo_id="stabilityai/stable-diffusion-2-1-base", filename="v2-1_512-ema-pruned.ckpt")
|
||||
fp_ckpt = hf_hub_download(repo_id="stabilityai/stable-diffusion-2-1", filename="v2-1_768-ema-pruned.ckpt")
|
||||
bf = BlendingFrontend(StableDiffusionHolder(fp_ckpt))
|
||||
# self = BlendingFrontend(None)
|
||||
|
||||
# Change Parameters below
|
||||
parser = argparse.ArgumentParser(description="Latent Blending GUI")
|
||||
parser.add_argument("--do_compile", type=bool, default=False)
|
||||
parser.add_argument("--nmb_preview_images", type=int, default=4)
|
||||
parser.add_argument("--server_name", type=str, default=None)
|
||||
try:
|
||||
args = parser.parse_args()
|
||||
nmb_preview_images = args.nmb_preview_images
|
||||
do_compile = args.do_compile
|
||||
server_name = args.server_name
|
||||
|
||||
except SystemExit:
|
||||
# If the script is run in an interactive environment (like Jupyter), parse_args might fail.
|
||||
nmb_preview_images = 4
|
||||
do_compile = False # compile SD pipes with sdfast
|
||||
server_name = None
|
||||
|
||||
mur = MultiUserRouter(do_compile=do_compile)
|
||||
with gr.Blocks() as demo:
|
||||
with gr.Accordion("Setup", open=True) as accordion_setup:
|
||||
# New user registration, model selection, ...
|
||||
with gr.Row():
|
||||
model = gr.Dropdown(mur.list_models, value=mur.list_models[0], label="model")
|
||||
width = gr.Slider(256, 2048, 512, step=128, label='width', interactive=True)
|
||||
height = gr.Slider(256, 2048, 512, step=128, label='height', interactive=True)
|
||||
user_id = gr.Textbox(label="user id (filled automatically)", interactive=False)
|
||||
b_start_session = gr.Button('start session', variant='primary')
|
||||
gr.HTML("""<h1>Latent Blending</h1>
|
||||
<p>Create butter-smooth transitions between prompts, powered by stable diffusion</p>
|
||||
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
|
||||
<br/>
|
||||
<a href="https://huggingface.co/spaces/lunarring/latentblending?duplicate=true">
|
||||
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
||||
</p>""")
|
||||
|
||||
with gr.Accordion("Latent Blending (expand with arrow on right side after you clicked 'start session')", open=False) as accordion_latentblending:
|
||||
with gr.Row():
|
||||
prompt = gr.Textbox(label="prompt")
|
||||
negative_prompt = gr.Textbox(label="negative prompt")
|
||||
b_compute = gr.Button('generate preview images', variant='primary')
|
||||
b_select = gr.Button('add selected image to video', variant='primary')
|
||||
with gr.Row():
|
||||
prompt1 = gr.Textbox(label="prompt 1")
|
||||
prompt2 = gr.Textbox(label="prompt 2")
|
||||
|
||||
with gr.Row():
|
||||
gallery_preview = gr.Gallery(
|
||||
label="Generated images", show_label=False, elem_id="gallery"
|
||||
, columns=[nmb_preview_images], rows=[1], object_fit="contain", height="auto", allow_preview=False, interactive=False)
|
||||
with gr.Row():
|
||||
duration_compute = gr.Slider(10, 25, bf.t_compute_max_allowed, step=1, label='waiting time', interactive=True)
|
||||
duration_video = gr.Slider(1, 100, bf.duration_video, step=0.1, label='video duration', interactive=True)
|
||||
height = gr.Slider(256, 1024, bf.height, step=128, label='height', interactive=True)
|
||||
width = gr.Slider(256, 1024, bf.width, step=128, label='width', interactive=True)
|
||||
|
||||
with gr.Accordion("Advanced Settings (click to expand)", open=False):
|
||||
|
||||
with gr.Row():
|
||||
gr.Markdown("Your movie contains the following images (see below)")
|
||||
with gr.Row():
|
||||
gallery_movie = gr.Gallery(
|
||||
label="Generated images", show_label=False, elem_id="gallery"
|
||||
, columns=[20], rows=[1], object_fit="contain", height="auto", allow_preview=False, interactive=False)
|
||||
|
||||
|
||||
with gr.Row():
|
||||
b_delete = gr.Button('delete selected image')
|
||||
b_move_earlier = gr.Button('move image to earlier time')
|
||||
b_move_later = gr.Button('move image to later time')
|
||||
with gr.Accordion("Diffusion settings", open=True):
|
||||
with gr.Row():
|
||||
num_inference_steps = gr.Slider(5, 100, bf.num_inference_steps, step=1, label='num_inference_steps', interactive=True)
|
||||
guidance_scale = gr.Slider(1, 25, bf.guidance_scale, step=0.1, label='guidance_scale', interactive=True)
|
||||
negative_prompt = gr.Textbox(label="negative prompt")
|
||||
|
||||
with gr.Row():
|
||||
b_generate_movie = gr.Button('generate movie', variant='primary')
|
||||
t_per_segment = gr.Slider(1, 30, 10, step=0.1, label='time per segment', interactive=True)
|
||||
with gr.Accordion("Seed control: adjust seeds for first and last images", open=True):
|
||||
with gr.Row():
|
||||
b_newseed1 = gr.Button("randomize seed 1", variant='secondary')
|
||||
seed1 = gr.Number(bf.seed1, label="seed 1", interactive=True)
|
||||
seed2 = gr.Number(bf.seed2, label="seed 2", interactive=True)
|
||||
b_newseed2 = gr.Button("randomize seed 2", variant='secondary')
|
||||
|
||||
with gr.Row():
|
||||
movie = gr.Video()
|
||||
with gr.Accordion("Last image crossfeeding.", open=True):
|
||||
with gr.Row():
|
||||
branch1_crossfeed_power = gr.Slider(0.0, 1.0, bf.branch1_crossfeed_power, step=0.01, label='branch1 crossfeed power', interactive=True)
|
||||
branch1_crossfeed_range = gr.Slider(0.0, 1.0, bf.branch1_crossfeed_range, step=0.01, label='branch1 crossfeed range', interactive=True)
|
||||
branch1_crossfeed_decay = gr.Slider(0.0, 1.0, bf.branch1_crossfeed_decay, step=0.01, label='branch1 crossfeed decay', interactive=True)
|
||||
|
||||
# bindings
|
||||
b_start_session.click(mur.register_new_user, inputs=[model, width, height], outputs=user_id)
|
||||
b_compute.click(mur.compute_imgs, inputs=[user_id, prompt, negative_prompt], outputs=gallery_preview)
|
||||
b_select.click(mur.add_image_to_video, user_id, gallery_movie)
|
||||
gallery_preview.select(mur.preview_img_selected, user_id, None)
|
||||
gallery_movie.select(mur.movie_img_selected, user_id, None)
|
||||
b_delete.click(mur.img_movie_delete, user_id, gallery_movie)
|
||||
b_move_earlier.click(mur.img_movie_earlier, user_id, gallery_movie)
|
||||
b_move_later.click(mur.img_movie_later, user_id, gallery_movie)
|
||||
b_generate_movie.click(mur.generate_movie, [user_id, t_per_segment], movie)
|
||||
with gr.Accordion("Transition settings", open=True):
|
||||
with gr.Row():
|
||||
parental_crossfeed_power = gr.Slider(0.0, 1.0, bf.parental_crossfeed_power, step=0.01, label='parental crossfeed power', interactive=True)
|
||||
parental_crossfeed_range = gr.Slider(0.0, 1.0, bf.parental_crossfeed_range, step=0.01, label='parental crossfeed range', interactive=True)
|
||||
parental_crossfeed_power_decay = gr.Slider(0.0, 1.0, bf.parental_crossfeed_power_decay, step=0.01, label='parental crossfeed decay', interactive=True)
|
||||
with gr.Row():
|
||||
depth_strength = gr.Slider(0.01, 0.99, bf.depth_strength, step=0.01, label='depth_strength', interactive=True)
|
||||
guidance_scale_mid_damper = gr.Slider(0.01, 2.0, bf.guidance_scale_mid_damper, step=0.01, label='guidance_scale_mid_damper', interactive=True)
|
||||
|
||||
with gr.Row():
|
||||
b_compute1 = gr.Button('step1: compute first image', variant='primary')
|
||||
b_compute2 = gr.Button('step2: compute last image', variant='primary')
|
||||
b_compute_transition = gr.Button('step3: compute transition', variant='primary')
|
||||
|
||||
if server_name is None:
|
||||
demo.launch(share=False, inbrowser=True, inline=False)
|
||||
else:
|
||||
demo.launch(share=False, inbrowser=True, inline=False, server_name=server_name)
|
||||
with gr.Row():
|
||||
img1 = gr.Image(label="1/5")
|
||||
img2 = gr.Image(label="2/5", show_progress=False)
|
||||
img3 = gr.Image(label="3/5", show_progress=False)
|
||||
img4 = gr.Image(label="4/5", show_progress=False)
|
||||
img5 = gr.Image(label="5/5")
|
||||
|
||||
with gr.Row():
|
||||
vid_single = gr.Video(label="current single trans")
|
||||
vid_multi = gr.Video(label="concatented multi trans")
|
||||
|
||||
with gr.Row():
|
||||
b_stackforward = gr.Button('append last movie segment (left) to multi movie (right)', variant='primary')
|
||||
|
||||
with gr.Row():
|
||||
gr.Markdown(
|
||||
"""
|
||||
# Parameters
|
||||
## Main
|
||||
- waiting time: set your waiting time for the transition. high values = better quality
|
||||
- video duration: seconds per segment
|
||||
- height/width: in pixels
|
||||
|
||||
## Diffusion settings
|
||||
- num_inference_steps: number of diffusion steps
|
||||
- guidance_scale: latent blending seems to prefer lower values here
|
||||
- negative prompt: enter negative prompt here, applied for all images
|
||||
|
||||
## Last image crossfeeding
|
||||
- branch1_crossfeed_power: Controls the level of cross-feeding between the first and last image branch. For preserving structures.
|
||||
- branch1_crossfeed_range: Sets the duration of active crossfeed during development. High values enforce strong structural similarity.
|
||||
- branch1_crossfeed_decay: Sets decay for branch1_crossfeed_power. Lower values make the decay stronger across the range.
|
||||
|
||||
## Transition settings
|
||||
- parental_crossfeed_power: Similar to branch1_crossfeed_power, however applied for the images withinin the transition.
|
||||
- parental_crossfeed_range: Similar to branch1_crossfeed_range, however applied for the images withinin the transition.
|
||||
- parental_crossfeed_power_decay: Similar to branch1_crossfeed_decay, however applied for the images withinin the transition.
|
||||
- depth_strength: Determines when the blending process will begin in terms of diffusion steps. Low values more inventive but can cause motion.
|
||||
- guidance_scale_mid_damper: Decreases the guidance scale in the middle of a transition.
|
||||
""")
|
||||
|
||||
with gr.Row():
|
||||
user_id = gr.Textbox(label="user id", interactive=False)
|
||||
|
||||
# Collect all UI elemts in list to easily pass as inputs in gradio
|
||||
dict_ui_elem = {}
|
||||
dict_ui_elem["prompt1"] = prompt1
|
||||
dict_ui_elem["negative_prompt"] = negative_prompt
|
||||
dict_ui_elem["prompt2"] = prompt2
|
||||
|
||||
dict_ui_elem["duration_compute"] = duration_compute
|
||||
dict_ui_elem["duration_video"] = duration_video
|
||||
dict_ui_elem["height"] = height
|
||||
dict_ui_elem["width"] = width
|
||||
|
||||
dict_ui_elem["depth_strength"] = depth_strength
|
||||
dict_ui_elem["branch1_crossfeed_power"] = branch1_crossfeed_power
|
||||
dict_ui_elem["branch1_crossfeed_range"] = branch1_crossfeed_range
|
||||
dict_ui_elem["branch1_crossfeed_decay"] = branch1_crossfeed_decay
|
||||
|
||||
dict_ui_elem["num_inference_steps"] = num_inference_steps
|
||||
dict_ui_elem["guidance_scale"] = guidance_scale
|
||||
dict_ui_elem["guidance_scale_mid_damper"] = guidance_scale_mid_damper
|
||||
dict_ui_elem["seed1"] = seed1
|
||||
dict_ui_elem["seed2"] = seed2
|
||||
|
||||
dict_ui_elem["parental_crossfeed_range"] = parental_crossfeed_range
|
||||
dict_ui_elem["parental_crossfeed_power"] = parental_crossfeed_power
|
||||
dict_ui_elem["parental_crossfeed_power_decay"] = parental_crossfeed_power_decay
|
||||
dict_ui_elem["user_id"] = user_id
|
||||
|
||||
# Convert to list, as gradio doesn't seem to accept dicts
|
||||
list_ui_vals = []
|
||||
list_ui_keys = []
|
||||
for k in dict_ui_elem.keys():
|
||||
list_ui_vals.append(dict_ui_elem[k])
|
||||
list_ui_keys.append(k)
|
||||
bf.list_ui_keys = list_ui_keys
|
||||
|
||||
b_newseed1.click(bf.randomize_seed1, outputs=seed1)
|
||||
b_newseed2.click(bf.randomize_seed2, outputs=seed2)
|
||||
b_compute1.click(bf.compute_img1, inputs=list_ui_vals, outputs=[img1, img2, img3, img4, img5, user_id])
|
||||
b_compute2.click(bf.compute_img2, inputs=list_ui_vals, outputs=[img2, img3, img4, img5, user_id])
|
||||
b_compute_transition.click(bf.compute_transition,
|
||||
inputs=list_ui_vals,
|
||||
outputs=[img2, img3, img4, vid_single])
|
||||
|
||||
b_stackforward.click(bf.stack_forward,
|
||||
inputs=[prompt2, seed2],
|
||||
outputs=[vid_multi, img1, img2, img3, img4, img5, prompt1, seed1, prompt2])
|
||||
|
||||
demo.launch(share=bf.share, inbrowser=True, inline=False)
|
||||
|
|
|
@ -0,0 +1,301 @@
|
|||
# Copyright 2022 Lunar Ring. All rights reserved.
|
||||
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
|
||||
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import subprocess
|
||||
import os
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
import cv2
|
||||
from typing import List
|
||||
import ffmpeg # pip install ffmpeg-python. if error with broken pipe: conda update ffmpeg
|
||||
|
||||
|
||||
class MovieSaver():
|
||||
def __init__(
|
||||
self,
|
||||
fp_out: str,
|
||||
fps: int = 24,
|
||||
shape_hw: List[int] = None,
|
||||
crf: int = 21,
|
||||
codec: str = 'libx264',
|
||||
preset: str = 'fast',
|
||||
pix_fmt: str = 'yuv420p',
|
||||
silent_ffmpeg: bool = True):
|
||||
r"""
|
||||
Initializes movie saver class - a human friendly ffmpeg wrapper.
|
||||
After you init the class, you can dump numpy arrays x into moviesaver.write_frame(x).
|
||||
Don't forget toi finalize movie file with moviesaver.finalize().
|
||||
Args:
|
||||
fp_out: str
|
||||
Output file name. If it already exists, it will be deleted.
|
||||
fps: int
|
||||
Frames per second.
|
||||
shape_hw: List[int, int]
|
||||
Output shape, optional argument. Can be initialized automatically when first frame is written.
|
||||
crf: int
|
||||
ffmpeg doc: the range of the CRF scale is 0–51, where 0 is lossless
|
||||
(for 8 bit only, for 10 bit use -qp 0), 23 is the default, and 51 is worst quality possible.
|
||||
A lower value generally leads to higher quality, and a subjectively sane range is 17–28.
|
||||
Consider 17 or 18 to be visually lossless or nearly so;
|
||||
it should look the same or nearly the same as the input but it isn't technically lossless.
|
||||
The range is exponential, so increasing the CRF value +6 results in
|
||||
roughly half the bitrate / file size, while -6 leads to roughly twice the bitrate.
|
||||
codec: int
|
||||
Number of diffusion steps. Larger values will take more compute time.
|
||||
preset: str
|
||||
Choose between ultrafast, superfast, veryfast, faster, fast, medium, slow, slower, veryslow.
|
||||
ffmpeg doc: A preset is a collection of options that will provide a certain encoding speed
|
||||
to compression ratio. A slower preset will provide better compression
|
||||
(compression is quality per filesize).
|
||||
This means that, for example, if you target a certain file size or constant bit rate,
|
||||
you will achieve better quality with a slower preset. Similarly, for constant quality encoding,
|
||||
you will simply save bitrate by choosing a slower preset.
|
||||
pix_fmt: str
|
||||
Pixel format. Run 'ffmpeg -pix_fmts' in your shell to see all options.
|
||||
silent_ffmpeg: bool
|
||||
Surpress the output from ffmpeg.
|
||||
"""
|
||||
if len(os.path.split(fp_out)[0]) > 0:
|
||||
assert os.path.isdir(os.path.split(fp_out)[0]), "Directory does not exist!"
|
||||
|
||||
self.fp_out = fp_out
|
||||
self.fps = fps
|
||||
self.crf = crf
|
||||
self.pix_fmt = pix_fmt
|
||||
self.codec = codec
|
||||
self.preset = preset
|
||||
self.silent_ffmpeg = silent_ffmpeg
|
||||
|
||||
if os.path.isfile(fp_out):
|
||||
os.remove(fp_out)
|
||||
|
||||
self.init_done = False
|
||||
self.nmb_frames = 0
|
||||
if shape_hw is None:
|
||||
self.shape_hw = [-1, 1]
|
||||
else:
|
||||
if len(shape_hw) == 2:
|
||||
shape_hw.append(3)
|
||||
self.shape_hw = shape_hw
|
||||
self.initialize()
|
||||
|
||||
print(f"MovieSaver initialized. fps={fps} crf={crf} pix_fmt={pix_fmt} codec={codec} preset={preset}")
|
||||
|
||||
def initialize(self):
|
||||
args = (
|
||||
ffmpeg
|
||||
.input('pipe:', format='rawvideo', pix_fmt='rgb24', s='{}x{}'.format(self.shape_hw[1], self.shape_hw[0]), framerate=self.fps)
|
||||
.output(self.fp_out, crf=self.crf, pix_fmt=self.pix_fmt, c=self.codec, preset=self.preset)
|
||||
.overwrite_output()
|
||||
.compile()
|
||||
)
|
||||
if self.silent_ffmpeg:
|
||||
self.ffmpg_process = subprocess.Popen(args, stdin=subprocess.PIPE, stderr=subprocess.DEVNULL, stdout=subprocess.DEVNULL)
|
||||
else:
|
||||
self.ffmpg_process = subprocess.Popen(args, stdin=subprocess.PIPE)
|
||||
self.init_done = True
|
||||
self.shape_hw = tuple(self.shape_hw)
|
||||
print(f"Initialization done. Movie shape: {self.shape_hw}")
|
||||
|
||||
def write_frame(self, out_frame: np.ndarray):
|
||||
r"""
|
||||
Function to dump a numpy array as frame of a movie.
|
||||
Args:
|
||||
out_frame: np.ndarray
|
||||
Numpy array, in np.uint8 format. Convert with np.astype(x, np.uint8).
|
||||
Dim 0: y
|
||||
Dim 1: x
|
||||
Dim 2: RGB
|
||||
"""
|
||||
assert out_frame.dtype == np.uint8, "Convert to np.uint8 before"
|
||||
assert len(out_frame.shape) == 3, "out_frame needs to be three dimensional, Y X C"
|
||||
assert out_frame.shape[2] == 3, f"need three color channels, but you provided {out_frame.shape[2]}."
|
||||
|
||||
if not self.init_done:
|
||||
self.shape_hw = out_frame.shape
|
||||
self.initialize()
|
||||
|
||||
assert self.shape_hw == out_frame.shape, f"You cannot change the image size after init. Initialized with {self.shape_hw}, out_frame {out_frame.shape}"
|
||||
|
||||
# write frame
|
||||
self.ffmpg_process.stdin.write(
|
||||
out_frame
|
||||
.astype(np.uint8)
|
||||
.tobytes()
|
||||
)
|
||||
|
||||
self.nmb_frames += 1
|
||||
|
||||
def finalize(self):
|
||||
r"""
|
||||
Call this function to finalize the movie. If you forget to call it your movie will be garbage.
|
||||
"""
|
||||
if self.nmb_frames == 0:
|
||||
print("You did not write any frames yet! nmb_frames = 0. Cannot save.")
|
||||
return
|
||||
self.ffmpg_process.stdin.close()
|
||||
self.ffmpg_process.wait()
|
||||
duration = int(self.nmb_frames / self.fps)
|
||||
print(f"Movie saved, {duration}s playtime, watch here: \n{self.fp_out}")
|
||||
|
||||
|
||||
def concatenate_movies(fp_final: str, list_fp_movies: List[str]):
|
||||
r"""
|
||||
Concatenate multiple movie segments into one long movie, using ffmpeg.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fp_final : str
|
||||
Full path of the final movie file. Should end with .mp4
|
||||
list_fp_movies : list[str]
|
||||
List of full paths of movie segments.
|
||||
"""
|
||||
assert fp_final[-4] == ".", "fp_final seems to miss file extension: {fp_final}"
|
||||
for fp in list_fp_movies:
|
||||
assert os.path.isfile(fp), f"Input movie does not exist: {fp}"
|
||||
assert os.path.getsize(fp) > 100, f"Input movie seems empty: {fp}"
|
||||
|
||||
if os.path.isfile(fp_final):
|
||||
os.remove(fp_final)
|
||||
|
||||
# make a list for ffmpeg
|
||||
list_concat = []
|
||||
for fp_part in list_fp_movies:
|
||||
list_concat.append(f"""file '{fp_part}'""")
|
||||
|
||||
# save this list
|
||||
fp_list = "tmp_move.txt"
|
||||
with open(fp_list, "w") as fa:
|
||||
for item in list_concat:
|
||||
fa.write("%s\n" % item)
|
||||
|
||||
cmd = f'ffmpeg -f concat -safe 0 -i {fp_list} -c copy {fp_final}'
|
||||
subprocess.call(cmd, shell=True)
|
||||
os.remove(fp_list)
|
||||
if os.path.isfile(fp_final):
|
||||
print(f"concatenate_movies: success! Watch here: {fp_final}")
|
||||
|
||||
|
||||
def add_sound(fp_final, fp_silentmovie, fp_sound):
|
||||
cmd = f'ffmpeg -i {fp_silentmovie} -i {fp_sound} -c copy -map 0:v:0 -map 1:a:0 {fp_final}'
|
||||
subprocess.call(cmd, shell=True)
|
||||
if os.path.isfile(fp_final):
|
||||
print(f"add_sound: success! Watch here: {fp_final}")
|
||||
|
||||
|
||||
def add_subtitles_to_video(
|
||||
fp_input: str,
|
||||
fp_output: str,
|
||||
subtitles: list,
|
||||
fontsize: int = 50,
|
||||
font_name: str = "Arial",
|
||||
color: str = 'yellow'
|
||||
):
|
||||
from moviepy.editor import VideoFileClip, TextClip, CompositeVideoClip
|
||||
r"""
|
||||
Function to add subtitles to a video.
|
||||
|
||||
Args:
|
||||
fp_input (str): File path of the input video.
|
||||
fp_output (str): File path of the output video with subtitles.
|
||||
subtitles (list): List of dictionaries containing subtitle information
|
||||
(start, duration, text). Example:
|
||||
subtitles = [
|
||||
{"start": 1, "duration": 3, "text": "hello test"},
|
||||
{"start": 4, "duration": 2, "text": "this works"},
|
||||
]
|
||||
fontsize (int): Font size of the subtitles.
|
||||
font_name (str): Font name of the subtitles.
|
||||
color (str): Color of the subtitles.
|
||||
"""
|
||||
|
||||
# Check if the input file exists
|
||||
if not os.path.isfile(fp_input):
|
||||
raise FileNotFoundError(f"Input file not found: {fp_input}")
|
||||
|
||||
# Check the subtitles format and sort them by the start time
|
||||
time_points = []
|
||||
for subtitle in subtitles:
|
||||
if not isinstance(subtitle, dict):
|
||||
raise ValueError("Each subtitle must be a dictionary containing 'start', 'duration' and 'text'.")
|
||||
if not all(key in subtitle for key in ["start", "duration", "text"]):
|
||||
raise ValueError("Each subtitle dictionary must contain 'start', 'duration' and 'text'.")
|
||||
if subtitle['start'] < 0 or subtitle['duration'] <= 0:
|
||||
raise ValueError("'start' should be non-negative and 'duration' should be positive.")
|
||||
time_points.append((subtitle['start'], subtitle['start'] + subtitle['duration']))
|
||||
|
||||
# Check for overlaps
|
||||
time_points.sort()
|
||||
for i in range(1, len(time_points)):
|
||||
if time_points[i][0] < time_points[i - 1][1]:
|
||||
raise ValueError("Subtitle time intervals should not overlap.")
|
||||
|
||||
# Load the video clip
|
||||
video = VideoFileClip(fp_input)
|
||||
|
||||
# Create a list to store subtitle clips
|
||||
subtitle_clips = []
|
||||
|
||||
# Loop through the subtitle information and create TextClip for each
|
||||
for subtitle in subtitles:
|
||||
text_clip = TextClip(subtitle["text"], fontsize=fontsize, color=color, font=font_name)
|
||||
text_clip = text_clip.set_position(('center', 'bottom')).set_start(subtitle["start"]).set_duration(subtitle["duration"])
|
||||
subtitle_clips.append(text_clip)
|
||||
|
||||
# Overlay the subtitles on the video
|
||||
video = CompositeVideoClip([video] + subtitle_clips)
|
||||
|
||||
# Write the final clip to a new file
|
||||
video.write_videofile(fp_output)
|
||||
|
||||
|
||||
|
||||
class MovieReader():
|
||||
r"""
|
||||
Class to read in a movie.
|
||||
"""
|
||||
|
||||
def __init__(self, fp_movie):
|
||||
self.video_player_object = cv2.VideoCapture(fp_movie)
|
||||
self.nmb_frames = int(self.video_player_object.get(cv2.CAP_PROP_FRAME_COUNT))
|
||||
self.fps_movie = int(self.video_player_object.get(cv2.CAP_PROP_FPS))
|
||||
self.shape = [100, 100, 3]
|
||||
self.shape_is_set = False
|
||||
|
||||
def get_next_frame(self):
|
||||
success, image = self.video_player_object.read()
|
||||
if success:
|
||||
if not self.shape_is_set:
|
||||
self.shape_is_set = True
|
||||
self.shape = image.shape
|
||||
return image
|
||||
else:
|
||||
return np.zeros(self.shape)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fps = 2
|
||||
list_fp_movies = []
|
||||
for k in range(4):
|
||||
fp_movie = f"/tmp/my_random_movie_{k}.mp4"
|
||||
list_fp_movies.append(fp_movie)
|
||||
ms = MovieSaver(fp_movie, fps=fps)
|
||||
for fn in tqdm(range(30)):
|
||||
img = (np.random.rand(512, 1024, 3) * 255).astype(np.uint8)
|
||||
ms.write_frame(img)
|
||||
ms.finalize()
|
||||
|
||||
fp_final = "/tmp/my_concatenated_movie.mp4"
|
||||
concatenate_movies(fp_final, list_fp_movies)
|
|
@ -1,6 +1,6 @@
|
|||
lpips==0.1.4
|
||||
opencv-python
|
||||
ffmpeg-python
|
||||
diffusers==0.25.0
|
||||
transformers
|
||||
pytest
|
||||
accelerate
|
10
setup.py
10
setup.py
|
@ -6,14 +6,14 @@ with open('requirements.txt') as f:
|
|||
|
||||
setup(
|
||||
name='latentblending',
|
||||
version='0.3',
|
||||
version='0.2',
|
||||
url='https://github.com/lunarring/latentblending',
|
||||
description='Butter-smooth video transitions',
|
||||
long_description=open('README.md').read(),
|
||||
install_requires=[
|
||||
'lunar_tools @ git+https://github.com/lunarring/lunar_tools.git#egg=lunar_tools'
|
||||
] + required,
|
||||
install_requires=required,
|
||||
dependency_links=[
|
||||
'git+https://github.com/lunarring/lunar_tools#egg=lunar_tools'
|
||||
],
|
||||
include_package_data=False,
|
||||
)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue