diffusers update fix
This commit is contained in:
parent
448078c8ae
commit
e63dc20c48
|
@ -295,20 +295,55 @@ class DiffusersHolder():
|
||||||
extra_step_kwargs = self.pipe.prepare_extra_step_kwargs(generator, eta) # dummy
|
extra_step_kwargs = self.pipe.prepare_extra_step_kwargs(generator, eta) # dummy
|
||||||
|
|
||||||
# 7. Prepare added time ids & embeddings
|
# 7. Prepare added time ids & embeddings
|
||||||
add_text_embeds = pooled_prompt_embeds
|
# add_text_embeds = pooled_prompt_embeds
|
||||||
add_time_ids = self.pipe._get_add_time_ids(
|
# add_time_ids = self.pipe._get_add_time_ids(
|
||||||
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
# original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
||||||
)
|
# )
|
||||||
|
|
||||||
if do_classifier_free_guidance:
|
# if do_classifier_free_guidance:
|
||||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
# prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
||||||
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
# add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
||||||
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
# add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
||||||
|
|
||||||
|
# prompt_embeds = prompt_embeds.to(self.device)
|
||||||
|
# add_text_embeds = add_text_embeds.to(self.device)
|
||||||
|
# add_time_ids = add_time_ids.to(self.device).repeat(batch_size * num_images_per_prompt, 1)
|
||||||
|
|
||||||
|
# 7. Prepare added time ids & embeddings
|
||||||
|
add_text_embeds = pooled_prompt_embeds
|
||||||
|
if self.pipe.text_encoder_2 is None:
|
||||||
|
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
||||||
|
else:
|
||||||
|
text_encoder_projection_dim = self.pipe.text_encoder_2.config.projection_dim
|
||||||
|
|
||||||
|
add_time_ids = self.pipe._get_add_time_ids(
|
||||||
|
original_size,
|
||||||
|
crops_coords_top_left,
|
||||||
|
target_size,
|
||||||
|
dtype=prompt_embeds.dtype,
|
||||||
|
text_encoder_projection_dim=text_encoder_projection_dim,
|
||||||
|
)
|
||||||
|
# if negative_original_size is not None and negative_target_size is not None:
|
||||||
|
# negative_add_time_ids = self.pipe._get_add_time_ids(
|
||||||
|
# negative_original_size,
|
||||||
|
# negative_crops_coords_top_left,
|
||||||
|
# negative_target_size,
|
||||||
|
# dtype=prompt_embeds.dtype,
|
||||||
|
# text_encoder_projection_dim=text_encoder_projection_dim,
|
||||||
|
# )
|
||||||
|
# else:
|
||||||
|
negative_add_time_ids = add_time_ids
|
||||||
|
|
||||||
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
||||||
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
||||||
|
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
||||||
|
|
||||||
prompt_embeds = prompt_embeds.to(self.device)
|
prompt_embeds = prompt_embeds.to(self.device)
|
||||||
add_text_embeds = add_text_embeds.to(self.device)
|
add_text_embeds = add_text_embeds.to(self.device)
|
||||||
add_time_ids = add_time_ids.to(self.device).repeat(batch_size * num_images_per_prompt, 1)
|
add_time_ids = add_time_ids.to(self.device).repeat(batch_size * num_images_per_prompt, 1)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# 8. Denoising loop
|
# 8. Denoising loop
|
||||||
for i, t in enumerate(timesteps):
|
for i, t in enumerate(timesteps):
|
||||||
# Set the right starting latents
|
# Set the right starting latents
|
||||||
|
@ -508,7 +543,7 @@ if __name__ == "__main__":
|
||||||
#%%
|
#%%
|
||||||
pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||||
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16)
|
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16)
|
||||||
pipe.to('cuda:1') # xxx
|
pipe.to('cuda') # xxx
|
||||||
|
|
||||||
#%%
|
#%%
|
||||||
self = DiffusersHolder(pipe)
|
self = DiffusersHolder(pipe)
|
||||||
|
|
|
@ -1,56 +0,0 @@
|
||||||
# Copyright 2022 Lunar Ring. All rights reserved.
|
|
||||||
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
import torch
|
|
||||||
torch.backends.cudnn.benchmark = False
|
|
||||||
torch.set_grad_enabled(False)
|
|
||||||
import warnings
|
|
||||||
warnings.filterwarnings('ignore')
|
|
||||||
import warnings
|
|
||||||
from latent_blending import LatentBlending
|
|
||||||
from diffusers_holder import DiffusersHolder
|
|
||||||
from diffusers import DiffusionPipeline
|
|
||||||
|
|
||||||
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice.
|
|
||||||
pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
|
||||||
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16)
|
|
||||||
pipe.to('cuda')
|
|
||||||
dh = DiffusersHolder(pipe)
|
|
||||||
# %% Next let's set up all parameters
|
|
||||||
depth_strength = 0.55 # Specifies how deep (in terms of diffusion iterations the first branching happens)
|
|
||||||
t_compute_max_allowed = 60 # Determines the quality of the transition in terms of compute time you grant it
|
|
||||||
num_inference_steps = 50
|
|
||||||
size_output = (1024, 768)
|
|
||||||
|
|
||||||
prompt1 = "underwater landscape, fish, und the sea, incredible detail, high resolution"
|
|
||||||
prompt2 = "rendering of an alien planet, strange plants, strange creatures, surreal"
|
|
||||||
|
|
||||||
fp_movie = 'movie_example1.mp4'
|
|
||||||
duration_transition = 12 # In seconds
|
|
||||||
|
|
||||||
# Spawn latent blending
|
|
||||||
lb = LatentBlending(dh)
|
|
||||||
lb.set_prompt1(prompt1)
|
|
||||||
lb.set_prompt2(prompt2)
|
|
||||||
lb.set_dimensions(size_output)
|
|
||||||
|
|
||||||
# Run latent blending
|
|
||||||
lb.run_transition(
|
|
||||||
depth_strength=depth_strength,
|
|
||||||
num_inference_steps=num_inference_steps,
|
|
||||||
t_compute_max_allowed=t_compute_max_allowed)
|
|
||||||
|
|
||||||
# Save movie
|
|
||||||
lb.write_movie_transition(fp_movie, duration_transition)
|
|
|
@ -28,7 +28,7 @@ from huggingface_hub import hf_hub_download
|
||||||
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice.
|
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice.
|
||||||
pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||||
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16)
|
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16)
|
||||||
pipe.to('cuda:1')
|
pipe.to('cuda')
|
||||||
dh = DiffusersHolder(pipe)
|
dh = DiffusersHolder(pipe)
|
||||||
|
|
||||||
# %% Let's setup the multi transition
|
# %% Let's setup the multi transition
|
||||||
|
|
Loading…
Reference in New Issue