cleanup
This commit is contained in:
parent
04bcc5c938
commit
448078c8ae
|
@ -1,70 +0,0 @@
|
|||
model:
|
||||
base_learning_rate: 1.0e-04
|
||||
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||
params:
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: "jpg"
|
||||
cond_stage_key: "txt"
|
||||
image_size: 64
|
||||
channels: 4
|
||||
cond_stage_trainable: false # Note: different from the one we trained before
|
||||
conditioning_key: crossattn
|
||||
monitor: val/loss_simple_ema
|
||||
scale_factor: 0.18215
|
||||
use_ema: False
|
||||
|
||||
scheduler_config: # 10000 warmup steps
|
||||
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||
params:
|
||||
warm_up_steps: [ 10000 ]
|
||||
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||
f_start: [ 1.e-6 ]
|
||||
f_max: [ 1. ]
|
||||
f_min: [ 1. ]
|
||||
|
||||
unet_config:
|
||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
image_size: 32 # unused
|
||||
in_channels: 4
|
||||
out_channels: 4
|
||||
model_channels: 320
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
num_heads: 8
|
||||
use_spatial_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 768
|
||||
use_checkpoint: True
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult:
|
||||
- 1
|
||||
- 2
|
||||
- 4
|
||||
- 4
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: []
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
|
@ -1,68 +0,0 @@
|
|||
model:
|
||||
base_learning_rate: 1.0e-4
|
||||
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||
params:
|
||||
parameterization: "v"
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: "jpg"
|
||||
cond_stage_key: "txt"
|
||||
image_size: 64
|
||||
channels: 4
|
||||
cond_stage_trainable: false
|
||||
conditioning_key: crossattn
|
||||
monitor: val/loss_simple_ema
|
||||
scale_factor: 0.18215
|
||||
use_ema: False # we set this to false because this is an inference only config
|
||||
|
||||
unet_config:
|
||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
use_checkpoint: True
|
||||
use_fp16: True
|
||||
image_size: 32 # unused
|
||||
in_channels: 4
|
||||
out_channels: 4
|
||||
model_channels: 320
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
num_head_channels: 64 # need to fix for flash-attn
|
||||
use_spatial_transformer: True
|
||||
use_linear_in_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 1024
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
#attn_type: "vanilla-xformers"
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult:
|
||||
- 1
|
||||
- 2
|
||||
- 4
|
||||
- 4
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: []
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
||||
params:
|
||||
freeze: True
|
||||
layer: "penultimate"
|
|
@ -1,67 +0,0 @@
|
|||
model:
|
||||
base_learning_rate: 1.0e-4
|
||||
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||
params:
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: "jpg"
|
||||
cond_stage_key: "txt"
|
||||
image_size: 64
|
||||
channels: 4
|
||||
cond_stage_trainable: false
|
||||
conditioning_key: crossattn
|
||||
monitor: val/loss_simple_ema
|
||||
scale_factor: 0.18215
|
||||
use_ema: False # we set this to false because this is an inference only config
|
||||
|
||||
unet_config:
|
||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
use_checkpoint: True
|
||||
use_fp16: True
|
||||
image_size: 32 # unused
|
||||
in_channels: 4
|
||||
out_channels: 4
|
||||
model_channels: 320
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
num_head_channels: 64 # need to fix for flash-attn
|
||||
use_spatial_transformer: True
|
||||
use_linear_in_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 1024
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
#attn_type: "vanilla-xformers"
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult:
|
||||
- 1
|
||||
- 2
|
||||
- 4
|
||||
- 4
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: []
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
||||
params:
|
||||
freeze: True
|
||||
layer: "penultimate"
|
|
@ -1,158 +0,0 @@
|
|||
model:
|
||||
base_learning_rate: 5.0e-05
|
||||
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
|
||||
params:
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: "jpg"
|
||||
cond_stage_key: "txt"
|
||||
image_size: 64
|
||||
channels: 4
|
||||
cond_stage_trainable: false
|
||||
conditioning_key: hybrid
|
||||
scale_factor: 0.18215
|
||||
monitor: val/loss_simple_ema
|
||||
finetune_keys: null
|
||||
use_ema: False
|
||||
|
||||
unet_config:
|
||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
use_checkpoint: True
|
||||
image_size: 32 # unused
|
||||
in_channels: 9
|
||||
out_channels: 4
|
||||
model_channels: 320
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
num_head_channels: 64 # need to fix for flash-attn
|
||||
use_spatial_transformer: True
|
||||
use_linear_in_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 1024
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
#attn_type: "vanilla-xformers"
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult:
|
||||
- 1
|
||||
- 2
|
||||
- 4
|
||||
- 4
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: [ ]
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
||||
params:
|
||||
freeze: True
|
||||
layer: "penultimate"
|
||||
|
||||
|
||||
data:
|
||||
target: ldm.data.laion.WebDataModuleFromConfig
|
||||
params:
|
||||
tar_base: null # for concat as in LAION-A
|
||||
p_unsafe_threshold: 0.1
|
||||
filter_word_list: "data/filters.yaml"
|
||||
max_pwatermark: 0.45
|
||||
batch_size: 8
|
||||
num_workers: 6
|
||||
multinode: True
|
||||
min_size: 512
|
||||
train:
|
||||
shards:
|
||||
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-0/{00000..18699}.tar -"
|
||||
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-1/{00000..18699}.tar -"
|
||||
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-2/{00000..18699}.tar -"
|
||||
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-3/{00000..18699}.tar -"
|
||||
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-4/{00000..18699}.tar -" #{00000-94333}.tar"
|
||||
shuffle: 10000
|
||||
image_key: jpg
|
||||
image_transforms:
|
||||
- target: torchvision.transforms.Resize
|
||||
params:
|
||||
size: 512
|
||||
interpolation: 3
|
||||
- target: torchvision.transforms.RandomCrop
|
||||
params:
|
||||
size: 512
|
||||
postprocess:
|
||||
target: ldm.data.laion.AddMask
|
||||
params:
|
||||
mode: "512train-large"
|
||||
p_drop: 0.25
|
||||
# NOTE use enough shards to avoid empty validation loops in workers
|
||||
validation:
|
||||
shards:
|
||||
- "pipe:aws s3 cp s3://deep-floyd-s3/datasets/laion_cleaned-part5/{93001..94333}.tar - "
|
||||
shuffle: 0
|
||||
image_key: jpg
|
||||
image_transforms:
|
||||
- target: torchvision.transforms.Resize
|
||||
params:
|
||||
size: 512
|
||||
interpolation: 3
|
||||
- target: torchvision.transforms.CenterCrop
|
||||
params:
|
||||
size: 512
|
||||
postprocess:
|
||||
target: ldm.data.laion.AddMask
|
||||
params:
|
||||
mode: "512train-large"
|
||||
p_drop: 0.25
|
||||
|
||||
lightning:
|
||||
find_unused_parameters: True
|
||||
modelcheckpoint:
|
||||
params:
|
||||
every_n_train_steps: 5000
|
||||
|
||||
callbacks:
|
||||
metrics_over_trainsteps_checkpoint:
|
||||
params:
|
||||
every_n_train_steps: 10000
|
||||
|
||||
image_logger:
|
||||
target: main.ImageLogger
|
||||
params:
|
||||
enable_autocast: False
|
||||
disabled: False
|
||||
batch_frequency: 1000
|
||||
max_images: 4
|
||||
increase_log_steps: False
|
||||
log_first_step: False
|
||||
log_images_kwargs:
|
||||
use_ema_scope: False
|
||||
inpaint: False
|
||||
plot_progressive_rows: False
|
||||
plot_diffusion_rows: False
|
||||
N: 4
|
||||
unconditional_guidance_scale: 5.0
|
||||
unconditional_guidance_label: [""]
|
||||
ddim_steps: 50 # todo check these out for depth2img,
|
||||
ddim_eta: 0.0 # todo check these out for depth2img,
|
||||
|
||||
trainer:
|
||||
benchmark: True
|
||||
val_check_interval: 5000000
|
||||
num_sanity_val_steps: 0
|
||||
accumulate_grad_batches: 1
|
|
@ -1,74 +0,0 @@
|
|||
model:
|
||||
base_learning_rate: 5.0e-07
|
||||
target: ldm.models.diffusion.ddpm.LatentDepth2ImageDiffusion
|
||||
params:
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: "jpg"
|
||||
cond_stage_key: "txt"
|
||||
image_size: 64
|
||||
channels: 4
|
||||
cond_stage_trainable: false
|
||||
conditioning_key: hybrid
|
||||
scale_factor: 0.18215
|
||||
monitor: val/loss_simple_ema
|
||||
finetune_keys: null
|
||||
use_ema: False
|
||||
|
||||
depth_stage_config:
|
||||
target: ldm.modules.midas.api.MiDaSInference
|
||||
params:
|
||||
model_type: "dpt_hybrid"
|
||||
|
||||
unet_config:
|
||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
use_checkpoint: True
|
||||
image_size: 32 # unused
|
||||
in_channels: 5
|
||||
out_channels: 4
|
||||
model_channels: 320
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
num_head_channels: 64 # need to fix for flash-attn
|
||||
use_spatial_transformer: True
|
||||
use_linear_in_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 1024
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
#attn_type: "vanilla-xformers"
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult:
|
||||
- 1
|
||||
- 2
|
||||
- 4
|
||||
- 4
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: [ ]
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
||||
params:
|
||||
freeze: True
|
||||
layer: "penultimate"
|
||||
|
||||
|
|
@ -1,76 +0,0 @@
|
|||
model:
|
||||
base_learning_rate: 1.0e-04
|
||||
target: ldm.models.diffusion.ddpm.LatentUpscaleDiffusion
|
||||
params:
|
||||
parameterization: "v"
|
||||
low_scale_key: "lr"
|
||||
linear_start: 0.0001
|
||||
linear_end: 0.02
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: "jpg"
|
||||
cond_stage_key: "txt"
|
||||
image_size: 128
|
||||
channels: 4
|
||||
cond_stage_trainable: false
|
||||
conditioning_key: "hybrid-adm"
|
||||
monitor: val/loss_simple_ema
|
||||
scale_factor: 0.08333
|
||||
use_ema: False
|
||||
|
||||
low_scale_config:
|
||||
target: ldm.modules.diffusionmodules.upscaling.ImageConcatWithNoiseAugmentation
|
||||
params:
|
||||
noise_schedule_config: # image space
|
||||
linear_start: 0.0001
|
||||
linear_end: 0.02
|
||||
max_noise_level: 350
|
||||
|
||||
unet_config:
|
||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
use_checkpoint: True
|
||||
num_classes: 1000 # timesteps for noise conditioning (here constant, just need one)
|
||||
image_size: 128
|
||||
in_channels: 7
|
||||
out_channels: 4
|
||||
model_channels: 256
|
||||
attention_resolutions: [ 2,4,8]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 2, 4]
|
||||
disable_self_attentions: [True, True, True, False]
|
||||
disable_middle_self_attn: False
|
||||
num_heads: 8
|
||||
use_spatial_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 1024
|
||||
legacy: False
|
||||
use_linear_in_transformer: True
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
ddconfig:
|
||||
# attn_type: "vanilla-xformers" this model needs efficient attention to be feasible on HR data, also the decoder seems to break in half precision (UNet is fine though)
|
||||
double_z: True
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult: [ 1,2,4 ] # num_down = len(ch_mult)-1
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: [ ]
|
||||
dropout: 0.0
|
||||
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
||||
params:
|
||||
freeze: True
|
||||
layer: "penultimate"
|
||||
|
BIN
example3.jpg
BIN
example3.jpg
Binary file not shown.
Before Width: | Height: | Size: 213 KiB |
|
@ -1,65 +0,0 @@
|
|||
# Copyright 2022 Lunar Ring. All rights reserved.
|
||||
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.set_grad_enabled(False)
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore')
|
||||
import warnings
|
||||
from latent_blending import LatentBlending
|
||||
from stable_diffusion_holder import StableDiffusionHolder
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
# %% Define vars for low-resoltion pass
|
||||
prompt1 = "photo of mount vesuvius erupting a terrifying pyroclastic ash cloud"
|
||||
prompt2 = "photo of a inside a building full of ash, fire, death, destruction, explosions"
|
||||
fixed_seeds = [5054613, 1168652]
|
||||
|
||||
width = 512
|
||||
height = 384
|
||||
num_inference_steps_lores = 40
|
||||
nmb_max_branches_lores = 10
|
||||
depth_strength_lores = 0.5
|
||||
fp_ckpt_lores = hf_hub_download(repo_id="stabilityai/stable-diffusion-2-1-base", filename="v2-1_512-ema-pruned.ckpt")
|
||||
|
||||
# %% Define vars for high-resoltion pass
|
||||
fp_ckpt_hires = hf_hub_download(repo_id="stabilityai/stable-diffusion-x4-upscaler", filename="x4-upscaler-ema.ckpt")
|
||||
depth_strength_hires = 0.65
|
||||
num_inference_steps_hires = 100
|
||||
nmb_branches_final_hires = 6
|
||||
dp_imgs = "tmp_transition" # Folder for results and intermediate steps
|
||||
|
||||
|
||||
# %% Run low-res pass
|
||||
sdh = StableDiffusionHolder(fp_ckpt_lores)
|
||||
lb = LatentBlending(sdh)
|
||||
lb.set_prompt1(prompt1)
|
||||
lb.set_prompt2(prompt2)
|
||||
lb.set_width(width)
|
||||
lb.set_height(height)
|
||||
|
||||
# Run latent blending
|
||||
lb.run_transition(
|
||||
depth_strength=depth_strength_lores,
|
||||
nmb_max_branches=nmb_max_branches_lores,
|
||||
fixed_seeds=fixed_seeds)
|
||||
|
||||
lb.write_imgs_transition(dp_imgs)
|
||||
|
||||
# %% Run high-res pass
|
||||
sdh = StableDiffusionHolder(fp_ckpt_hires)
|
||||
lb = LatentBlending(sdh)
|
||||
lb.run_upscaling(dp_imgs, depth_strength_hires, num_inference_steps_hires, nmb_branches_final_hires)
|
|
@ -1,103 +0,0 @@
|
|||
# Copyright 2022 Lunar Ring. All rights reserved.
|
||||
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import torch
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.set_grad_enabled(False)
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore')
|
||||
import warnings
|
||||
from latent_blending import LatentBlending
|
||||
from stable_diffusion_holder import StableDiffusionHolder
|
||||
from movie_util import concatenate_movies
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
# %% Define vars for low-resoltion pass
|
||||
list_prompts = []
|
||||
list_prompts.append("surrealistic statue made of glitter and dirt, standing in a lake, atmospheric light, strange glow")
|
||||
list_prompts.append("statue of a mix between a tree and human, made of marble, incredibly detailed")
|
||||
list_prompts.append("weird statue of a frog monkey, many colors, standing next to the ruins of an ancient city")
|
||||
list_prompts.append("statue of a spider that looked like a human")
|
||||
list_prompts.append("statue of a bird that looked like a scorpion")
|
||||
list_prompts.append("statue of an ancient cybernetic messenger annoucing good news, golden, futuristic")
|
||||
|
||||
# You can optionally specify the seeds
|
||||
list_seeds = [954375479, 332539350, 956051013, 408831845, 250009012, 675588737]
|
||||
|
||||
width = 512
|
||||
height = 384
|
||||
duration_single_trans = 6
|
||||
num_inference_steps_lores = 40
|
||||
nmb_max_branches_lores = 10
|
||||
depth_strength_lores = 0.5
|
||||
|
||||
fp_ckpt_lores = hf_hub_download(repo_id="stabilityai/stable-diffusion-2-1-base", filename="v2-1_512-ema-pruned.ckpt")
|
||||
|
||||
# %% Define vars for high-resoltion pass
|
||||
fp_ckpt_hires = hf_hub_download(repo_id="stabilityai/stable-diffusion-x4-upscaler", filename="x4-upscaler-ema.ckpt")
|
||||
depth_strength_hires = 0.65
|
||||
num_inference_steps_hires = 100
|
||||
nmb_branches_final_hires = 6
|
||||
|
||||
# %% Run low-res pass
|
||||
sdh = StableDiffusionHolder(fp_ckpt_lores)
|
||||
t_compute_max_allowed = 12 # Per segment
|
||||
lb = LatentBlending(sdh)
|
||||
|
||||
list_movie_dirs = []
|
||||
for i in range(len(list_prompts) - 1):
|
||||
# For a multi transition we can save some computation time and recycle the latents
|
||||
if i == 0:
|
||||
lb.set_prompt1(list_prompts[i])
|
||||
lb.set_prompt2(list_prompts[i + 1])
|
||||
recycle_img1 = False
|
||||
else:
|
||||
lb.swap_forward()
|
||||
lb.set_prompt2(list_prompts[i + 1])
|
||||
recycle_img1 = True
|
||||
|
||||
dp_movie_part = f"tmp_part_{str(i).zfill(3)}"
|
||||
fp_movie_part = os.path.join(dp_movie_part, "movie_lowres.mp4")
|
||||
os.makedirs(dp_movie_part, exist_ok=True)
|
||||
fixed_seeds = list_seeds[i:i + 2]
|
||||
|
||||
# Run latent blending
|
||||
lb.run_transition(
|
||||
recycle_img1=recycle_img1,
|
||||
depth_strength=depth_strength_lores,
|
||||
nmb_max_branches=nmb_max_branches_lores,
|
||||
fixed_seeds=fixed_seeds)
|
||||
|
||||
# Save movie and images (needed for upscaling!)
|
||||
lb.write_movie_transition(fp_movie_part, duration_single_trans)
|
||||
lb.write_imgs_transition(dp_movie_part)
|
||||
list_movie_dirs.append(dp_movie_part)
|
||||
|
||||
# %% Run high-res pass on each segment
|
||||
sdh = StableDiffusionHolder(fp_ckpt_hires)
|
||||
lb = LatentBlending(sdh)
|
||||
for dp_part in list_movie_dirs:
|
||||
lb.run_upscaling(dp_part, depth_strength_hires, num_inference_steps_hires, nmb_branches_final_hires)
|
||||
|
||||
# %% concatenate into one long movie
|
||||
list_fp_movies = []
|
||||
for dp_part in list_movie_dirs:
|
||||
fp_movie = os.path.join(dp_part, "movie_highres.mp4")
|
||||
assert os.path.isfile(fp_movie)
|
||||
list_fp_movies.append(fp_movie)
|
||||
|
||||
fp_final = "example4.mp4"
|
||||
concatenate_movies(fp_final, list_fp_movies)
|
File diff suppressed because it is too large
Load Diff
|
@ -1,24 +0,0 @@
|
|||
import torch
|
||||
|
||||
from ldm.modules.midas.api import load_midas_transform
|
||||
|
||||
|
||||
class AddMiDaS(object):
|
||||
def __init__(self, model_type):
|
||||
super().__init__()
|
||||
self.transform = load_midas_transform(model_type)
|
||||
|
||||
def pt2np(self, x):
|
||||
x = ((x + 1.0) * .5).detach().cpu().numpy()
|
||||
return x
|
||||
|
||||
def np2pt(self, x):
|
||||
x = torch.from_numpy(x) * 2 - 1.
|
||||
return x
|
||||
|
||||
def __call__(self, sample):
|
||||
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
||||
x = self.pt2np(sample['jpg'])
|
||||
x = self.transform({"image": x})["image"]
|
||||
sample['midas_in'] = x
|
||||
return sample
|
|
@ -1,219 +0,0 @@
|
|||
import torch
|
||||
import pytorch_lightning as pl
|
||||
import torch.nn.functional as F
|
||||
from contextlib import contextmanager
|
||||
|
||||
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
||||
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
||||
|
||||
from ldm.util import instantiate_from_config
|
||||
from ldm.modules.ema import LitEma
|
||||
|
||||
|
||||
class AutoencoderKL(pl.LightningModule):
|
||||
def __init__(self,
|
||||
ddconfig,
|
||||
lossconfig,
|
||||
embed_dim,
|
||||
ckpt_path=None,
|
||||
ignore_keys=[],
|
||||
image_key="image",
|
||||
colorize_nlabels=None,
|
||||
monitor=None,
|
||||
ema_decay=None,
|
||||
learn_logvar=False
|
||||
):
|
||||
super().__init__()
|
||||
self.learn_logvar = learn_logvar
|
||||
self.image_key = image_key
|
||||
self.encoder = Encoder(**ddconfig)
|
||||
self.decoder = Decoder(**ddconfig)
|
||||
self.loss = instantiate_from_config(lossconfig)
|
||||
assert ddconfig["double_z"]
|
||||
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
||||
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
||||
self.embed_dim = embed_dim
|
||||
if colorize_nlabels is not None:
|
||||
assert type(colorize_nlabels)==int
|
||||
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
||||
if monitor is not None:
|
||||
self.monitor = monitor
|
||||
|
||||
self.use_ema = ema_decay is not None
|
||||
if self.use_ema:
|
||||
self.ema_decay = ema_decay
|
||||
assert 0. < ema_decay < 1.
|
||||
self.model_ema = LitEma(self, decay=ema_decay)
|
||||
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
||||
|
||||
if ckpt_path is not None:
|
||||
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
||||
|
||||
def init_from_ckpt(self, path, ignore_keys=list()):
|
||||
sd = torch.load(path, map_location="cpu")["state_dict"]
|
||||
keys = list(sd.keys())
|
||||
for k in keys:
|
||||
for ik in ignore_keys:
|
||||
if k.startswith(ik):
|
||||
print("Deleting key {} from state_dict.".format(k))
|
||||
del sd[k]
|
||||
self.load_state_dict(sd, strict=False)
|
||||
print(f"Restored from {path}")
|
||||
|
||||
@contextmanager
|
||||
def ema_scope(self, context=None):
|
||||
if self.use_ema:
|
||||
self.model_ema.store(self.parameters())
|
||||
self.model_ema.copy_to(self)
|
||||
if context is not None:
|
||||
print(f"{context}: Switched to EMA weights")
|
||||
try:
|
||||
yield None
|
||||
finally:
|
||||
if self.use_ema:
|
||||
self.model_ema.restore(self.parameters())
|
||||
if context is not None:
|
||||
print(f"{context}: Restored training weights")
|
||||
|
||||
def on_train_batch_end(self, *args, **kwargs):
|
||||
if self.use_ema:
|
||||
self.model_ema(self)
|
||||
|
||||
def encode(self, x):
|
||||
h = self.encoder(x)
|
||||
moments = self.quant_conv(h)
|
||||
posterior = DiagonalGaussianDistribution(moments)
|
||||
return posterior
|
||||
|
||||
def decode(self, z):
|
||||
z = self.post_quant_conv(z)
|
||||
dec = self.decoder(z)
|
||||
return dec
|
||||
|
||||
def forward(self, input, sample_posterior=True):
|
||||
posterior = self.encode(input)
|
||||
if sample_posterior:
|
||||
z = posterior.sample()
|
||||
else:
|
||||
z = posterior.mode()
|
||||
dec = self.decode(z)
|
||||
return dec, posterior
|
||||
|
||||
def get_input(self, batch, k):
|
||||
x = batch[k]
|
||||
if len(x.shape) == 3:
|
||||
x = x[..., None]
|
||||
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
||||
return x
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx):
|
||||
inputs = self.get_input(batch, self.image_key)
|
||||
reconstructions, posterior = self(inputs)
|
||||
|
||||
if optimizer_idx == 0:
|
||||
# train encoder+decoder+logvar
|
||||
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
||||
last_layer=self.get_last_layer(), split="train")
|
||||
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
||||
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
||||
return aeloss
|
||||
|
||||
if optimizer_idx == 1:
|
||||
# train the discriminator
|
||||
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
||||
last_layer=self.get_last_layer(), split="train")
|
||||
|
||||
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
||||
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
||||
return discloss
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
log_dict = self._validation_step(batch, batch_idx)
|
||||
with self.ema_scope():
|
||||
log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
|
||||
return log_dict
|
||||
|
||||
def _validation_step(self, batch, batch_idx, postfix=""):
|
||||
inputs = self.get_input(batch, self.image_key)
|
||||
reconstructions, posterior = self(inputs)
|
||||
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
||||
last_layer=self.get_last_layer(), split="val"+postfix)
|
||||
|
||||
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
||||
last_layer=self.get_last_layer(), split="val"+postfix)
|
||||
|
||||
self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
|
||||
self.log_dict(log_dict_ae)
|
||||
self.log_dict(log_dict_disc)
|
||||
return self.log_dict
|
||||
|
||||
def configure_optimizers(self):
|
||||
lr = self.learning_rate
|
||||
ae_params_list = list(self.encoder.parameters()) + list(self.decoder.parameters()) + list(
|
||||
self.quant_conv.parameters()) + list(self.post_quant_conv.parameters())
|
||||
if self.learn_logvar:
|
||||
print(f"{self.__class__.__name__}: Learning logvar")
|
||||
ae_params_list.append(self.loss.logvar)
|
||||
opt_ae = torch.optim.Adam(ae_params_list,
|
||||
lr=lr, betas=(0.5, 0.9))
|
||||
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
||||
lr=lr, betas=(0.5, 0.9))
|
||||
return [opt_ae, opt_disc], []
|
||||
|
||||
def get_last_layer(self):
|
||||
return self.decoder.conv_out.weight
|
||||
|
||||
@torch.no_grad()
|
||||
def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
|
||||
log = dict()
|
||||
x = self.get_input(batch, self.image_key)
|
||||
x = x.to(self.device)
|
||||
if not only_inputs:
|
||||
xrec, posterior = self(x)
|
||||
if x.shape[1] > 3:
|
||||
# colorize with random projection
|
||||
assert xrec.shape[1] > 3
|
||||
x = self.to_rgb(x)
|
||||
xrec = self.to_rgb(xrec)
|
||||
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
||||
log["reconstructions"] = xrec
|
||||
if log_ema or self.use_ema:
|
||||
with self.ema_scope():
|
||||
xrec_ema, posterior_ema = self(x)
|
||||
if x.shape[1] > 3:
|
||||
# colorize with random projection
|
||||
assert xrec_ema.shape[1] > 3
|
||||
xrec_ema = self.to_rgb(xrec_ema)
|
||||
log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample()))
|
||||
log["reconstructions_ema"] = xrec_ema
|
||||
log["inputs"] = x
|
||||
return log
|
||||
|
||||
def to_rgb(self, x):
|
||||
assert self.image_key == "segmentation"
|
||||
if not hasattr(self, "colorize"):
|
||||
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
||||
x = F.conv2d(x, weight=self.colorize)
|
||||
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
||||
return x
|
||||
|
||||
|
||||
class IdentityFirstStage(torch.nn.Module):
|
||||
def __init__(self, *args, vq_interface=False, **kwargs):
|
||||
self.vq_interface = vq_interface
|
||||
super().__init__()
|
||||
|
||||
def encode(self, x, *args, **kwargs):
|
||||
return x
|
||||
|
||||
def decode(self, x, *args, **kwargs):
|
||||
return x
|
||||
|
||||
def quantize(self, x, *args, **kwargs):
|
||||
if self.vq_interface:
|
||||
return x, None, [None, None, None]
|
||||
return x
|
||||
|
||||
def forward(self, x, *args, **kwargs):
|
||||
return x
|
||||
|
|
@ -1,336 +0,0 @@
|
|||
"""SAMPLING ONLY."""
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
|
||||
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
|
||||
|
||||
|
||||
class DDIMSampler(object):
|
||||
def __init__(self, model, schedule="linear", **kwargs):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.ddpm_num_timesteps = model.num_timesteps
|
||||
self.schedule = schedule
|
||||
|
||||
def register_buffer(self, name, attr):
|
||||
if type(attr) == torch.Tensor:
|
||||
if attr.device != torch.device("cuda"):
|
||||
attr = attr.to(torch.device("cuda"))
|
||||
setattr(self, name, attr)
|
||||
|
||||
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
||||
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
||||
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
||||
alphas_cumprod = self.model.alphas_cumprod
|
||||
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
||||
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
||||
|
||||
self.register_buffer('betas', to_torch(self.model.betas))
|
||||
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
||||
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
||||
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
||||
|
||||
# ddim sampling parameters
|
||||
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
||||
ddim_timesteps=self.ddim_timesteps,
|
||||
eta=ddim_eta,verbose=verbose)
|
||||
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
||||
self.register_buffer('ddim_alphas', ddim_alphas)
|
||||
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
||||
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
||||
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
||||
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
||||
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
||||
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample(self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.,
|
||||
noise_dropout=0.,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.,
|
||||
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
dynamic_threshold=None,
|
||||
ucg_schedule=None,
|
||||
**kwargs
|
||||
):
|
||||
if conditioning is not None:
|
||||
if isinstance(conditioning, dict):
|
||||
ctmp = conditioning[list(conditioning.keys())[0]]
|
||||
while isinstance(ctmp, list): ctmp = ctmp[0]
|
||||
cbs = ctmp.shape[0]
|
||||
if cbs != batch_size:
|
||||
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||
|
||||
elif isinstance(conditioning, list):
|
||||
for ctmp in conditioning:
|
||||
if ctmp.shape[0] != batch_size:
|
||||
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||
|
||||
else:
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
||||
|
||||
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
size = (batch_size, C, H, W)
|
||||
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
||||
|
||||
samples, intermediates = self.ddim_sampling(conditioning, size,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
mask=mask, x0=x0,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=noise_dropout,
|
||||
temperature=temperature,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
x_T=x_T,
|
||||
log_every_t=log_every_t,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
dynamic_threshold=dynamic_threshold,
|
||||
ucg_schedule=ucg_schedule
|
||||
)
|
||||
return samples, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def ddim_sampling(self, cond, shape,
|
||||
x_T=None, ddim_use_original_steps=False,
|
||||
callback=None, timesteps=None, quantize_denoised=False,
|
||||
mask=None, x0=None, img_callback=None, log_every_t=100,
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
|
||||
ucg_schedule=None):
|
||||
device = self.model.betas.device
|
||||
b = shape[0]
|
||||
if x_T is None:
|
||||
img = torch.randn(shape, device=device)
|
||||
else:
|
||||
img = x_T
|
||||
|
||||
if timesteps is None:
|
||||
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
||||
elif timesteps is not None and not ddim_use_original_steps:
|
||||
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
||||
timesteps = self.ddim_timesteps[:subset_end]
|
||||
|
||||
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
||||
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
||||
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||||
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
||||
|
||||
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
||||
|
||||
if mask is not None:
|
||||
assert x0 is not None
|
||||
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
||||
img = img_orig * mask + (1. - mask) * img
|
||||
|
||||
if ucg_schedule is not None:
|
||||
assert len(ucg_schedule) == len(time_range)
|
||||
unconditional_guidance_scale = ucg_schedule[i]
|
||||
|
||||
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
||||
quantize_denoised=quantize_denoised, temperature=temperature,
|
||||
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
dynamic_threshold=dynamic_threshold)
|
||||
img, pred_x0 = outs
|
||||
if callback: callback(i)
|
||||
if img_callback: img_callback(pred_x0, i)
|
||||
|
||||
if index % log_every_t == 0 or index == total_steps - 1:
|
||||
intermediates['x_inter'].append(img)
|
||||
intermediates['pred_x0'].append(pred_x0)
|
||||
|
||||
return img, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
||||
dynamic_threshold=None):
|
||||
b, *_, device = *x.shape, x.device
|
||||
|
||||
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
||||
model_output = self.model.apply_model(x, t, c)
|
||||
else:
|
||||
x_in = torch.cat([x] * 2)
|
||||
t_in = torch.cat([t] * 2)
|
||||
if isinstance(c, dict):
|
||||
assert isinstance(unconditional_conditioning, dict)
|
||||
c_in = dict()
|
||||
for k in c:
|
||||
if isinstance(c[k], list):
|
||||
c_in[k] = [torch.cat([
|
||||
unconditional_conditioning[k][i],
|
||||
c[k][i]]) for i in range(len(c[k]))]
|
||||
else:
|
||||
c_in[k] = torch.cat([
|
||||
unconditional_conditioning[k],
|
||||
c[k]])
|
||||
elif isinstance(c, list):
|
||||
c_in = list()
|
||||
assert isinstance(unconditional_conditioning, list)
|
||||
for i in range(len(c)):
|
||||
c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
|
||||
else:
|
||||
c_in = torch.cat([unconditional_conditioning, c])
|
||||
model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
||||
model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
|
||||
|
||||
if self.model.parameterization == "v":
|
||||
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
|
||||
else:
|
||||
e_t = model_output
|
||||
|
||||
if score_corrector is not None:
|
||||
assert self.model.parameterization == "eps", 'not implemented'
|
||||
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
||||
|
||||
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
||||
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
||||
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
||||
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
||||
# select parameters corresponding to the currently considered timestep
|
||||
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
||||
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
||||
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
||||
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
||||
|
||||
# current prediction for x_0
|
||||
if self.model.parameterization != "v":
|
||||
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||
else:
|
||||
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
|
||||
|
||||
if quantize_denoised:
|
||||
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||
|
||||
if dynamic_threshold is not None:
|
||||
raise NotImplementedError()
|
||||
|
||||
# direction pointing to x_t
|
||||
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
||||
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||
if noise_dropout > 0.:
|
||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||
return x_prev, pred_x0
|
||||
|
||||
@torch.no_grad()
|
||||
def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
|
||||
unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
|
||||
num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
|
||||
|
||||
assert t_enc <= num_reference_steps
|
||||
num_steps = t_enc
|
||||
|
||||
if use_original_steps:
|
||||
alphas_next = self.alphas_cumprod[:num_steps]
|
||||
alphas = self.alphas_cumprod_prev[:num_steps]
|
||||
else:
|
||||
alphas_next = self.ddim_alphas[:num_steps]
|
||||
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
|
||||
|
||||
x_next = x0
|
||||
intermediates = []
|
||||
inter_steps = []
|
||||
for i in tqdm(range(num_steps), desc='Encoding Image'):
|
||||
t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
|
||||
if unconditional_guidance_scale == 1.:
|
||||
noise_pred = self.model.apply_model(x_next, t, c)
|
||||
else:
|
||||
assert unconditional_conditioning is not None
|
||||
e_t_uncond, noise_pred = torch.chunk(
|
||||
self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
|
||||
torch.cat((unconditional_conditioning, c))), 2)
|
||||
noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
|
||||
|
||||
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
|
||||
weighted_noise_pred = alphas_next[i].sqrt() * (
|
||||
(1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
|
||||
x_next = xt_weighted + weighted_noise_pred
|
||||
if return_intermediates and i % (
|
||||
num_steps // return_intermediates) == 0 and i < num_steps - 1:
|
||||
intermediates.append(x_next)
|
||||
inter_steps.append(i)
|
||||
elif return_intermediates and i >= num_steps - 2:
|
||||
intermediates.append(x_next)
|
||||
inter_steps.append(i)
|
||||
if callback: callback(i)
|
||||
|
||||
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
|
||||
if return_intermediates:
|
||||
out.update({'intermediates': intermediates})
|
||||
return x_next, out
|
||||
|
||||
@torch.no_grad()
|
||||
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
||||
# fast, but does not allow for exact reconstruction
|
||||
# t serves as an index to gather the correct alphas
|
||||
if use_original_steps:
|
||||
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
||||
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
||||
else:
|
||||
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
||||
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
||||
|
||||
if noise is None:
|
||||
noise = torch.randn_like(x0)
|
||||
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
||||
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
||||
|
||||
@torch.no_grad()
|
||||
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
||||
use_original_steps=False, callback=None):
|
||||
|
||||
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
||||
timesteps = timesteps[:t_start]
|
||||
|
||||
time_range = np.flip(timesteps)
|
||||
total_steps = timesteps.shape[0]
|
||||
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
||||
|
||||
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
||||
x_dec = x_latent
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
||||
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning)
|
||||
if callback: callback(i)
|
||||
return x_dec
|
File diff suppressed because it is too large
Load Diff
|
@ -1 +0,0 @@
|
|||
from .sampler import DPMSolverSampler
|
File diff suppressed because it is too large
Load Diff
|
@ -1,87 +0,0 @@
|
|||
"""SAMPLING ONLY."""
|
||||
import torch
|
||||
|
||||
from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
|
||||
|
||||
|
||||
MODEL_TYPES = {
|
||||
"eps": "noise",
|
||||
"v": "v"
|
||||
}
|
||||
|
||||
|
||||
class DPMSolverSampler(object):
|
||||
def __init__(self, model, **kwargs):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
|
||||
self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
|
||||
|
||||
def register_buffer(self, name, attr):
|
||||
if type(attr) == torch.Tensor:
|
||||
if attr.device != torch.device("cuda"):
|
||||
attr = attr.to(torch.device("cuda"))
|
||||
setattr(self, name, attr)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample(self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.,
|
||||
noise_dropout=0.,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.,
|
||||
unconditional_conditioning=None,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
**kwargs
|
||||
):
|
||||
if conditioning is not None:
|
||||
if isinstance(conditioning, dict):
|
||||
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
||||
if cbs != batch_size:
|
||||
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||
else:
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
||||
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
size = (batch_size, C, H, W)
|
||||
|
||||
print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')
|
||||
|
||||
device = self.model.betas.device
|
||||
if x_T is None:
|
||||
img = torch.randn(size, device=device)
|
||||
else:
|
||||
img = x_T
|
||||
|
||||
ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
|
||||
|
||||
model_fn = model_wrapper(
|
||||
lambda x, t, c: self.model.apply_model(x, t, c),
|
||||
ns,
|
||||
model_type=MODEL_TYPES[self.model.parameterization],
|
||||
guidance_type="classifier-free",
|
||||
condition=conditioning,
|
||||
unconditional_condition=unconditional_conditioning,
|
||||
guidance_scale=unconditional_guidance_scale,
|
||||
)
|
||||
|
||||
dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
|
||||
x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True)
|
||||
|
||||
return x.to(device), None
|
|
@ -1,244 +0,0 @@
|
|||
"""SAMPLING ONLY."""
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
from functools import partial
|
||||
|
||||
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
||||
from ldm.models.diffusion.sampling_util import norm_thresholding
|
||||
|
||||
|
||||
class PLMSSampler(object):
|
||||
def __init__(self, model, schedule="linear", **kwargs):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.ddpm_num_timesteps = model.num_timesteps
|
||||
self.schedule = schedule
|
||||
|
||||
def register_buffer(self, name, attr):
|
||||
if type(attr) == torch.Tensor:
|
||||
if attr.device != torch.device("cuda"):
|
||||
attr = attr.to(torch.device("cuda"))
|
||||
setattr(self, name, attr)
|
||||
|
||||
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
||||
if ddim_eta != 0:
|
||||
raise ValueError('ddim_eta must be 0 for PLMS')
|
||||
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
||||
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
||||
alphas_cumprod = self.model.alphas_cumprod
|
||||
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
||||
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
||||
|
||||
self.register_buffer('betas', to_torch(self.model.betas))
|
||||
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
||||
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
||||
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
||||
|
||||
# ddim sampling parameters
|
||||
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
||||
ddim_timesteps=self.ddim_timesteps,
|
||||
eta=ddim_eta,verbose=verbose)
|
||||
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
||||
self.register_buffer('ddim_alphas', ddim_alphas)
|
||||
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
||||
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
||||
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
||||
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
||||
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
||||
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample(self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.,
|
||||
noise_dropout=0.,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.,
|
||||
unconditional_conditioning=None,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
dynamic_threshold=None,
|
||||
**kwargs
|
||||
):
|
||||
if conditioning is not None:
|
||||
if isinstance(conditioning, dict):
|
||||
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
||||
if cbs != batch_size:
|
||||
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||
else:
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
||||
|
||||
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
size = (batch_size, C, H, W)
|
||||
print(f'Data shape for PLMS sampling is {size}')
|
||||
|
||||
samples, intermediates = self.plms_sampling(conditioning, size,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
mask=mask, x0=x0,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=noise_dropout,
|
||||
temperature=temperature,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
x_T=x_T,
|
||||
log_every_t=log_every_t,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
dynamic_threshold=dynamic_threshold,
|
||||
)
|
||||
return samples, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def plms_sampling(self, cond, shape,
|
||||
x_T=None, ddim_use_original_steps=False,
|
||||
callback=None, timesteps=None, quantize_denoised=False,
|
||||
mask=None, x0=None, img_callback=None, log_every_t=100,
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
||||
dynamic_threshold=None):
|
||||
device = self.model.betas.device
|
||||
b = shape[0]
|
||||
if x_T is None:
|
||||
img = torch.randn(shape, device=device)
|
||||
else:
|
||||
img = x_T
|
||||
|
||||
if timesteps is None:
|
||||
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
||||
elif timesteps is not None and not ddim_use_original_steps:
|
||||
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
||||
timesteps = self.ddim_timesteps[:subset_end]
|
||||
|
||||
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
||||
time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
|
||||
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||||
print(f"Running PLMS Sampling with {total_steps} timesteps")
|
||||
|
||||
iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
|
||||
old_eps = []
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
||||
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
|
||||
|
||||
if mask is not None:
|
||||
assert x0 is not None
|
||||
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
||||
img = img_orig * mask + (1. - mask) * img
|
||||
|
||||
outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
||||
quantize_denoised=quantize_denoised, temperature=temperature,
|
||||
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
old_eps=old_eps, t_next=ts_next,
|
||||
dynamic_threshold=dynamic_threshold)
|
||||
img, pred_x0, e_t = outs
|
||||
old_eps.append(e_t)
|
||||
if len(old_eps) >= 4:
|
||||
old_eps.pop(0)
|
||||
if callback: callback(i)
|
||||
if img_callback: img_callback(pred_x0, i)
|
||||
|
||||
if index % log_every_t == 0 or index == total_steps - 1:
|
||||
intermediates['x_inter'].append(img)
|
||||
intermediates['pred_x0'].append(pred_x0)
|
||||
|
||||
return img, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
|
||||
dynamic_threshold=None):
|
||||
b, *_, device = *x.shape, x.device
|
||||
|
||||
def get_model_output(x, t):
|
||||
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
||||
e_t = self.model.apply_model(x, t, c)
|
||||
else:
|
||||
x_in = torch.cat([x] * 2)
|
||||
t_in = torch.cat([t] * 2)
|
||||
c_in = torch.cat([unconditional_conditioning, c])
|
||||
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
||||
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
||||
|
||||
if score_corrector is not None:
|
||||
assert self.model.parameterization == "eps"
|
||||
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
||||
|
||||
return e_t
|
||||
|
||||
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
||||
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
||||
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
||||
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
||||
|
||||
def get_x_prev_and_pred_x0(e_t, index):
|
||||
# select parameters corresponding to the currently considered timestep
|
||||
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
||||
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
||||
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
||||
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
||||
|
||||
# current prediction for x_0
|
||||
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||
if quantize_denoised:
|
||||
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||
if dynamic_threshold is not None:
|
||||
pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
|
||||
# direction pointing to x_t
|
||||
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
||||
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||
if noise_dropout > 0.:
|
||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||
return x_prev, pred_x0
|
||||
|
||||
e_t = get_model_output(x, t)
|
||||
if len(old_eps) == 0:
|
||||
# Pseudo Improved Euler (2nd order)
|
||||
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
||||
e_t_next = get_model_output(x_prev, t_next)
|
||||
e_t_prime = (e_t + e_t_next) / 2
|
||||
elif len(old_eps) == 1:
|
||||
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
||||
elif len(old_eps) == 2:
|
||||
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
||||
elif len(old_eps) >= 3:
|
||||
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
|
||||
|
||||
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
||||
|
||||
return x_prev, pred_x0, e_t
|
|
@ -1,22 +0,0 @@
|
|||
import torch
|
||||
import numpy as np
|
||||
|
||||
|
||||
def append_dims(x, target_dims):
|
||||
"""Appends dimensions to the end of a tensor until it has target_dims dimensions.
|
||||
From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
|
||||
dims_to_append = target_dims - x.ndim
|
||||
if dims_to_append < 0:
|
||||
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
|
||||
return x[(...,) + (None,) * dims_to_append]
|
||||
|
||||
|
||||
def norm_thresholding(x0, value):
|
||||
s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
|
||||
return x0 * (value / s)
|
||||
|
||||
|
||||
def spatial_norm_thresholding(x0, value):
|
||||
# b c h w
|
||||
s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
|
||||
return x0 * (value / s)
|
|
@ -1,341 +0,0 @@
|
|||
from inspect import isfunction
|
||||
import math
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn, einsum
|
||||
from einops import rearrange, repeat
|
||||
from typing import Optional, Any
|
||||
|
||||
from ldm.modules.diffusionmodules.util import checkpoint
|
||||
|
||||
|
||||
try:
|
||||
import xformers
|
||||
import xformers.ops
|
||||
XFORMERS_IS_AVAILBLE = True
|
||||
except:
|
||||
XFORMERS_IS_AVAILBLE = False
|
||||
|
||||
# CrossAttn precision handling
|
||||
import os
|
||||
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
|
||||
def uniq(arr):
|
||||
return{el: True for el in arr}.keys()
|
||||
|
||||
|
||||
def default(val, d):
|
||||
if exists(val):
|
||||
return val
|
||||
return d() if isfunction(d) else d
|
||||
|
||||
|
||||
def max_neg_value(t):
|
||||
return -torch.finfo(t.dtype).max
|
||||
|
||||
|
||||
def init_(tensor):
|
||||
dim = tensor.shape[-1]
|
||||
std = 1 / math.sqrt(dim)
|
||||
tensor.uniform_(-std, std)
|
||||
return tensor
|
||||
|
||||
|
||||
# feedforward
|
||||
class GEGLU(nn.Module):
|
||||
def __init__(self, dim_in, dim_out):
|
||||
super().__init__()
|
||||
self.proj = nn.Linear(dim_in, dim_out * 2)
|
||||
|
||||
def forward(self, x):
|
||||
x, gate = self.proj(x).chunk(2, dim=-1)
|
||||
return x * F.gelu(gate)
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
||||
super().__init__()
|
||||
inner_dim = int(dim * mult)
|
||||
dim_out = default(dim_out, dim)
|
||||
project_in = nn.Sequential(
|
||||
nn.Linear(dim, inner_dim),
|
||||
nn.GELU()
|
||||
) if not glu else GEGLU(dim, inner_dim)
|
||||
|
||||
self.net = nn.Sequential(
|
||||
project_in,
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(inner_dim, dim_out)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
|
||||
def zero_module(module):
|
||||
"""
|
||||
Zero out the parameters of a module and return it.
|
||||
"""
|
||||
for p in module.parameters():
|
||||
p.detach().zero_()
|
||||
return module
|
||||
|
||||
|
||||
def Normalize(in_channels):
|
||||
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
|
||||
|
||||
class SpatialSelfAttention(nn.Module):
|
||||
def __init__(self, in_channels):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm = Normalize(in_channels)
|
||||
self.q = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.k = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.v = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.proj_out = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
|
||||
def forward(self, x):
|
||||
h_ = x
|
||||
h_ = self.norm(h_)
|
||||
q = self.q(h_)
|
||||
k = self.k(h_)
|
||||
v = self.v(h_)
|
||||
|
||||
# compute attention
|
||||
b,c,h,w = q.shape
|
||||
q = rearrange(q, 'b c h w -> b (h w) c')
|
||||
k = rearrange(k, 'b c h w -> b c (h w)')
|
||||
w_ = torch.einsum('bij,bjk->bik', q, k)
|
||||
|
||||
w_ = w_ * (int(c)**(-0.5))
|
||||
w_ = torch.nn.functional.softmax(w_, dim=2)
|
||||
|
||||
# attend to values
|
||||
v = rearrange(v, 'b c h w -> b c (h w)')
|
||||
w_ = rearrange(w_, 'b i j -> b j i')
|
||||
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
||||
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
||||
h_ = self.proj_out(h_)
|
||||
|
||||
return x+h_
|
||||
|
||||
|
||||
class CrossAttention(nn.Module):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = default(context_dim, query_dim)
|
||||
|
||||
self.scale = dim_head ** -0.5
|
||||
self.heads = heads
|
||||
|
||||
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
||||
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
||||
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(inner_dim, query_dim),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
def forward(self, x, context=None, mask=None):
|
||||
h = self.heads
|
||||
|
||||
q = self.to_q(x)
|
||||
context = default(context, x)
|
||||
k = self.to_k(context)
|
||||
v = self.to_v(context)
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
||||
|
||||
# force cast to fp32 to avoid overflowing
|
||||
if _ATTN_PRECISION =="fp32":
|
||||
with torch.autocast(enabled=False, device_type = 'cuda'):
|
||||
q, k = q.float(), k.float()
|
||||
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
||||
else:
|
||||
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
||||
|
||||
del q, k
|
||||
|
||||
if exists(mask):
|
||||
mask = rearrange(mask, 'b ... -> b (...)')
|
||||
max_neg_value = -torch.finfo(sim.dtype).max
|
||||
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
||||
sim.masked_fill_(~mask, max_neg_value)
|
||||
|
||||
# attention, what we cannot get enough of
|
||||
sim = sim.softmax(dim=-1)
|
||||
|
||||
out = einsum('b i j, b j d -> b i d', sim, v)
|
||||
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
||||
return self.to_out(out)
|
||||
|
||||
|
||||
class MemoryEfficientCrossAttention(nn.Module):
|
||||
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
|
||||
super().__init__()
|
||||
print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
|
||||
f"{heads} heads.")
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = default(context_dim, query_dim)
|
||||
|
||||
self.heads = heads
|
||||
self.dim_head = dim_head
|
||||
|
||||
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
||||
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
||||
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
||||
|
||||
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
||||
self.attention_op: Optional[Any] = None
|
||||
|
||||
def forward(self, x, context=None, mask=None):
|
||||
q = self.to_q(x)
|
||||
context = default(context, x)
|
||||
k = self.to_k(context)
|
||||
v = self.to_v(context)
|
||||
|
||||
b, _, _ = q.shape
|
||||
q, k, v = map(
|
||||
lambda t: t.unsqueeze(3)
|
||||
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
||||
.contiguous(),
|
||||
(q, k, v),
|
||||
)
|
||||
|
||||
# actually compute the attention, what we cannot get enough of
|
||||
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
|
||||
|
||||
if exists(mask):
|
||||
raise NotImplementedError
|
||||
out = (
|
||||
out.unsqueeze(0)
|
||||
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
||||
)
|
||||
return self.to_out(out)
|
||||
|
||||
|
||||
class BasicTransformerBlock(nn.Module):
|
||||
ATTENTION_MODES = {
|
||||
"softmax": CrossAttention, # vanilla attention
|
||||
"softmax-xformers": MemoryEfficientCrossAttention
|
||||
}
|
||||
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
|
||||
disable_self_attn=False):
|
||||
super().__init__()
|
||||
attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
|
||||
assert attn_mode in self.ATTENTION_MODES
|
||||
attn_cls = self.ATTENTION_MODES[attn_mode]
|
||||
self.disable_self_attn = disable_self_attn
|
||||
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
||||
context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
|
||||
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
||||
self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim,
|
||||
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
|
||||
self.norm1 = nn.LayerNorm(dim)
|
||||
self.norm2 = nn.LayerNorm(dim)
|
||||
self.norm3 = nn.LayerNorm(dim)
|
||||
self.checkpoint = checkpoint
|
||||
|
||||
def forward(self, x, context=None):
|
||||
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
||||
|
||||
def _forward(self, x, context=None):
|
||||
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
|
||||
x = self.attn2(self.norm2(x), context=context) + x
|
||||
x = self.ff(self.norm3(x)) + x
|
||||
return x
|
||||
|
||||
|
||||
class SpatialTransformer(nn.Module):
|
||||
"""
|
||||
Transformer block for image-like data.
|
||||
First, project the input (aka embedding)
|
||||
and reshape to b, t, d.
|
||||
Then apply standard transformer action.
|
||||
Finally, reshape to image
|
||||
NEW: use_linear for more efficiency instead of the 1x1 convs
|
||||
"""
|
||||
def __init__(self, in_channels, n_heads, d_head,
|
||||
depth=1, dropout=0., context_dim=None,
|
||||
disable_self_attn=False, use_linear=False,
|
||||
use_checkpoint=True):
|
||||
super().__init__()
|
||||
if exists(context_dim) and not isinstance(context_dim, list):
|
||||
context_dim = [context_dim]
|
||||
self.in_channels = in_channels
|
||||
inner_dim = n_heads * d_head
|
||||
self.norm = Normalize(in_channels)
|
||||
if not use_linear:
|
||||
self.proj_in = nn.Conv2d(in_channels,
|
||||
inner_dim,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
else:
|
||||
self.proj_in = nn.Linear(in_channels, inner_dim)
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
|
||||
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
|
||||
for d in range(depth)]
|
||||
)
|
||||
if not use_linear:
|
||||
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0))
|
||||
else:
|
||||
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
||||
self.use_linear = use_linear
|
||||
|
||||
def forward(self, x, context=None):
|
||||
# note: if no context is given, cross-attention defaults to self-attention
|
||||
if not isinstance(context, list):
|
||||
context = [context]
|
||||
b, c, h, w = x.shape
|
||||
x_in = x
|
||||
x = self.norm(x)
|
||||
if not self.use_linear:
|
||||
x = self.proj_in(x)
|
||||
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
||||
if self.use_linear:
|
||||
x = self.proj_in(x)
|
||||
for i, block in enumerate(self.transformer_blocks):
|
||||
x = block(x, context=context[i])
|
||||
if self.use_linear:
|
||||
x = self.proj_out(x)
|
||||
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
||||
if not self.use_linear:
|
||||
x = self.proj_out(x)
|
||||
return x + x_in
|
||||
|
|
@ -1,852 +0,0 @@
|
|||
# pytorch_diffusion + derived encoder decoder
|
||||
import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from einops import rearrange
|
||||
from typing import Optional, Any
|
||||
|
||||
from ldm.modules.attention import MemoryEfficientCrossAttention
|
||||
|
||||
try:
|
||||
import xformers
|
||||
import xformers.ops
|
||||
XFORMERS_IS_AVAILBLE = True
|
||||
except:
|
||||
XFORMERS_IS_AVAILBLE = False
|
||||
print("No module 'xformers'. Proceeding without it.")
|
||||
|
||||
|
||||
def get_timestep_embedding(timesteps, embedding_dim):
|
||||
"""
|
||||
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
||||
From Fairseq.
|
||||
Build sinusoidal embeddings.
|
||||
This matches the implementation in tensor2tensor, but differs slightly
|
||||
from the description in Section 3.5 of "Attention Is All You Need".
|
||||
"""
|
||||
assert len(timesteps.shape) == 1
|
||||
|
||||
half_dim = embedding_dim // 2
|
||||
emb = math.log(10000) / (half_dim - 1)
|
||||
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
||||
emb = emb.to(device=timesteps.device)
|
||||
emb = timesteps.float()[:, None] * emb[None, :]
|
||||
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
||||
if embedding_dim % 2 == 1: # zero pad
|
||||
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
||||
return emb
|
||||
|
||||
|
||||
def nonlinearity(x):
|
||||
# swish
|
||||
return x*torch.sigmoid(x)
|
||||
|
||||
|
||||
def Normalize(in_channels, num_groups=32):
|
||||
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
self.conv = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
||||
if self.with_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
# no asymmetric padding in torch conv, must do it ourselves
|
||||
self.conv = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=0)
|
||||
|
||||
def forward(self, x):
|
||||
if self.with_conv:
|
||||
pad = (0,1,0,1)
|
||||
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
||||
x = self.conv(x)
|
||||
else:
|
||||
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
||||
return x
|
||||
|
||||
|
||||
class ResnetBlock(nn.Module):
|
||||
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
||||
dropout, temb_channels=512):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
out_channels = in_channels if out_channels is None else out_channels
|
||||
self.out_channels = out_channels
|
||||
self.use_conv_shortcut = conv_shortcut
|
||||
|
||||
self.norm1 = Normalize(in_channels)
|
||||
self.conv1 = torch.nn.Conv2d(in_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
if temb_channels > 0:
|
||||
self.temb_proj = torch.nn.Linear(temb_channels,
|
||||
out_channels)
|
||||
self.norm2 = Normalize(out_channels)
|
||||
self.dropout = torch.nn.Dropout(dropout)
|
||||
self.conv2 = torch.nn.Conv2d(out_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
if self.in_channels != self.out_channels:
|
||||
if self.use_conv_shortcut:
|
||||
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
else:
|
||||
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
||||
out_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
|
||||
def forward(self, x, temb):
|
||||
h = x
|
||||
h = self.norm1(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv1(h)
|
||||
|
||||
if temb is not None:
|
||||
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
||||
|
||||
h = self.norm2(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.dropout(h)
|
||||
h = self.conv2(h)
|
||||
|
||||
if self.in_channels != self.out_channels:
|
||||
if self.use_conv_shortcut:
|
||||
x = self.conv_shortcut(x)
|
||||
else:
|
||||
x = self.nin_shortcut(x)
|
||||
|
||||
return x+h
|
||||
|
||||
|
||||
class AttnBlock(nn.Module):
|
||||
def __init__(self, in_channels):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm = Normalize(in_channels)
|
||||
self.q = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.k = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.v = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.proj_out = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
|
||||
def forward(self, x):
|
||||
h_ = x
|
||||
h_ = self.norm(h_)
|
||||
q = self.q(h_)
|
||||
k = self.k(h_)
|
||||
v = self.v(h_)
|
||||
|
||||
# compute attention
|
||||
b,c,h,w = q.shape
|
||||
q = q.reshape(b,c,h*w)
|
||||
q = q.permute(0,2,1) # b,hw,c
|
||||
k = k.reshape(b,c,h*w) # b,c,hw
|
||||
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
||||
w_ = w_ * (int(c)**(-0.5))
|
||||
w_ = torch.nn.functional.softmax(w_, dim=2)
|
||||
|
||||
# attend to values
|
||||
v = v.reshape(b,c,h*w)
|
||||
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
||||
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
||||
h_ = h_.reshape(b,c,h,w)
|
||||
|
||||
h_ = self.proj_out(h_)
|
||||
|
||||
return x+h_
|
||||
|
||||
class MemoryEfficientAttnBlock(nn.Module):
|
||||
"""
|
||||
Uses xformers efficient implementation,
|
||||
see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
||||
Note: this is a single-head self-attention operation
|
||||
"""
|
||||
#
|
||||
def __init__(self, in_channels):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm = Normalize(in_channels)
|
||||
self.q = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.k = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.v = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.proj_out = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.attention_op: Optional[Any] = None
|
||||
|
||||
def forward(self, x):
|
||||
h_ = x
|
||||
h_ = self.norm(h_)
|
||||
q = self.q(h_)
|
||||
k = self.k(h_)
|
||||
v = self.v(h_)
|
||||
|
||||
# compute attention
|
||||
B, C, H, W = q.shape
|
||||
q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))
|
||||
|
||||
q, k, v = map(
|
||||
lambda t: t.unsqueeze(3)
|
||||
.reshape(B, t.shape[1], 1, C)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(B * 1, t.shape[1], C)
|
||||
.contiguous(),
|
||||
(q, k, v),
|
||||
)
|
||||
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
|
||||
|
||||
out = (
|
||||
out.unsqueeze(0)
|
||||
.reshape(B, 1, out.shape[1], C)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(B, out.shape[1], C)
|
||||
)
|
||||
out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
|
||||
out = self.proj_out(out)
|
||||
return x+out
|
||||
|
||||
|
||||
class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
|
||||
def forward(self, x, context=None, mask=None):
|
||||
b, c, h, w = x.shape
|
||||
x = rearrange(x, 'b c h w -> b (h w) c')
|
||||
out = super().forward(x, context=context, mask=mask)
|
||||
out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c)
|
||||
return x + out
|
||||
|
||||
|
||||
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
||||
assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown'
|
||||
if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
|
||||
attn_type = "vanilla-xformers"
|
||||
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
||||
if attn_type == "vanilla":
|
||||
assert attn_kwargs is None
|
||||
return AttnBlock(in_channels)
|
||||
elif attn_type == "vanilla-xformers":
|
||||
print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
|
||||
return MemoryEfficientAttnBlock(in_channels)
|
||||
elif type == "memory-efficient-cross-attn":
|
||||
attn_kwargs["query_dim"] = in_channels
|
||||
return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
|
||||
elif attn_type == "none":
|
||||
return nn.Identity(in_channels)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
||||
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
||||
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
|
||||
super().__init__()
|
||||
if use_linear_attn: attn_type = "linear"
|
||||
self.ch = ch
|
||||
self.temb_ch = self.ch*4
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.use_timestep = use_timestep
|
||||
if self.use_timestep:
|
||||
# timestep embedding
|
||||
self.temb = nn.Module()
|
||||
self.temb.dense = nn.ModuleList([
|
||||
torch.nn.Linear(self.ch,
|
||||
self.temb_ch),
|
||||
torch.nn.Linear(self.temb_ch,
|
||||
self.temb_ch),
|
||||
])
|
||||
|
||||
# downsampling
|
||||
self.conv_in = torch.nn.Conv2d(in_channels,
|
||||
self.ch,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
|
||||
curr_res = resolution
|
||||
in_ch_mult = (1,)+tuple(ch_mult)
|
||||
self.down = nn.ModuleList()
|
||||
for i_level in range(self.num_resolutions):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_in = ch*in_ch_mult[i_level]
|
||||
block_out = ch*ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks):
|
||||
block.append(ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout))
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(make_attn(block_in, attn_type=attn_type))
|
||||
down = nn.Module()
|
||||
down.block = block
|
||||
down.attn = attn
|
||||
if i_level != self.num_resolutions-1:
|
||||
down.downsample = Downsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res // 2
|
||||
self.down.append(down)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout)
|
||||
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout)
|
||||
|
||||
# upsampling
|
||||
self.up = nn.ModuleList()
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_out = ch*ch_mult[i_level]
|
||||
skip_in = ch*ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks+1):
|
||||
if i_block == self.num_res_blocks:
|
||||
skip_in = ch*in_ch_mult[i_level]
|
||||
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout))
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(make_attn(block_in, attn_type=attn_type))
|
||||
up = nn.Module()
|
||||
up.block = block
|
||||
up.attn = attn
|
||||
if i_level != 0:
|
||||
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res * 2
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(block_in,
|
||||
out_ch,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
|
||||
def forward(self, x, t=None, context=None):
|
||||
#assert x.shape[2] == x.shape[3] == self.resolution
|
||||
if context is not None:
|
||||
# assume aligned context, cat along channel axis
|
||||
x = torch.cat((x, context), dim=1)
|
||||
if self.use_timestep:
|
||||
# timestep embedding
|
||||
assert t is not None
|
||||
temb = get_timestep_embedding(t, self.ch)
|
||||
temb = self.temb.dense[0](temb)
|
||||
temb = nonlinearity(temb)
|
||||
temb = self.temb.dense[1](temb)
|
||||
else:
|
||||
temb = None
|
||||
|
||||
# downsampling
|
||||
hs = [self.conv_in(x)]
|
||||
for i_level in range(self.num_resolutions):
|
||||
for i_block in range(self.num_res_blocks):
|
||||
h = self.down[i_level].block[i_block](hs[-1], temb)
|
||||
if len(self.down[i_level].attn) > 0:
|
||||
h = self.down[i_level].attn[i_block](h)
|
||||
hs.append(h)
|
||||
if i_level != self.num_resolutions-1:
|
||||
hs.append(self.down[i_level].downsample(hs[-1]))
|
||||
|
||||
# middle
|
||||
h = hs[-1]
|
||||
h = self.mid.block_1(h, temb)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h, temb)
|
||||
|
||||
# upsampling
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
for i_block in range(self.num_res_blocks+1):
|
||||
h = self.up[i_level].block[i_block](
|
||||
torch.cat([h, hs.pop()], dim=1), temb)
|
||||
if len(self.up[i_level].attn) > 0:
|
||||
h = self.up[i_level].attn[i_block](h)
|
||||
if i_level != 0:
|
||||
h = self.up[i_level].upsample(h)
|
||||
|
||||
# end
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
return h
|
||||
|
||||
def get_last_layer(self):
|
||||
return self.conv_out.weight
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
||||
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
||||
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
||||
**ignore_kwargs):
|
||||
super().__init__()
|
||||
if use_linear_attn: attn_type = "linear"
|
||||
self.ch = ch
|
||||
self.temb_ch = 0
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
|
||||
# downsampling
|
||||
self.conv_in = torch.nn.Conv2d(in_channels,
|
||||
self.ch,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
|
||||
curr_res = resolution
|
||||
in_ch_mult = (1,)+tuple(ch_mult)
|
||||
self.in_ch_mult = in_ch_mult
|
||||
self.down = nn.ModuleList()
|
||||
for i_level in range(self.num_resolutions):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_in = ch*in_ch_mult[i_level]
|
||||
block_out = ch*ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks):
|
||||
block.append(ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout))
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(make_attn(block_in, attn_type=attn_type))
|
||||
down = nn.Module()
|
||||
down.block = block
|
||||
down.attn = attn
|
||||
if i_level != self.num_resolutions-1:
|
||||
down.downsample = Downsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res // 2
|
||||
self.down.append(down)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout)
|
||||
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout)
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(block_in,
|
||||
2*z_channels if double_z else z_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
# timestep embedding
|
||||
temb = None
|
||||
|
||||
# downsampling
|
||||
hs = [self.conv_in(x)]
|
||||
for i_level in range(self.num_resolutions):
|
||||
for i_block in range(self.num_res_blocks):
|
||||
h = self.down[i_level].block[i_block](hs[-1], temb)
|
||||
if len(self.down[i_level].attn) > 0:
|
||||
h = self.down[i_level].attn[i_block](h)
|
||||
hs.append(h)
|
||||
if i_level != self.num_resolutions-1:
|
||||
hs.append(self.down[i_level].downsample(hs[-1]))
|
||||
|
||||
# middle
|
||||
h = hs[-1]
|
||||
h = self.mid.block_1(h, temb)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h, temb)
|
||||
|
||||
# end
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
return h
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
||||
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
||||
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
||||
attn_type="vanilla", **ignorekwargs):
|
||||
super().__init__()
|
||||
if use_linear_attn: attn_type = "linear"
|
||||
self.ch = ch
|
||||
self.temb_ch = 0
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
self.give_pre_end = give_pre_end
|
||||
self.tanh_out = tanh_out
|
||||
|
||||
# compute in_ch_mult, block_in and curr_res at lowest res
|
||||
in_ch_mult = (1,)+tuple(ch_mult)
|
||||
block_in = ch*ch_mult[self.num_resolutions-1]
|
||||
curr_res = resolution // 2**(self.num_resolutions-1)
|
||||
self.z_shape = (1,z_channels,curr_res,curr_res)
|
||||
print("Working with z of shape {} = {} dimensions.".format(
|
||||
self.z_shape, np.prod(self.z_shape)))
|
||||
|
||||
# z to block_in
|
||||
self.conv_in = torch.nn.Conv2d(z_channels,
|
||||
block_in,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout)
|
||||
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout)
|
||||
|
||||
# upsampling
|
||||
self.up = nn.ModuleList()
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_out = ch*ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks+1):
|
||||
block.append(ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout))
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(make_attn(block_in, attn_type=attn_type))
|
||||
up = nn.Module()
|
||||
up.block = block
|
||||
up.attn = attn
|
||||
if i_level != 0:
|
||||
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res * 2
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(block_in,
|
||||
out_ch,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
|
||||
def forward(self, z):
|
||||
#assert z.shape[1:] == self.z_shape[1:]
|
||||
self.last_z_shape = z.shape
|
||||
|
||||
# timestep embedding
|
||||
temb = None
|
||||
|
||||
# z to block_in
|
||||
h = self.conv_in(z)
|
||||
|
||||
# middle
|
||||
h = self.mid.block_1(h, temb)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h, temb)
|
||||
|
||||
# upsampling
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
for i_block in range(self.num_res_blocks+1):
|
||||
h = self.up[i_level].block[i_block](h, temb)
|
||||
if len(self.up[i_level].attn) > 0:
|
||||
h = self.up[i_level].attn[i_block](h)
|
||||
if i_level != 0:
|
||||
h = self.up[i_level].upsample(h)
|
||||
|
||||
# end
|
||||
if self.give_pre_end:
|
||||
return h
|
||||
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
if self.tanh_out:
|
||||
h = torch.tanh(h)
|
||||
return h
|
||||
|
||||
|
||||
class SimpleDecoder(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
||||
super().__init__()
|
||||
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
|
||||
ResnetBlock(in_channels=in_channels,
|
||||
out_channels=2 * in_channels,
|
||||
temb_channels=0, dropout=0.0),
|
||||
ResnetBlock(in_channels=2 * in_channels,
|
||||
out_channels=4 * in_channels,
|
||||
temb_channels=0, dropout=0.0),
|
||||
ResnetBlock(in_channels=4 * in_channels,
|
||||
out_channels=2 * in_channels,
|
||||
temb_channels=0, dropout=0.0),
|
||||
nn.Conv2d(2*in_channels, in_channels, 1),
|
||||
Upsample(in_channels, with_conv=True)])
|
||||
# end
|
||||
self.norm_out = Normalize(in_channels)
|
||||
self.conv_out = torch.nn.Conv2d(in_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
for i, layer in enumerate(self.model):
|
||||
if i in [1,2,3]:
|
||||
x = layer(x, None)
|
||||
else:
|
||||
x = layer(x)
|
||||
|
||||
h = self.norm_out(x)
|
||||
h = nonlinearity(h)
|
||||
x = self.conv_out(h)
|
||||
return x
|
||||
|
||||
|
||||
class UpsampleDecoder(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
|
||||
ch_mult=(2,2), dropout=0.0):
|
||||
super().__init__()
|
||||
# upsampling
|
||||
self.temb_ch = 0
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
block_in = in_channels
|
||||
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
||||
self.res_blocks = nn.ModuleList()
|
||||
self.upsample_blocks = nn.ModuleList()
|
||||
for i_level in range(self.num_resolutions):
|
||||
res_block = []
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
res_block.append(ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout))
|
||||
block_in = block_out
|
||||
self.res_blocks.append(nn.ModuleList(res_block))
|
||||
if i_level != self.num_resolutions - 1:
|
||||
self.upsample_blocks.append(Upsample(block_in, True))
|
||||
curr_res = curr_res * 2
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(block_in,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
# upsampling
|
||||
h = x
|
||||
for k, i_level in enumerate(range(self.num_resolutions)):
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
h = self.res_blocks[i_level][i_block](h, None)
|
||||
if i_level != self.num_resolutions - 1:
|
||||
h = self.upsample_blocks[k](h)
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
return h
|
||||
|
||||
|
||||
class LatentRescaler(nn.Module):
|
||||
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
||||
super().__init__()
|
||||
# residual block, interpolate, residual block
|
||||
self.factor = factor
|
||||
self.conv_in = nn.Conv2d(in_channels,
|
||||
mid_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
||||
out_channels=mid_channels,
|
||||
temb_channels=0,
|
||||
dropout=0.0) for _ in range(depth)])
|
||||
self.attn = AttnBlock(mid_channels)
|
||||
self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
||||
out_channels=mid_channels,
|
||||
temb_channels=0,
|
||||
dropout=0.0) for _ in range(depth)])
|
||||
|
||||
self.conv_out = nn.Conv2d(mid_channels,
|
||||
out_channels,
|
||||
kernel_size=1,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv_in(x)
|
||||
for block in self.res_block1:
|
||||
x = block(x, None)
|
||||
x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
|
||||
x = self.attn(x)
|
||||
for block in self.res_block2:
|
||||
x = block(x, None)
|
||||
x = self.conv_out(x)
|
||||
return x
|
||||
|
||||
|
||||
class MergedRescaleEncoder(nn.Module):
|
||||
def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
|
||||
attn_resolutions, dropout=0.0, resamp_with_conv=True,
|
||||
ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
|
||||
super().__init__()
|
||||
intermediate_chn = ch * ch_mult[-1]
|
||||
self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
|
||||
z_channels=intermediate_chn, double_z=False, resolution=resolution,
|
||||
attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
|
||||
out_ch=None)
|
||||
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
|
||||
mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.encoder(x)
|
||||
x = self.rescaler(x)
|
||||
return x
|
||||
|
||||
|
||||
class MergedRescaleDecoder(nn.Module):
|
||||
def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
|
||||
dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
|
||||
super().__init__()
|
||||
tmp_chn = z_channels*ch_mult[-1]
|
||||
self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
|
||||
resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
|
||||
ch_mult=ch_mult, resolution=resolution, ch=ch)
|
||||
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
|
||||
out_channels=tmp_chn, depth=rescale_module_depth)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.rescaler(x)
|
||||
x = self.decoder(x)
|
||||
return x
|
||||
|
||||
|
||||
class Upsampler(nn.Module):
|
||||
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
||||
super().__init__()
|
||||
assert out_size >= in_size
|
||||
num_blocks = int(np.log2(out_size//in_size))+1
|
||||
factor_up = 1.+ (out_size % in_size)
|
||||
print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
|
||||
self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
|
||||
out_channels=in_channels)
|
||||
self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
|
||||
attn_resolutions=[], in_channels=None, ch=in_channels,
|
||||
ch_mult=[ch_mult for _ in range(num_blocks)])
|
||||
|
||||
def forward(self, x):
|
||||
x = self.rescaler(x)
|
||||
x = self.decoder(x)
|
||||
return x
|
||||
|
||||
|
||||
class Resize(nn.Module):
|
||||
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
||||
super().__init__()
|
||||
self.with_conv = learned
|
||||
self.mode = mode
|
||||
if self.with_conv:
|
||||
print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
|
||||
raise NotImplementedError()
|
||||
assert in_channels is not None
|
||||
# no asymmetric padding in torch conv, must do it ourselves
|
||||
self.conv = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=4,
|
||||
stride=2,
|
||||
padding=1)
|
||||
|
||||
def forward(self, x, scale_factor=1.0):
|
||||
if scale_factor==1.0:
|
||||
return x
|
||||
else:
|
||||
x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
|
||||
return x
|
|
@ -1,786 +0,0 @@
|
|||
from abc import abstractmethod
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import torch as th
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ldm.modules.diffusionmodules.util import (
|
||||
checkpoint,
|
||||
conv_nd,
|
||||
linear,
|
||||
avg_pool_nd,
|
||||
zero_module,
|
||||
normalization,
|
||||
timestep_embedding,
|
||||
)
|
||||
from ldm.modules.attention import SpatialTransformer
|
||||
from ldm.util import exists
|
||||
|
||||
|
||||
# dummy replace
|
||||
def convert_module_to_f16(x):
|
||||
pass
|
||||
|
||||
def convert_module_to_f32(x):
|
||||
pass
|
||||
|
||||
|
||||
## go
|
||||
class AttentionPool2d(nn.Module):
|
||||
"""
|
||||
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
spacial_dim: int,
|
||||
embed_dim: int,
|
||||
num_heads_channels: int,
|
||||
output_dim: int = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
|
||||
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
||||
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
||||
self.num_heads = embed_dim // num_heads_channels
|
||||
self.attention = QKVAttention(self.num_heads)
|
||||
|
||||
def forward(self, x):
|
||||
b, c, *_spatial = x.shape
|
||||
x = x.reshape(b, c, -1) # NC(HW)
|
||||
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
||||
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
||||
x = self.qkv_proj(x)
|
||||
x = self.attention(x)
|
||||
x = self.c_proj(x)
|
||||
return x[:, :, 0]
|
||||
|
||||
|
||||
class TimestepBlock(nn.Module):
|
||||
"""
|
||||
Any module where forward() takes timestep embeddings as a second argument.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
Apply the module to `x` given `emb` timestep embeddings.
|
||||
"""
|
||||
|
||||
|
||||
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
"""
|
||||
A sequential module that passes timestep embeddings to the children that
|
||||
support it as an extra input.
|
||||
"""
|
||||
|
||||
def forward(self, x, emb, context=None):
|
||||
for layer in self:
|
||||
if isinstance(layer, TimestepBlock):
|
||||
x = layer(x, emb)
|
||||
elif isinstance(layer, SpatialTransformer):
|
||||
x = layer(x, context)
|
||||
else:
|
||||
x = layer(x)
|
||||
return x
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
"""
|
||||
An upsampling layer with an optional convolution.
|
||||
:param channels: channels in the inputs and outputs.
|
||||
:param use_conv: a bool determining if a convolution is applied.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||
upsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
if use_conv:
|
||||
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
||||
|
||||
def forward(self, x):
|
||||
assert x.shape[1] == self.channels
|
||||
if self.dims == 3:
|
||||
x = F.interpolate(
|
||||
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
||||
)
|
||||
else:
|
||||
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
||||
if self.use_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
class TransposedUpsample(nn.Module):
|
||||
'Learned 2x upsampling without padding'
|
||||
def __init__(self, channels, out_channels=None, ks=5):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
|
||||
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
|
||||
|
||||
def forward(self,x):
|
||||
return self.up(x)
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
"""
|
||||
A downsampling layer with an optional convolution.
|
||||
:param channels: channels in the inputs and outputs.
|
||||
:param use_conv: a bool determining if a convolution is applied.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||
downsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
stride = 2 if dims != 3 else (1, 2, 2)
|
||||
if use_conv:
|
||||
self.op = conv_nd(
|
||||
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
||||
)
|
||||
else:
|
||||
assert self.channels == self.out_channels
|
||||
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
||||
|
||||
def forward(self, x):
|
||||
assert x.shape[1] == self.channels
|
||||
return self.op(x)
|
||||
|
||||
|
||||
class ResBlock(TimestepBlock):
|
||||
"""
|
||||
A residual block that can optionally change the number of channels.
|
||||
:param channels: the number of input channels.
|
||||
:param emb_channels: the number of timestep embedding channels.
|
||||
:param dropout: the rate of dropout.
|
||||
:param out_channels: if specified, the number of out channels.
|
||||
:param use_conv: if True and out_channels is specified, use a spatial
|
||||
convolution instead of a smaller 1x1 convolution to change the
|
||||
channels in the skip connection.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D.
|
||||
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
||||
:param up: if True, use this block for upsampling.
|
||||
:param down: if True, use this block for downsampling.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
emb_channels,
|
||||
dropout,
|
||||
out_channels=None,
|
||||
use_conv=False,
|
||||
use_scale_shift_norm=False,
|
||||
dims=2,
|
||||
use_checkpoint=False,
|
||||
up=False,
|
||||
down=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.emb_channels = emb_channels
|
||||
self.dropout = dropout
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.use_scale_shift_norm = use_scale_shift_norm
|
||||
|
||||
self.in_layers = nn.Sequential(
|
||||
normalization(channels),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
||||
)
|
||||
|
||||
self.updown = up or down
|
||||
|
||||
if up:
|
||||
self.h_upd = Upsample(channels, False, dims)
|
||||
self.x_upd = Upsample(channels, False, dims)
|
||||
elif down:
|
||||
self.h_upd = Downsample(channels, False, dims)
|
||||
self.x_upd = Downsample(channels, False, dims)
|
||||
else:
|
||||
self.h_upd = self.x_upd = nn.Identity()
|
||||
|
||||
self.emb_layers = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
linear(
|
||||
emb_channels,
|
||||
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
||||
),
|
||||
)
|
||||
self.out_layers = nn.Sequential(
|
||||
normalization(self.out_channels),
|
||||
nn.SiLU(),
|
||||
nn.Dropout(p=dropout),
|
||||
zero_module(
|
||||
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
||||
),
|
||||
)
|
||||
|
||||
if self.out_channels == channels:
|
||||
self.skip_connection = nn.Identity()
|
||||
elif use_conv:
|
||||
self.skip_connection = conv_nd(
|
||||
dims, channels, self.out_channels, 3, padding=1
|
||||
)
|
||||
else:
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
||||
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
Apply the block to a Tensor, conditioned on a timestep embedding.
|
||||
:param x: an [N x C x ...] Tensor of features.
|
||||
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
return checkpoint(
|
||||
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
||||
)
|
||||
|
||||
|
||||
def _forward(self, x, emb):
|
||||
if self.updown:
|
||||
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
||||
h = in_rest(x)
|
||||
h = self.h_upd(h)
|
||||
x = self.x_upd(x)
|
||||
h = in_conv(h)
|
||||
else:
|
||||
h = self.in_layers(x)
|
||||
emb_out = self.emb_layers(emb).type(h.dtype)
|
||||
while len(emb_out.shape) < len(h.shape):
|
||||
emb_out = emb_out[..., None]
|
||||
if self.use_scale_shift_norm:
|
||||
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
||||
scale, shift = th.chunk(emb_out, 2, dim=1)
|
||||
h = out_norm(h) * (1 + scale) + shift
|
||||
h = out_rest(h)
|
||||
else:
|
||||
h = h + emb_out
|
||||
h = self.out_layers(h)
|
||||
return self.skip_connection(x) + h
|
||||
|
||||
|
||||
class AttentionBlock(nn.Module):
|
||||
"""
|
||||
An attention block that allows spatial positions to attend to each other.
|
||||
Originally ported from here, but adapted to the N-d case.
|
||||
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
num_heads=1,
|
||||
num_head_channels=-1,
|
||||
use_checkpoint=False,
|
||||
use_new_attention_order=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
if num_head_channels == -1:
|
||||
self.num_heads = num_heads
|
||||
else:
|
||||
assert (
|
||||
channels % num_head_channels == 0
|
||||
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
||||
self.num_heads = channels // num_head_channels
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.norm = normalization(channels)
|
||||
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
||||
if use_new_attention_order:
|
||||
# split qkv before split heads
|
||||
self.attention = QKVAttention(self.num_heads)
|
||||
else:
|
||||
# split heads before split qkv
|
||||
self.attention = QKVAttentionLegacy(self.num_heads)
|
||||
|
||||
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
||||
|
||||
def forward(self, x):
|
||||
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
||||
#return pt_checkpoint(self._forward, x) # pytorch
|
||||
|
||||
def _forward(self, x):
|
||||
b, c, *spatial = x.shape
|
||||
x = x.reshape(b, c, -1)
|
||||
qkv = self.qkv(self.norm(x))
|
||||
h = self.attention(qkv)
|
||||
h = self.proj_out(h)
|
||||
return (x + h).reshape(b, c, *spatial)
|
||||
|
||||
|
||||
def count_flops_attn(model, _x, y):
|
||||
"""
|
||||
A counter for the `thop` package to count the operations in an
|
||||
attention operation.
|
||||
Meant to be used like:
|
||||
macs, params = thop.profile(
|
||||
model,
|
||||
inputs=(inputs, timestamps),
|
||||
custom_ops={QKVAttention: QKVAttention.count_flops},
|
||||
)
|
||||
"""
|
||||
b, c, *spatial = y[0].shape
|
||||
num_spatial = int(np.prod(spatial))
|
||||
# We perform two matmuls with the same number of ops.
|
||||
# The first computes the weight matrix, the second computes
|
||||
# the combination of the value vectors.
|
||||
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
||||
model.total_ops += th.DoubleTensor([matmul_ops])
|
||||
|
||||
|
||||
class QKVAttentionLegacy(nn.Module):
|
||||
"""
|
||||
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
||||
"""
|
||||
|
||||
def __init__(self, n_heads):
|
||||
super().__init__()
|
||||
self.n_heads = n_heads
|
||||
|
||||
def forward(self, qkv):
|
||||
"""
|
||||
Apply QKV attention.
|
||||
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
||||
:return: an [N x (H * C) x T] tensor after attention.
|
||||
"""
|
||||
bs, width, length = qkv.shape
|
||||
assert width % (3 * self.n_heads) == 0
|
||||
ch = width // (3 * self.n_heads)
|
||||
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
||||
scale = 1 / math.sqrt(math.sqrt(ch))
|
||||
weight = th.einsum(
|
||||
"bct,bcs->bts", q * scale, k * scale
|
||||
) # More stable with f16 than dividing afterwards
|
||||
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||
a = th.einsum("bts,bcs->bct", weight, v)
|
||||
return a.reshape(bs, -1, length)
|
||||
|
||||
@staticmethod
|
||||
def count_flops(model, _x, y):
|
||||
return count_flops_attn(model, _x, y)
|
||||
|
||||
|
||||
class QKVAttention(nn.Module):
|
||||
"""
|
||||
A module which performs QKV attention and splits in a different order.
|
||||
"""
|
||||
|
||||
def __init__(self, n_heads):
|
||||
super().__init__()
|
||||
self.n_heads = n_heads
|
||||
|
||||
def forward(self, qkv):
|
||||
"""
|
||||
Apply QKV attention.
|
||||
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
||||
:return: an [N x (H * C) x T] tensor after attention.
|
||||
"""
|
||||
bs, width, length = qkv.shape
|
||||
assert width % (3 * self.n_heads) == 0
|
||||
ch = width // (3 * self.n_heads)
|
||||
q, k, v = qkv.chunk(3, dim=1)
|
||||
scale = 1 / math.sqrt(math.sqrt(ch))
|
||||
weight = th.einsum(
|
||||
"bct,bcs->bts",
|
||||
(q * scale).view(bs * self.n_heads, ch, length),
|
||||
(k * scale).view(bs * self.n_heads, ch, length),
|
||||
) # More stable with f16 than dividing afterwards
|
||||
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
||||
return a.reshape(bs, -1, length)
|
||||
|
||||
@staticmethod
|
||||
def count_flops(model, _x, y):
|
||||
return count_flops_attn(model, _x, y)
|
||||
|
||||
|
||||
class UNetModel(nn.Module):
|
||||
"""
|
||||
The full UNet model with attention and timestep embedding.
|
||||
:param in_channels: channels in the input Tensor.
|
||||
:param model_channels: base channel count for the model.
|
||||
:param out_channels: channels in the output Tensor.
|
||||
:param num_res_blocks: number of residual blocks per downsample.
|
||||
:param attention_resolutions: a collection of downsample rates at which
|
||||
attention will take place. May be a set, list, or tuple.
|
||||
For example, if this contains 4, then at 4x downsampling, attention
|
||||
will be used.
|
||||
:param dropout: the dropout probability.
|
||||
:param channel_mult: channel multiplier for each level of the UNet.
|
||||
:param conv_resample: if True, use learned convolutions for upsampling and
|
||||
downsampling.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D.
|
||||
:param num_classes: if specified (as an int), then this model will be
|
||||
class-conditional with `num_classes` classes.
|
||||
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
||||
:param num_heads: the number of attention heads in each attention layer.
|
||||
:param num_heads_channels: if specified, ignore num_heads and instead use
|
||||
a fixed channel width per attention head.
|
||||
:param num_heads_upsample: works with num_heads to set a different number
|
||||
of heads for upsampling. Deprecated.
|
||||
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
||||
:param resblock_updown: use residual blocks for up/downsampling.
|
||||
:param use_new_attention_order: use a different attention pattern for potentially
|
||||
increased efficiency.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
image_size,
|
||||
in_channels,
|
||||
model_channels,
|
||||
out_channels,
|
||||
num_res_blocks,
|
||||
attention_resolutions,
|
||||
dropout=0,
|
||||
channel_mult=(1, 2, 4, 8),
|
||||
conv_resample=True,
|
||||
dims=2,
|
||||
num_classes=None,
|
||||
use_checkpoint=False,
|
||||
use_fp16=False,
|
||||
num_heads=-1,
|
||||
num_head_channels=-1,
|
||||
num_heads_upsample=-1,
|
||||
use_scale_shift_norm=False,
|
||||
resblock_updown=False,
|
||||
use_new_attention_order=False,
|
||||
use_spatial_transformer=False, # custom transformer support
|
||||
transformer_depth=1, # custom transformer support
|
||||
context_dim=None, # custom transformer support
|
||||
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
||||
legacy=True,
|
||||
disable_self_attentions=None,
|
||||
num_attention_blocks=None,
|
||||
disable_middle_self_attn=False,
|
||||
use_linear_in_transformer=False,
|
||||
):
|
||||
super().__init__()
|
||||
if use_spatial_transformer:
|
||||
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
||||
|
||||
if context_dim is not None:
|
||||
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
||||
from omegaconf.listconfig import ListConfig
|
||||
if type(context_dim) == ListConfig:
|
||||
context_dim = list(context_dim)
|
||||
|
||||
if num_heads_upsample == -1:
|
||||
num_heads_upsample = num_heads
|
||||
|
||||
if num_heads == -1:
|
||||
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
||||
|
||||
if num_head_channels == -1:
|
||||
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
||||
|
||||
self.image_size = image_size
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
self.out_channels = out_channels
|
||||
if isinstance(num_res_blocks, int):
|
||||
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
||||
else:
|
||||
if len(num_res_blocks) != len(channel_mult):
|
||||
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
||||
"as a list/tuple (per-level) with the same length as channel_mult")
|
||||
self.num_res_blocks = num_res_blocks
|
||||
if disable_self_attentions is not None:
|
||||
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
||||
assert len(disable_self_attentions) == len(channel_mult)
|
||||
if num_attention_blocks is not None:
|
||||
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
||||
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
||||
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
||||
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
||||
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
||||
f"attention will still not be set.")
|
||||
|
||||
self.attention_resolutions = attention_resolutions
|
||||
self.dropout = dropout
|
||||
self.channel_mult = channel_mult
|
||||
self.conv_resample = conv_resample
|
||||
self.num_classes = num_classes
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.dtype = th.float16 if use_fp16 else th.float32
|
||||
self.num_heads = num_heads
|
||||
self.num_head_channels = num_head_channels
|
||||
self.num_heads_upsample = num_heads_upsample
|
||||
self.predict_codebook_ids = n_embed is not None
|
||||
|
||||
time_embed_dim = model_channels * 4
|
||||
self.time_embed = nn.Sequential(
|
||||
linear(model_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
)
|
||||
|
||||
if self.num_classes is not None:
|
||||
if isinstance(self.num_classes, int):
|
||||
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
||||
elif self.num_classes == "continuous":
|
||||
print("setting up linear c_adm embedding layer")
|
||||
self.label_emb = nn.Linear(1, time_embed_dim)
|
||||
else:
|
||||
raise ValueError()
|
||||
|
||||
self.input_blocks = nn.ModuleList(
|
||||
[
|
||||
TimestepEmbedSequential(
|
||||
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
||||
)
|
||||
]
|
||||
)
|
||||
self._feature_size = model_channels
|
||||
input_block_chans = [model_channels]
|
||||
ch = model_channels
|
||||
ds = 1
|
||||
for level, mult in enumerate(channel_mult):
|
||||
for nr in range(self.num_res_blocks[level]):
|
||||
layers = [
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=mult * model_channels,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
)
|
||||
]
|
||||
ch = mult * model_channels
|
||||
if ds in attention_resolutions:
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
if exists(disable_self_attentions):
|
||||
disabled_sa = disable_self_attentions[level]
|
||||
else:
|
||||
disabled_sa = False
|
||||
|
||||
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
||||
layers.append(
|
||||
AttentionBlock(
|
||||
ch,
|
||||
use_checkpoint=use_checkpoint,
|
||||
num_heads=num_heads,
|
||||
num_head_channels=dim_head,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
) if not use_spatial_transformer else SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint
|
||||
)
|
||||
)
|
||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self._feature_size += ch
|
||||
input_block_chans.append(ch)
|
||||
if level != len(channel_mult) - 1:
|
||||
out_ch = ch
|
||||
self.input_blocks.append(
|
||||
TimestepEmbedSequential(
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=out_ch,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
down=True,
|
||||
)
|
||||
if resblock_updown
|
||||
else Downsample(
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch
|
||||
)
|
||||
)
|
||||
)
|
||||
ch = out_ch
|
||||
input_block_chans.append(ch)
|
||||
ds *= 2
|
||||
self._feature_size += ch
|
||||
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
self.middle_block = TimestepEmbedSequential(
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
),
|
||||
AttentionBlock(
|
||||
ch,
|
||||
use_checkpoint=use_checkpoint,
|
||||
num_heads=num_heads,
|
||||
num_head_channels=dim_head,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
||||
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
||||
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint
|
||||
),
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
),
|
||||
)
|
||||
self._feature_size += ch
|
||||
|
||||
self.output_blocks = nn.ModuleList([])
|
||||
for level, mult in list(enumerate(channel_mult))[::-1]:
|
||||
for i in range(self.num_res_blocks[level] + 1):
|
||||
ich = input_block_chans.pop()
|
||||
layers = [
|
||||
ResBlock(
|
||||
ch + ich,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=model_channels * mult,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
)
|
||||
]
|
||||
ch = model_channels * mult
|
||||
if ds in attention_resolutions:
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
if exists(disable_self_attentions):
|
||||
disabled_sa = disable_self_attentions[level]
|
||||
else:
|
||||
disabled_sa = False
|
||||
|
||||
if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
|
||||
layers.append(
|
||||
AttentionBlock(
|
||||
ch,
|
||||
use_checkpoint=use_checkpoint,
|
||||
num_heads=num_heads_upsample,
|
||||
num_head_channels=dim_head,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
) if not use_spatial_transformer else SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint
|
||||
)
|
||||
)
|
||||
if level and i == self.num_res_blocks[level]:
|
||||
out_ch = ch
|
||||
layers.append(
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=out_ch,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
up=True,
|
||||
)
|
||||
if resblock_updown
|
||||
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
||||
)
|
||||
ds //= 2
|
||||
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self._feature_size += ch
|
||||
|
||||
self.out = nn.Sequential(
|
||||
normalization(ch),
|
||||
nn.SiLU(),
|
||||
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
||||
)
|
||||
if self.predict_codebook_ids:
|
||||
self.id_predictor = nn.Sequential(
|
||||
normalization(ch),
|
||||
conv_nd(dims, model_channels, n_embed, 1),
|
||||
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
||||
)
|
||||
|
||||
def convert_to_fp16(self):
|
||||
"""
|
||||
Convert the torso of the model to float16.
|
||||
"""
|
||||
self.input_blocks.apply(convert_module_to_f16)
|
||||
self.middle_block.apply(convert_module_to_f16)
|
||||
self.output_blocks.apply(convert_module_to_f16)
|
||||
|
||||
def convert_to_fp32(self):
|
||||
"""
|
||||
Convert the torso of the model to float32.
|
||||
"""
|
||||
self.input_blocks.apply(convert_module_to_f32)
|
||||
self.middle_block.apply(convert_module_to_f32)
|
||||
self.output_blocks.apply(convert_module_to_f32)
|
||||
|
||||
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
|
||||
"""
|
||||
Apply the model to an input batch.
|
||||
:param x: an [N x C x ...] Tensor of inputs.
|
||||
:param timesteps: a 1-D batch of timesteps.
|
||||
:param context: conditioning plugged in via crossattn
|
||||
:param y: an [N] Tensor of labels, if class-conditional.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
assert (y is not None) == (
|
||||
self.num_classes is not None
|
||||
), "must specify y if and only if the model is class-conditional"
|
||||
hs = []
|
||||
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
||||
emb = self.time_embed(t_emb)
|
||||
|
||||
if self.num_classes is not None:
|
||||
assert y.shape[0] == x.shape[0]
|
||||
emb = emb + self.label_emb(y)
|
||||
|
||||
h = x.type(self.dtype)
|
||||
for module in self.input_blocks:
|
||||
h = module(h, emb, context)
|
||||
hs.append(h)
|
||||
h = self.middle_block(h, emb, context)
|
||||
for module in self.output_blocks:
|
||||
h = th.cat([h, hs.pop()], dim=1)
|
||||
h = module(h, emb, context)
|
||||
h = h.type(x.dtype)
|
||||
if self.predict_codebook_ids:
|
||||
return self.id_predictor(h)
|
||||
else:
|
||||
return self.out(h)
|
|
@ -1,81 +0,0 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from functools import partial
|
||||
|
||||
from ldm.modules.diffusionmodules.util import extract_into_tensor, make_beta_schedule
|
||||
from ldm.util import default
|
||||
|
||||
|
||||
class AbstractLowScaleModel(nn.Module):
|
||||
# for concatenating a downsampled image to the latent representation
|
||||
def __init__(self, noise_schedule_config=None):
|
||||
super(AbstractLowScaleModel, self).__init__()
|
||||
if noise_schedule_config is not None:
|
||||
self.register_schedule(**noise_schedule_config)
|
||||
|
||||
def register_schedule(self, beta_schedule="linear", timesteps=1000,
|
||||
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||||
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
||||
cosine_s=cosine_s)
|
||||
alphas = 1. - betas
|
||||
alphas_cumprod = np.cumprod(alphas, axis=0)
|
||||
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
||||
|
||||
timesteps, = betas.shape
|
||||
self.num_timesteps = int(timesteps)
|
||||
self.linear_start = linear_start
|
||||
self.linear_end = linear_end
|
||||
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
||||
|
||||
to_torch = partial(torch.tensor, dtype=torch.float32)
|
||||
|
||||
self.register_buffer('betas', to_torch(betas))
|
||||
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
||||
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
||||
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
||||
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
||||
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
||||
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
||||
|
||||
def q_sample(self, x_start, t, noise=None):
|
||||
noise = default(noise, lambda: torch.randn_like(x_start))
|
||||
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
||||
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
||||
|
||||
def forward(self, x):
|
||||
return x, None
|
||||
|
||||
def decode(self, x):
|
||||
return x
|
||||
|
||||
|
||||
class SimpleImageConcat(AbstractLowScaleModel):
|
||||
# no noise level conditioning
|
||||
def __init__(self):
|
||||
super(SimpleImageConcat, self).__init__(noise_schedule_config=None)
|
||||
self.max_noise_level = 0
|
||||
|
||||
def forward(self, x):
|
||||
# fix to constant noise level
|
||||
return x, torch.zeros(x.shape[0], device=x.device).long()
|
||||
|
||||
|
||||
class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
|
||||
def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False):
|
||||
super().__init__(noise_schedule_config=noise_schedule_config)
|
||||
self.max_noise_level = max_noise_level
|
||||
|
||||
def forward(self, x, noise_level=None):
|
||||
if noise_level is None:
|
||||
noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
|
||||
else:
|
||||
assert isinstance(noise_level, torch.Tensor)
|
||||
z = self.q_sample(x, noise_level)
|
||||
return z, noise_level
|
||||
|
||||
|
||||
|
|
@ -1,270 +0,0 @@
|
|||
# adopted from
|
||||
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
||||
# and
|
||||
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
||||
# and
|
||||
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
||||
#
|
||||
# thanks!
|
||||
|
||||
|
||||
import os
|
||||
import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from einops import repeat
|
||||
|
||||
from ldm.util import instantiate_from_config
|
||||
|
||||
|
||||
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||||
if schedule == "linear":
|
||||
betas = (
|
||||
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
||||
)
|
||||
|
||||
elif schedule == "cosine":
|
||||
timesteps = (
|
||||
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
||||
)
|
||||
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
||||
alphas = torch.cos(alphas).pow(2)
|
||||
alphas = alphas / alphas[0]
|
||||
betas = 1 - alphas[1:] / alphas[:-1]
|
||||
betas = np.clip(betas, a_min=0, a_max=0.999)
|
||||
|
||||
elif schedule == "sqrt_linear":
|
||||
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
||||
elif schedule == "sqrt":
|
||||
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
||||
else:
|
||||
raise ValueError(f"schedule '{schedule}' unknown.")
|
||||
return betas.numpy()
|
||||
|
||||
|
||||
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
||||
if ddim_discr_method == 'uniform':
|
||||
c = num_ddpm_timesteps // num_ddim_timesteps
|
||||
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
||||
elif ddim_discr_method == 'quad':
|
||||
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
||||
else:
|
||||
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
||||
|
||||
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
||||
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
||||
steps_out = ddim_timesteps + 1
|
||||
if verbose:
|
||||
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
||||
return steps_out
|
||||
|
||||
|
||||
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
||||
# select alphas for computing the variance schedule
|
||||
alphas = alphacums[ddim_timesteps]
|
||||
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
||||
|
||||
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
||||
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
||||
if verbose:
|
||||
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
||||
print(f'For the chosen value of eta, which is {eta}, '
|
||||
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
||||
return sigmas, alphas, alphas_prev
|
||||
|
||||
|
||||
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function,
|
||||
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
||||
:param num_diffusion_timesteps: the number of betas to produce.
|
||||
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
||||
produces the cumulative product of (1-beta) up to that
|
||||
part of the diffusion process.
|
||||
:param max_beta: the maximum beta to use; use values lower than 1 to
|
||||
prevent singularities.
|
||||
"""
|
||||
betas = []
|
||||
for i in range(num_diffusion_timesteps):
|
||||
t1 = i / num_diffusion_timesteps
|
||||
t2 = (i + 1) / num_diffusion_timesteps
|
||||
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
||||
return np.array(betas)
|
||||
|
||||
|
||||
def extract_into_tensor(a, t, x_shape):
|
||||
b, *_ = t.shape
|
||||
out = a.gather(-1, t)
|
||||
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
||||
|
||||
|
||||
def checkpoint(func, inputs, params, flag):
|
||||
"""
|
||||
Evaluate a function without caching intermediate activations, allowing for
|
||||
reduced memory at the expense of extra compute in the backward pass.
|
||||
:param func: the function to evaluate.
|
||||
:param inputs: the argument sequence to pass to `func`.
|
||||
:param params: a sequence of parameters `func` depends on but does not
|
||||
explicitly take as arguments.
|
||||
:param flag: if False, disable gradient checkpointing.
|
||||
"""
|
||||
if flag:
|
||||
args = tuple(inputs) + tuple(params)
|
||||
return CheckpointFunction.apply(func, len(inputs), *args)
|
||||
else:
|
||||
return func(*inputs)
|
||||
|
||||
|
||||
class CheckpointFunction(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, run_function, length, *args):
|
||||
ctx.run_function = run_function
|
||||
ctx.input_tensors = list(args[:length])
|
||||
ctx.input_params = list(args[length:])
|
||||
ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
|
||||
"dtype": torch.get_autocast_gpu_dtype(),
|
||||
"cache_enabled": torch.is_autocast_cache_enabled()}
|
||||
with torch.no_grad():
|
||||
output_tensors = ctx.run_function(*ctx.input_tensors)
|
||||
return output_tensors
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, *output_grads):
|
||||
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
||||
with torch.enable_grad(), \
|
||||
torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
|
||||
# Fixes a bug where the first op in run_function modifies the
|
||||
# Tensor storage in place, which is not allowed for detach()'d
|
||||
# Tensors.
|
||||
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
||||
output_tensors = ctx.run_function(*shallow_copies)
|
||||
input_grads = torch.autograd.grad(
|
||||
output_tensors,
|
||||
ctx.input_tensors + ctx.input_params,
|
||||
output_grads,
|
||||
allow_unused=True,
|
||||
)
|
||||
del ctx.input_tensors
|
||||
del ctx.input_params
|
||||
del output_tensors
|
||||
return (None, None) + input_grads
|
||||
|
||||
|
||||
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
||||
"""
|
||||
Create sinusoidal timestep embeddings.
|
||||
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
||||
These may be fractional.
|
||||
:param dim: the dimension of the output.
|
||||
:param max_period: controls the minimum frequency of the embeddings.
|
||||
:return: an [N x dim] Tensor of positional embeddings.
|
||||
"""
|
||||
if not repeat_only:
|
||||
half = dim // 2
|
||||
freqs = torch.exp(
|
||||
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
||||
).to(device=timesteps.device)
|
||||
args = timesteps[:, None].float() * freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
if dim % 2:
|
||||
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
||||
else:
|
||||
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
||||
return embedding
|
||||
|
||||
|
||||
def zero_module(module):
|
||||
"""
|
||||
Zero out the parameters of a module and return it.
|
||||
"""
|
||||
for p in module.parameters():
|
||||
p.detach().zero_()
|
||||
return module
|
||||
|
||||
|
||||
def scale_module(module, scale):
|
||||
"""
|
||||
Scale the parameters of a module and return it.
|
||||
"""
|
||||
for p in module.parameters():
|
||||
p.detach().mul_(scale)
|
||||
return module
|
||||
|
||||
|
||||
def mean_flat(tensor):
|
||||
"""
|
||||
Take the mean over all non-batch dimensions.
|
||||
"""
|
||||
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
||||
|
||||
|
||||
def normalization(channels):
|
||||
"""
|
||||
Make a standard normalization layer.
|
||||
:param channels: number of input channels.
|
||||
:return: an nn.Module for normalization.
|
||||
"""
|
||||
return GroupNorm32(32, channels)
|
||||
|
||||
|
||||
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
||||
class SiLU(nn.Module):
|
||||
def forward(self, x):
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
|
||||
class GroupNorm32(nn.GroupNorm):
|
||||
def forward(self, x):
|
||||
return super().forward(x.float()).type(x.dtype)
|
||||
|
||||
def conv_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D convolution module.
|
||||
"""
|
||||
if dims == 1:
|
||||
return nn.Conv1d(*args, **kwargs)
|
||||
elif dims == 2:
|
||||
return nn.Conv2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.Conv3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
def linear(*args, **kwargs):
|
||||
"""
|
||||
Create a linear module.
|
||||
"""
|
||||
return nn.Linear(*args, **kwargs)
|
||||
|
||||
|
||||
def avg_pool_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D average pooling module.
|
||||
"""
|
||||
if dims == 1:
|
||||
return nn.AvgPool1d(*args, **kwargs)
|
||||
elif dims == 2:
|
||||
return nn.AvgPool2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.AvgPool3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
class HybridConditioner(nn.Module):
|
||||
|
||||
def __init__(self, c_concat_config, c_crossattn_config):
|
||||
super().__init__()
|
||||
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
||||
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
||||
|
||||
def forward(self, c_concat, c_crossattn):
|
||||
c_concat = self.concat_conditioner(c_concat)
|
||||
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
||||
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
||||
|
||||
|
||||
def noise_like(shape, device, repeat=False):
|
||||
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
||||
noise = lambda: torch.randn(shape, device=device)
|
||||
return repeat_noise() if repeat else noise()
|
|
@ -1,92 +0,0 @@
|
|||
import torch
|
||||
import numpy as np
|
||||
|
||||
|
||||
class AbstractDistribution:
|
||||
def sample(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
def mode(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class DiracDistribution(AbstractDistribution):
|
||||
def __init__(self, value):
|
||||
self.value = value
|
||||
|
||||
def sample(self):
|
||||
return self.value
|
||||
|
||||
def mode(self):
|
||||
return self.value
|
||||
|
||||
|
||||
class DiagonalGaussianDistribution(object):
|
||||
def __init__(self, parameters, deterministic=False):
|
||||
self.parameters = parameters
|
||||
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
||||
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
||||
self.deterministic = deterministic
|
||||
self.std = torch.exp(0.5 * self.logvar)
|
||||
self.var = torch.exp(self.logvar)
|
||||
if self.deterministic:
|
||||
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
||||
|
||||
def sample(self):
|
||||
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
||||
return x
|
||||
|
||||
def kl(self, other=None):
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.])
|
||||
else:
|
||||
if other is None:
|
||||
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
||||
+ self.var - 1.0 - self.logvar,
|
||||
dim=[1, 2, 3])
|
||||
else:
|
||||
return 0.5 * torch.sum(
|
||||
torch.pow(self.mean - other.mean, 2) / other.var
|
||||
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
||||
dim=[1, 2, 3])
|
||||
|
||||
def nll(self, sample, dims=[1,2,3]):
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.])
|
||||
logtwopi = np.log(2.0 * np.pi)
|
||||
return 0.5 * torch.sum(
|
||||
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
||||
dim=dims)
|
||||
|
||||
def mode(self):
|
||||
return self.mean
|
||||
|
||||
|
||||
def normal_kl(mean1, logvar1, mean2, logvar2):
|
||||
"""
|
||||
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
||||
Compute the KL divergence between two gaussians.
|
||||
Shapes are automatically broadcasted, so batches can be compared to
|
||||
scalars, among other use cases.
|
||||
"""
|
||||
tensor = None
|
||||
for obj in (mean1, logvar1, mean2, logvar2):
|
||||
if isinstance(obj, torch.Tensor):
|
||||
tensor = obj
|
||||
break
|
||||
assert tensor is not None, "at least one argument must be a Tensor"
|
||||
|
||||
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
||||
# Tensors, but it does not work for torch.exp().
|
||||
logvar1, logvar2 = [
|
||||
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
||||
for x in (logvar1, logvar2)
|
||||
]
|
||||
|
||||
return 0.5 * (
|
||||
-1.0
|
||||
+ logvar2
|
||||
- logvar1
|
||||
+ torch.exp(logvar1 - logvar2)
|
||||
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
||||
)
|
|
@ -1,80 +0,0 @@
|
|||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
class LitEma(nn.Module):
|
||||
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
||||
super().__init__()
|
||||
if decay < 0.0 or decay > 1.0:
|
||||
raise ValueError('Decay must be between 0 and 1')
|
||||
|
||||
self.m_name2s_name = {}
|
||||
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
|
||||
self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates
|
||||
else torch.tensor(-1, dtype=torch.int))
|
||||
|
||||
for name, p in model.named_parameters():
|
||||
if p.requires_grad:
|
||||
# remove as '.'-character is not allowed in buffers
|
||||
s_name = name.replace('.', '')
|
||||
self.m_name2s_name.update({name: s_name})
|
||||
self.register_buffer(s_name, p.clone().detach().data)
|
||||
|
||||
self.collected_params = []
|
||||
|
||||
def reset_num_updates(self):
|
||||
del self.num_updates
|
||||
self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int))
|
||||
|
||||
def forward(self, model):
|
||||
decay = self.decay
|
||||
|
||||
if self.num_updates >= 0:
|
||||
self.num_updates += 1
|
||||
decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
|
||||
|
||||
one_minus_decay = 1.0 - decay
|
||||
|
||||
with torch.no_grad():
|
||||
m_param = dict(model.named_parameters())
|
||||
shadow_params = dict(self.named_buffers())
|
||||
|
||||
for key in m_param:
|
||||
if m_param[key].requires_grad:
|
||||
sname = self.m_name2s_name[key]
|
||||
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
||||
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
|
||||
else:
|
||||
assert not key in self.m_name2s_name
|
||||
|
||||
def copy_to(self, model):
|
||||
m_param = dict(model.named_parameters())
|
||||
shadow_params = dict(self.named_buffers())
|
||||
for key in m_param:
|
||||
if m_param[key].requires_grad:
|
||||
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
||||
else:
|
||||
assert not key in self.m_name2s_name
|
||||
|
||||
def store(self, parameters):
|
||||
"""
|
||||
Save the current parameters for restoring later.
|
||||
Args:
|
||||
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
||||
temporarily stored.
|
||||
"""
|
||||
self.collected_params = [param.clone() for param in parameters]
|
||||
|
||||
def restore(self, parameters):
|
||||
"""
|
||||
Restore the parameters stored with the `store` method.
|
||||
Useful to validate the model with EMA parameters without affecting the
|
||||
original optimization process. Store the parameters before the
|
||||
`copy_to` method. After validation (or model saving), use this to
|
||||
restore the former parameters.
|
||||
Args:
|
||||
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
||||
updated with the stored parameters.
|
||||
"""
|
||||
for c_param, param in zip(self.collected_params, parameters):
|
||||
param.data.copy_(c_param.data)
|
|
@ -1,213 +0,0 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
|
||||
|
||||
import open_clip
|
||||
from ldm.util import default, count_params
|
||||
|
||||
|
||||
class AbstractEncoder(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def encode(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class IdentityEncoder(AbstractEncoder):
|
||||
|
||||
def encode(self, x):
|
||||
return x
|
||||
|
||||
|
||||
class ClassEmbedder(nn.Module):
|
||||
def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1):
|
||||
super().__init__()
|
||||
self.key = key
|
||||
self.embedding = nn.Embedding(n_classes, embed_dim)
|
||||
self.n_classes = n_classes
|
||||
self.ucg_rate = ucg_rate
|
||||
|
||||
def forward(self, batch, key=None, disable_dropout=False):
|
||||
if key is None:
|
||||
key = self.key
|
||||
# this is for use in crossattn
|
||||
c = batch[key][:, None]
|
||||
if self.ucg_rate > 0. and not disable_dropout:
|
||||
mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
|
||||
c = mask * c + (1-mask) * torch.ones_like(c)*(self.n_classes-1)
|
||||
c = c.long()
|
||||
c = self.embedding(c)
|
||||
return c
|
||||
|
||||
def get_unconditional_conditioning(self, bs, device="cuda"):
|
||||
uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
|
||||
uc = torch.ones((bs,), device=device) * uc_class
|
||||
uc = {self.key: uc}
|
||||
return uc
|
||||
|
||||
|
||||
def disabled_train(self, mode=True):
|
||||
"""Overwrite model.train with this function to make sure train/eval mode
|
||||
does not change anymore."""
|
||||
return self
|
||||
|
||||
|
||||
class FrozenT5Embedder(AbstractEncoder):
|
||||
"""Uses the T5 transformer encoder for text"""
|
||||
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
||||
super().__init__()
|
||||
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
||||
self.transformer = T5EncoderModel.from_pretrained(version)
|
||||
self.device = device
|
||||
self.max_length = max_length # TODO: typical value?
|
||||
if freeze:
|
||||
self.freeze()
|
||||
|
||||
def freeze(self):
|
||||
self.transformer = self.transformer.eval()
|
||||
#self.train = disabled_train
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def forward(self, text):
|
||||
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
||||
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
||||
tokens = batch_encoding["input_ids"].to(self.device)
|
||||
outputs = self.transformer(input_ids=tokens)
|
||||
|
||||
z = outputs.last_hidden_state
|
||||
return z
|
||||
|
||||
def encode(self, text):
|
||||
return self(text)
|
||||
|
||||
|
||||
class FrozenCLIPEmbedder(AbstractEncoder):
|
||||
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
||||
LAYERS = [
|
||||
"last",
|
||||
"pooled",
|
||||
"hidden"
|
||||
]
|
||||
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
|
||||
freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
|
||||
super().__init__()
|
||||
assert layer in self.LAYERS
|
||||
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
||||
self.transformer = CLIPTextModel.from_pretrained(version)
|
||||
self.device = device
|
||||
self.max_length = max_length
|
||||
if freeze:
|
||||
self.freeze()
|
||||
self.layer = layer
|
||||
self.layer_idx = layer_idx
|
||||
if layer == "hidden":
|
||||
assert layer_idx is not None
|
||||
assert 0 <= abs(layer_idx) <= 12
|
||||
|
||||
def freeze(self):
|
||||
self.transformer = self.transformer.eval()
|
||||
#self.train = disabled_train
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def forward(self, text):
|
||||
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
||||
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
||||
tokens = batch_encoding["input_ids"].to(self.device)
|
||||
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
|
||||
if self.layer == "last":
|
||||
z = outputs.last_hidden_state
|
||||
elif self.layer == "pooled":
|
||||
z = outputs.pooler_output[:, None, :]
|
||||
else:
|
||||
z = outputs.hidden_states[self.layer_idx]
|
||||
return z
|
||||
|
||||
def encode(self, text):
|
||||
return self(text)
|
||||
|
||||
|
||||
class FrozenOpenCLIPEmbedder(AbstractEncoder):
|
||||
"""
|
||||
Uses the OpenCLIP transformer encoder for text
|
||||
"""
|
||||
LAYERS = [
|
||||
#"pooled",
|
||||
"last",
|
||||
"penultimate"
|
||||
]
|
||||
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
|
||||
freeze=True, layer="last"):
|
||||
super().__init__()
|
||||
assert layer in self.LAYERS
|
||||
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
|
||||
del model.visual
|
||||
self.model = model
|
||||
|
||||
self.device = device
|
||||
self.max_length = max_length
|
||||
if freeze:
|
||||
self.freeze()
|
||||
self.layer = layer
|
||||
if self.layer == "last":
|
||||
self.layer_idx = 0
|
||||
elif self.layer == "penultimate":
|
||||
self.layer_idx = 1
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
def freeze(self):
|
||||
self.model = self.model.eval()
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def forward(self, text):
|
||||
tokens = open_clip.tokenize(text)
|
||||
z = self.encode_with_transformer(tokens.to(self.device))
|
||||
return z
|
||||
|
||||
def encode_with_transformer(self, text):
|
||||
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
|
||||
x = x + self.model.positional_embedding
|
||||
x = x.permute(1, 0, 2) # NLD -> LND
|
||||
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
|
||||
x = x.permute(1, 0, 2) # LND -> NLD
|
||||
x = self.model.ln_final(x)
|
||||
return x
|
||||
|
||||
def text_transformer_forward(self, x: torch.Tensor, attn_mask = None):
|
||||
for i, r in enumerate(self.model.transformer.resblocks):
|
||||
if i == len(self.model.transformer.resblocks) - self.layer_idx:
|
||||
break
|
||||
if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
|
||||
x = checkpoint(r, x, attn_mask)
|
||||
else:
|
||||
x = r(x, attn_mask=attn_mask)
|
||||
return x
|
||||
|
||||
def encode(self, text):
|
||||
return self(text)
|
||||
|
||||
|
||||
class FrozenCLIPT5Encoder(AbstractEncoder):
|
||||
def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
|
||||
clip_max_length=77, t5_max_length=77):
|
||||
super().__init__()
|
||||
self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
|
||||
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
|
||||
print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, "
|
||||
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params.")
|
||||
|
||||
def encode(self, text):
|
||||
return self(text)
|
||||
|
||||
def forward(self, text):
|
||||
clip_z = self.clip_encoder.encode(text)
|
||||
t5_z = self.t5_encoder.encode(text)
|
||||
return [clip_z, t5_z]
|
||||
|
||||
|
|
@ -1,2 +0,0 @@
|
|||
from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
|
||||
from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
|
|
@ -1,730 +0,0 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
# --------------------------------------------
|
||||
# Super-Resolution
|
||||
# --------------------------------------------
|
||||
#
|
||||
# Kai Zhang (cskaizhang@gmail.com)
|
||||
# https://github.com/cszn
|
||||
# From 2019/03--2021/08
|
||||
# --------------------------------------------
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import torch
|
||||
|
||||
from functools import partial
|
||||
import random
|
||||
from scipy import ndimage
|
||||
import scipy
|
||||
import scipy.stats as ss
|
||||
from scipy.interpolate import interp2d
|
||||
from scipy.linalg import orth
|
||||
import albumentations
|
||||
|
||||
import ldm.modules.image_degradation.utils_image as util
|
||||
|
||||
|
||||
def modcrop_np(img, sf):
|
||||
'''
|
||||
Args:
|
||||
img: numpy image, WxH or WxHxC
|
||||
sf: scale factor
|
||||
Return:
|
||||
cropped image
|
||||
'''
|
||||
w, h = img.shape[:2]
|
||||
im = np.copy(img)
|
||||
return im[:w - w % sf, :h - h % sf, ...]
|
||||
|
||||
|
||||
"""
|
||||
# --------------------------------------------
|
||||
# anisotropic Gaussian kernels
|
||||
# --------------------------------------------
|
||||
"""
|
||||
|
||||
|
||||
def analytic_kernel(k):
|
||||
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
|
||||
k_size = k.shape[0]
|
||||
# Calculate the big kernels size
|
||||
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
|
||||
# Loop over the small kernel to fill the big one
|
||||
for r in range(k_size):
|
||||
for c in range(k_size):
|
||||
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
|
||||
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
|
||||
crop = k_size // 2
|
||||
cropped_big_k = big_k[crop:-crop, crop:-crop]
|
||||
# Normalize to 1
|
||||
return cropped_big_k / cropped_big_k.sum()
|
||||
|
||||
|
||||
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
|
||||
""" generate an anisotropic Gaussian kernel
|
||||
Args:
|
||||
ksize : e.g., 15, kernel size
|
||||
theta : [0, pi], rotation angle range
|
||||
l1 : [0.1,50], scaling of eigenvalues
|
||||
l2 : [0.1,l1], scaling of eigenvalues
|
||||
If l1 = l2, will get an isotropic Gaussian kernel.
|
||||
Returns:
|
||||
k : kernel
|
||||
"""
|
||||
|
||||
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
|
||||
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
|
||||
D = np.array([[l1, 0], [0, l2]])
|
||||
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
|
||||
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
|
||||
|
||||
return k
|
||||
|
||||
|
||||
def gm_blur_kernel(mean, cov, size=15):
|
||||
center = size / 2.0 + 0.5
|
||||
k = np.zeros([size, size])
|
||||
for y in range(size):
|
||||
for x in range(size):
|
||||
cy = y - center + 1
|
||||
cx = x - center + 1
|
||||
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
|
||||
|
||||
k = k / np.sum(k)
|
||||
return k
|
||||
|
||||
|
||||
def shift_pixel(x, sf, upper_left=True):
|
||||
"""shift pixel for super-resolution with different scale factors
|
||||
Args:
|
||||
x: WxHxC or WxH
|
||||
sf: scale factor
|
||||
upper_left: shift direction
|
||||
"""
|
||||
h, w = x.shape[:2]
|
||||
shift = (sf - 1) * 0.5
|
||||
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
|
||||
if upper_left:
|
||||
x1 = xv + shift
|
||||
y1 = yv + shift
|
||||
else:
|
||||
x1 = xv - shift
|
||||
y1 = yv - shift
|
||||
|
||||
x1 = np.clip(x1, 0, w - 1)
|
||||
y1 = np.clip(y1, 0, h - 1)
|
||||
|
||||
if x.ndim == 2:
|
||||
x = interp2d(xv, yv, x)(x1, y1)
|
||||
if x.ndim == 3:
|
||||
for i in range(x.shape[-1]):
|
||||
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def blur(x, k):
|
||||
'''
|
||||
x: image, NxcxHxW
|
||||
k: kernel, Nx1xhxw
|
||||
'''
|
||||
n, c = x.shape[:2]
|
||||
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
|
||||
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
|
||||
k = k.repeat(1, c, 1, 1)
|
||||
k = k.view(-1, 1, k.shape[2], k.shape[3])
|
||||
x = x.view(1, -1, x.shape[2], x.shape[3])
|
||||
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
|
||||
x = x.view(n, c, x.shape[2], x.shape[3])
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
|
||||
""""
|
||||
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
|
||||
# Kai Zhang
|
||||
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
|
||||
# max_var = 2.5 * sf
|
||||
"""
|
||||
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
|
||||
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
|
||||
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
|
||||
theta = np.random.rand() * np.pi # random theta
|
||||
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
|
||||
|
||||
# Set COV matrix using Lambdas and Theta
|
||||
LAMBDA = np.diag([lambda_1, lambda_2])
|
||||
Q = np.array([[np.cos(theta), -np.sin(theta)],
|
||||
[np.sin(theta), np.cos(theta)]])
|
||||
SIGMA = Q @ LAMBDA @ Q.T
|
||||
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
|
||||
|
||||
# Set expectation position (shifting kernel for aligned image)
|
||||
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
|
||||
MU = MU[None, None, :, None]
|
||||
|
||||
# Create meshgrid for Gaussian
|
||||
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
|
||||
Z = np.stack([X, Y], 2)[:, :, :, None]
|
||||
|
||||
# Calcualte Gaussian for every pixel of the kernel
|
||||
ZZ = Z - MU
|
||||
ZZ_t = ZZ.transpose(0, 1, 3, 2)
|
||||
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
|
||||
|
||||
# shift the kernel so it will be centered
|
||||
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
|
||||
|
||||
# Normalize the kernel and return
|
||||
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
|
||||
kernel = raw_kernel / np.sum(raw_kernel)
|
||||
return kernel
|
||||
|
||||
|
||||
def fspecial_gaussian(hsize, sigma):
|
||||
hsize = [hsize, hsize]
|
||||
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
|
||||
std = sigma
|
||||
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
|
||||
arg = -(x * x + y * y) / (2 * std * std)
|
||||
h = np.exp(arg)
|
||||
h[h < scipy.finfo(float).eps * h.max()] = 0
|
||||
sumh = h.sum()
|
||||
if sumh != 0:
|
||||
h = h / sumh
|
||||
return h
|
||||
|
||||
|
||||
def fspecial_laplacian(alpha):
|
||||
alpha = max([0, min([alpha, 1])])
|
||||
h1 = alpha / (alpha + 1)
|
||||
h2 = (1 - alpha) / (alpha + 1)
|
||||
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
|
||||
h = np.array(h)
|
||||
return h
|
||||
|
||||
|
||||
def fspecial(filter_type, *args, **kwargs):
|
||||
'''
|
||||
python code from:
|
||||
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
|
||||
'''
|
||||
if filter_type == 'gaussian':
|
||||
return fspecial_gaussian(*args, **kwargs)
|
||||
if filter_type == 'laplacian':
|
||||
return fspecial_laplacian(*args, **kwargs)
|
||||
|
||||
|
||||
"""
|
||||
# --------------------------------------------
|
||||
# degradation models
|
||||
# --------------------------------------------
|
||||
"""
|
||||
|
||||
|
||||
def bicubic_degradation(x, sf=3):
|
||||
'''
|
||||
Args:
|
||||
x: HxWxC image, [0, 1]
|
||||
sf: down-scale factor
|
||||
Return:
|
||||
bicubicly downsampled LR image
|
||||
'''
|
||||
x = util.imresize_np(x, scale=1 / sf)
|
||||
return x
|
||||
|
||||
|
||||
def srmd_degradation(x, k, sf=3):
|
||||
''' blur + bicubic downsampling
|
||||
Args:
|
||||
x: HxWxC image, [0, 1]
|
||||
k: hxw, double
|
||||
sf: down-scale factor
|
||||
Return:
|
||||
downsampled LR image
|
||||
Reference:
|
||||
@inproceedings{zhang2018learning,
|
||||
title={Learning a single convolutional super-resolution network for multiple degradations},
|
||||
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
||||
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
||||
pages={3262--3271},
|
||||
year={2018}
|
||||
}
|
||||
'''
|
||||
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
|
||||
x = bicubic_degradation(x, sf=sf)
|
||||
return x
|
||||
|
||||
|
||||
def dpsr_degradation(x, k, sf=3):
|
||||
''' bicubic downsampling + blur
|
||||
Args:
|
||||
x: HxWxC image, [0, 1]
|
||||
k: hxw, double
|
||||
sf: down-scale factor
|
||||
Return:
|
||||
downsampled LR image
|
||||
Reference:
|
||||
@inproceedings{zhang2019deep,
|
||||
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
|
||||
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
||||
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
||||
pages={1671--1681},
|
||||
year={2019}
|
||||
}
|
||||
'''
|
||||
x = bicubic_degradation(x, sf=sf)
|
||||
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
||||
return x
|
||||
|
||||
|
||||
def classical_degradation(x, k, sf=3):
|
||||
''' blur + downsampling
|
||||
Args:
|
||||
x: HxWxC image, [0, 1]/[0, 255]
|
||||
k: hxw, double
|
||||
sf: down-scale factor
|
||||
Return:
|
||||
downsampled LR image
|
||||
'''
|
||||
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
||||
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
|
||||
st = 0
|
||||
return x[st::sf, st::sf, ...]
|
||||
|
||||
|
||||
def add_sharpening(img, weight=0.5, radius=50, threshold=10):
|
||||
"""USM sharpening. borrowed from real-ESRGAN
|
||||
Input image: I; Blurry image: B.
|
||||
1. K = I + weight * (I - B)
|
||||
2. Mask = 1 if abs(I - B) > threshold, else: 0
|
||||
3. Blur mask:
|
||||
4. Out = Mask * K + (1 - Mask) * I
|
||||
Args:
|
||||
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
|
||||
weight (float): Sharp weight. Default: 1.
|
||||
radius (float): Kernel size of Gaussian blur. Default: 50.
|
||||
threshold (int):
|
||||
"""
|
||||
if radius % 2 == 0:
|
||||
radius += 1
|
||||
blur = cv2.GaussianBlur(img, (radius, radius), 0)
|
||||
residual = img - blur
|
||||
mask = np.abs(residual) * 255 > threshold
|
||||
mask = mask.astype('float32')
|
||||
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
|
||||
|
||||
K = img + weight * residual
|
||||
K = np.clip(K, 0, 1)
|
||||
return soft_mask * K + (1 - soft_mask) * img
|
||||
|
||||
|
||||
def add_blur(img, sf=4):
|
||||
wd2 = 4.0 + sf
|
||||
wd = 2.0 + 0.2 * sf
|
||||
if random.random() < 0.5:
|
||||
l1 = wd2 * random.random()
|
||||
l2 = wd2 * random.random()
|
||||
k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
|
||||
else:
|
||||
k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
|
||||
img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
|
||||
|
||||
return img
|
||||
|
||||
|
||||
def add_resize(img, sf=4):
|
||||
rnum = np.random.rand()
|
||||
if rnum > 0.8: # up
|
||||
sf1 = random.uniform(1, 2)
|
||||
elif rnum < 0.7: # down
|
||||
sf1 = random.uniform(0.5 / sf, 1)
|
||||
else:
|
||||
sf1 = 1.0
|
||||
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
|
||||
return img
|
||||
|
||||
|
||||
# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
||||
# noise_level = random.randint(noise_level1, noise_level2)
|
||||
# rnum = np.random.rand()
|
||||
# if rnum > 0.6: # add color Gaussian noise
|
||||
# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
||||
# elif rnum < 0.4: # add grayscale Gaussian noise
|
||||
# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
||||
# else: # add noise
|
||||
# L = noise_level2 / 255.
|
||||
# D = np.diag(np.random.rand(3))
|
||||
# U = orth(np.random.rand(3, 3))
|
||||
# conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||
# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
||||
# img = np.clip(img, 0.0, 1.0)
|
||||
# return img
|
||||
|
||||
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
||||
noise_level = random.randint(noise_level1, noise_level2)
|
||||
rnum = np.random.rand()
|
||||
if rnum > 0.6: # add color Gaussian noise
|
||||
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
||||
elif rnum < 0.4: # add grayscale Gaussian noise
|
||||
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
||||
else: # add noise
|
||||
L = noise_level2 / 255.
|
||||
D = np.diag(np.random.rand(3))
|
||||
U = orth(np.random.rand(3, 3))
|
||||
conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
return img
|
||||
|
||||
|
||||
def add_speckle_noise(img, noise_level1=2, noise_level2=25):
|
||||
noise_level = random.randint(noise_level1, noise_level2)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
rnum = random.random()
|
||||
if rnum > 0.6:
|
||||
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
||||
elif rnum < 0.4:
|
||||
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
||||
else:
|
||||
L = noise_level2 / 255.
|
||||
D = np.diag(np.random.rand(3))
|
||||
U = orth(np.random.rand(3, 3))
|
||||
conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
return img
|
||||
|
||||
|
||||
def add_Poisson_noise(img):
|
||||
img = np.clip((img * 255.0).round(), 0, 255) / 255.
|
||||
vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
|
||||
if random.random() < 0.5:
|
||||
img = np.random.poisson(img * vals).astype(np.float32) / vals
|
||||
else:
|
||||
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
|
||||
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
|
||||
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
|
||||
img += noise_gray[:, :, np.newaxis]
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
return img
|
||||
|
||||
|
||||
def add_JPEG_noise(img):
|
||||
quality_factor = random.randint(30, 95)
|
||||
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
|
||||
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
|
||||
img = cv2.imdecode(encimg, 1)
|
||||
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
|
||||
return img
|
||||
|
||||
|
||||
def random_crop(lq, hq, sf=4, lq_patchsize=64):
|
||||
h, w = lq.shape[:2]
|
||||
rnd_h = random.randint(0, h - lq_patchsize)
|
||||
rnd_w = random.randint(0, w - lq_patchsize)
|
||||
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
|
||||
|
||||
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
|
||||
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
|
||||
return lq, hq
|
||||
|
||||
|
||||
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
||||
"""
|
||||
This is the degradation model of BSRGAN from the paper
|
||||
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
||||
----------
|
||||
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
||||
sf: scale factor
|
||||
isp_model: camera ISP model
|
||||
Returns
|
||||
-------
|
||||
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
||||
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
||||
"""
|
||||
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
||||
sf_ori = sf
|
||||
|
||||
h1, w1 = img.shape[:2]
|
||||
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
||||
h, w = img.shape[:2]
|
||||
|
||||
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
||||
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
||||
|
||||
hq = img.copy()
|
||||
|
||||
if sf == 4 and random.random() < scale2_prob: # downsample1
|
||||
if np.random.rand() < 0.5:
|
||||
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]))
|
||||
else:
|
||||
img = util.imresize_np(img, 1 / 2, True)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
sf = 2
|
||||
|
||||
shuffle_order = random.sample(range(7), 7)
|
||||
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
||||
if idx1 > idx2: # keep downsample3 last
|
||||
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
||||
|
||||
for i in shuffle_order:
|
||||
|
||||
if i == 0:
|
||||
img = add_blur(img, sf=sf)
|
||||
|
||||
elif i == 1:
|
||||
img = add_blur(img, sf=sf)
|
||||
|
||||
elif i == 2:
|
||||
a, b = img.shape[1], img.shape[0]
|
||||
# downsample2
|
||||
if random.random() < 0.75:
|
||||
sf1 = random.uniform(1, 2 * sf)
|
||||
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]))
|
||||
else:
|
||||
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
||||
k_shifted = shift_pixel(k, sf)
|
||||
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
||||
img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
||||
img = img[0::sf, 0::sf, ...] # nearest downsampling
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
|
||||
elif i == 3:
|
||||
# downsample3
|
||||
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
|
||||
elif i == 4:
|
||||
# add Gaussian noise
|
||||
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
||||
|
||||
elif i == 5:
|
||||
# add JPEG noise
|
||||
if random.random() < jpeg_prob:
|
||||
img = add_JPEG_noise(img)
|
||||
|
||||
elif i == 6:
|
||||
# add processed camera sensor noise
|
||||
if random.random() < isp_prob and isp_model is not None:
|
||||
with torch.no_grad():
|
||||
img, hq = isp_model.forward(img.copy(), hq)
|
||||
|
||||
# add final JPEG compression noise
|
||||
img = add_JPEG_noise(img)
|
||||
|
||||
# random crop
|
||||
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
|
||||
|
||||
return img, hq
|
||||
|
||||
|
||||
# todo no isp_model?
|
||||
def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
||||
"""
|
||||
This is the degradation model of BSRGAN from the paper
|
||||
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
||||
----------
|
||||
sf: scale factor
|
||||
isp_model: camera ISP model
|
||||
Returns
|
||||
-------
|
||||
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
||||
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
||||
"""
|
||||
image = util.uint2single(image)
|
||||
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
||||
sf_ori = sf
|
||||
|
||||
h1, w1 = image.shape[:2]
|
||||
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
||||
h, w = image.shape[:2]
|
||||
|
||||
hq = image.copy()
|
||||
|
||||
if sf == 4 and random.random() < scale2_prob: # downsample1
|
||||
if np.random.rand() < 0.5:
|
||||
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]))
|
||||
else:
|
||||
image = util.imresize_np(image, 1 / 2, True)
|
||||
image = np.clip(image, 0.0, 1.0)
|
||||
sf = 2
|
||||
|
||||
shuffle_order = random.sample(range(7), 7)
|
||||
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
||||
if idx1 > idx2: # keep downsample3 last
|
||||
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
||||
|
||||
for i in shuffle_order:
|
||||
|
||||
if i == 0:
|
||||
image = add_blur(image, sf=sf)
|
||||
|
||||
elif i == 1:
|
||||
image = add_blur(image, sf=sf)
|
||||
|
||||
elif i == 2:
|
||||
a, b = image.shape[1], image.shape[0]
|
||||
# downsample2
|
||||
if random.random() < 0.75:
|
||||
sf1 = random.uniform(1, 2 * sf)
|
||||
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]))
|
||||
else:
|
||||
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
||||
k_shifted = shift_pixel(k, sf)
|
||||
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
||||
image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
||||
image = image[0::sf, 0::sf, ...] # nearest downsampling
|
||||
image = np.clip(image, 0.0, 1.0)
|
||||
|
||||
elif i == 3:
|
||||
# downsample3
|
||||
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
||||
image = np.clip(image, 0.0, 1.0)
|
||||
|
||||
elif i == 4:
|
||||
# add Gaussian noise
|
||||
image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
|
||||
|
||||
elif i == 5:
|
||||
# add JPEG noise
|
||||
if random.random() < jpeg_prob:
|
||||
image = add_JPEG_noise(image)
|
||||
|
||||
# elif i == 6:
|
||||
# # add processed camera sensor noise
|
||||
# if random.random() < isp_prob and isp_model is not None:
|
||||
# with torch.no_grad():
|
||||
# img, hq = isp_model.forward(img.copy(), hq)
|
||||
|
||||
# add final JPEG compression noise
|
||||
image = add_JPEG_noise(image)
|
||||
image = util.single2uint(image)
|
||||
example = {"image":image}
|
||||
return example
|
||||
|
||||
|
||||
# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
|
||||
def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
|
||||
"""
|
||||
This is an extended degradation model by combining
|
||||
the degradation models of BSRGAN and Real-ESRGAN
|
||||
----------
|
||||
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
||||
sf: scale factor
|
||||
use_shuffle: the degradation shuffle
|
||||
use_sharp: sharpening the img
|
||||
Returns
|
||||
-------
|
||||
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
||||
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
||||
"""
|
||||
|
||||
h1, w1 = img.shape[:2]
|
||||
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
||||
h, w = img.shape[:2]
|
||||
|
||||
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
||||
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
||||
|
||||
if use_sharp:
|
||||
img = add_sharpening(img)
|
||||
hq = img.copy()
|
||||
|
||||
if random.random() < shuffle_prob:
|
||||
shuffle_order = random.sample(range(13), 13)
|
||||
else:
|
||||
shuffle_order = list(range(13))
|
||||
# local shuffle for noise, JPEG is always the last one
|
||||
shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
|
||||
shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
|
||||
|
||||
poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
|
||||
|
||||
for i in shuffle_order:
|
||||
if i == 0:
|
||||
img = add_blur(img, sf=sf)
|
||||
elif i == 1:
|
||||
img = add_resize(img, sf=sf)
|
||||
elif i == 2:
|
||||
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
||||
elif i == 3:
|
||||
if random.random() < poisson_prob:
|
||||
img = add_Poisson_noise(img)
|
||||
elif i == 4:
|
||||
if random.random() < speckle_prob:
|
||||
img = add_speckle_noise(img)
|
||||
elif i == 5:
|
||||
if random.random() < isp_prob and isp_model is not None:
|
||||
with torch.no_grad():
|
||||
img, hq = isp_model.forward(img.copy(), hq)
|
||||
elif i == 6:
|
||||
img = add_JPEG_noise(img)
|
||||
elif i == 7:
|
||||
img = add_blur(img, sf=sf)
|
||||
elif i == 8:
|
||||
img = add_resize(img, sf=sf)
|
||||
elif i == 9:
|
||||
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
||||
elif i == 10:
|
||||
if random.random() < poisson_prob:
|
||||
img = add_Poisson_noise(img)
|
||||
elif i == 11:
|
||||
if random.random() < speckle_prob:
|
||||
img = add_speckle_noise(img)
|
||||
elif i == 12:
|
||||
if random.random() < isp_prob and isp_model is not None:
|
||||
with torch.no_grad():
|
||||
img, hq = isp_model.forward(img.copy(), hq)
|
||||
else:
|
||||
print('check the shuffle!')
|
||||
|
||||
# resize to desired size
|
||||
img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]))
|
||||
|
||||
# add final JPEG compression noise
|
||||
img = add_JPEG_noise(img)
|
||||
|
||||
# random crop
|
||||
img, hq = random_crop(img, hq, sf, lq_patchsize)
|
||||
|
||||
return img, hq
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print("hey")
|
||||
img = util.imread_uint('utils/test.png', 3)
|
||||
print(img)
|
||||
img = util.uint2single(img)
|
||||
print(img)
|
||||
img = img[:448, :448]
|
||||
h = img.shape[0] // 4
|
||||
print("resizing to", h)
|
||||
sf = 4
|
||||
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
|
||||
for i in range(20):
|
||||
print(i)
|
||||
img_lq = deg_fn(img)
|
||||
print(img_lq)
|
||||
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
|
||||
print(img_lq.shape)
|
||||
print("bicubic", img_lq_bicubic.shape)
|
||||
print(img_hq.shape)
|
||||
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
||||
interpolation=0)
|
||||
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
||||
interpolation=0)
|
||||
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
|
||||
util.imsave(img_concat, str(i) + '.png')
|
||||
|
||||
|
|
@ -1,651 +0,0 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
import numpy as np
|
||||
import cv2
|
||||
import torch
|
||||
|
||||
from functools import partial
|
||||
import random
|
||||
from scipy import ndimage
|
||||
import scipy
|
||||
import scipy.stats as ss
|
||||
from scipy.interpolate import interp2d
|
||||
from scipy.linalg import orth
|
||||
import albumentations
|
||||
|
||||
import ldm.modules.image_degradation.utils_image as util
|
||||
|
||||
"""
|
||||
# --------------------------------------------
|
||||
# Super-Resolution
|
||||
# --------------------------------------------
|
||||
#
|
||||
# Kai Zhang (cskaizhang@gmail.com)
|
||||
# https://github.com/cszn
|
||||
# From 2019/03--2021/08
|
||||
# --------------------------------------------
|
||||
"""
|
||||
|
||||
def modcrop_np(img, sf):
|
||||
'''
|
||||
Args:
|
||||
img: numpy image, WxH or WxHxC
|
||||
sf: scale factor
|
||||
Return:
|
||||
cropped image
|
||||
'''
|
||||
w, h = img.shape[:2]
|
||||
im = np.copy(img)
|
||||
return im[:w - w % sf, :h - h % sf, ...]
|
||||
|
||||
|
||||
"""
|
||||
# --------------------------------------------
|
||||
# anisotropic Gaussian kernels
|
||||
# --------------------------------------------
|
||||
"""
|
||||
|
||||
|
||||
def analytic_kernel(k):
|
||||
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
|
||||
k_size = k.shape[0]
|
||||
# Calculate the big kernels size
|
||||
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
|
||||
# Loop over the small kernel to fill the big one
|
||||
for r in range(k_size):
|
||||
for c in range(k_size):
|
||||
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
|
||||
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
|
||||
crop = k_size // 2
|
||||
cropped_big_k = big_k[crop:-crop, crop:-crop]
|
||||
# Normalize to 1
|
||||
return cropped_big_k / cropped_big_k.sum()
|
||||
|
||||
|
||||
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
|
||||
""" generate an anisotropic Gaussian kernel
|
||||
Args:
|
||||
ksize : e.g., 15, kernel size
|
||||
theta : [0, pi], rotation angle range
|
||||
l1 : [0.1,50], scaling of eigenvalues
|
||||
l2 : [0.1,l1], scaling of eigenvalues
|
||||
If l1 = l2, will get an isotropic Gaussian kernel.
|
||||
Returns:
|
||||
k : kernel
|
||||
"""
|
||||
|
||||
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
|
||||
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
|
||||
D = np.array([[l1, 0], [0, l2]])
|
||||
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
|
||||
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
|
||||
|
||||
return k
|
||||
|
||||
|
||||
def gm_blur_kernel(mean, cov, size=15):
|
||||
center = size / 2.0 + 0.5
|
||||
k = np.zeros([size, size])
|
||||
for y in range(size):
|
||||
for x in range(size):
|
||||
cy = y - center + 1
|
||||
cx = x - center + 1
|
||||
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
|
||||
|
||||
k = k / np.sum(k)
|
||||
return k
|
||||
|
||||
|
||||
def shift_pixel(x, sf, upper_left=True):
|
||||
"""shift pixel for super-resolution with different scale factors
|
||||
Args:
|
||||
x: WxHxC or WxH
|
||||
sf: scale factor
|
||||
upper_left: shift direction
|
||||
"""
|
||||
h, w = x.shape[:2]
|
||||
shift = (sf - 1) * 0.5
|
||||
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
|
||||
if upper_left:
|
||||
x1 = xv + shift
|
||||
y1 = yv + shift
|
||||
else:
|
||||
x1 = xv - shift
|
||||
y1 = yv - shift
|
||||
|
||||
x1 = np.clip(x1, 0, w - 1)
|
||||
y1 = np.clip(y1, 0, h - 1)
|
||||
|
||||
if x.ndim == 2:
|
||||
x = interp2d(xv, yv, x)(x1, y1)
|
||||
if x.ndim == 3:
|
||||
for i in range(x.shape[-1]):
|
||||
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def blur(x, k):
|
||||
'''
|
||||
x: image, NxcxHxW
|
||||
k: kernel, Nx1xhxw
|
||||
'''
|
||||
n, c = x.shape[:2]
|
||||
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
|
||||
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
|
||||
k = k.repeat(1, c, 1, 1)
|
||||
k = k.view(-1, 1, k.shape[2], k.shape[3])
|
||||
x = x.view(1, -1, x.shape[2], x.shape[3])
|
||||
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
|
||||
x = x.view(n, c, x.shape[2], x.shape[3])
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
|
||||
""""
|
||||
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
|
||||
# Kai Zhang
|
||||
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
|
||||
# max_var = 2.5 * sf
|
||||
"""
|
||||
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
|
||||
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
|
||||
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
|
||||
theta = np.random.rand() * np.pi # random theta
|
||||
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
|
||||
|
||||
# Set COV matrix using Lambdas and Theta
|
||||
LAMBDA = np.diag([lambda_1, lambda_2])
|
||||
Q = np.array([[np.cos(theta), -np.sin(theta)],
|
||||
[np.sin(theta), np.cos(theta)]])
|
||||
SIGMA = Q @ LAMBDA @ Q.T
|
||||
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
|
||||
|
||||
# Set expectation position (shifting kernel for aligned image)
|
||||
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
|
||||
MU = MU[None, None, :, None]
|
||||
|
||||
# Create meshgrid for Gaussian
|
||||
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
|
||||
Z = np.stack([X, Y], 2)[:, :, :, None]
|
||||
|
||||
# Calcualte Gaussian for every pixel of the kernel
|
||||
ZZ = Z - MU
|
||||
ZZ_t = ZZ.transpose(0, 1, 3, 2)
|
||||
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
|
||||
|
||||
# shift the kernel so it will be centered
|
||||
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
|
||||
|
||||
# Normalize the kernel and return
|
||||
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
|
||||
kernel = raw_kernel / np.sum(raw_kernel)
|
||||
return kernel
|
||||
|
||||
|
||||
def fspecial_gaussian(hsize, sigma):
|
||||
hsize = [hsize, hsize]
|
||||
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
|
||||
std = sigma
|
||||
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
|
||||
arg = -(x * x + y * y) / (2 * std * std)
|
||||
h = np.exp(arg)
|
||||
h[h < scipy.finfo(float).eps * h.max()] = 0
|
||||
sumh = h.sum()
|
||||
if sumh != 0:
|
||||
h = h / sumh
|
||||
return h
|
||||
|
||||
|
||||
def fspecial_laplacian(alpha):
|
||||
alpha = max([0, min([alpha, 1])])
|
||||
h1 = alpha / (alpha + 1)
|
||||
h2 = (1 - alpha) / (alpha + 1)
|
||||
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
|
||||
h = np.array(h)
|
||||
return h
|
||||
|
||||
|
||||
def fspecial(filter_type, *args, **kwargs):
|
||||
'''
|
||||
python code from:
|
||||
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
|
||||
'''
|
||||
if filter_type == 'gaussian':
|
||||
return fspecial_gaussian(*args, **kwargs)
|
||||
if filter_type == 'laplacian':
|
||||
return fspecial_laplacian(*args, **kwargs)
|
||||
|
||||
|
||||
"""
|
||||
# --------------------------------------------
|
||||
# degradation models
|
||||
# --------------------------------------------
|
||||
"""
|
||||
|
||||
|
||||
def bicubic_degradation(x, sf=3):
|
||||
'''
|
||||
Args:
|
||||
x: HxWxC image, [0, 1]
|
||||
sf: down-scale factor
|
||||
Return:
|
||||
bicubicly downsampled LR image
|
||||
'''
|
||||
x = util.imresize_np(x, scale=1 / sf)
|
||||
return x
|
||||
|
||||
|
||||
def srmd_degradation(x, k, sf=3):
|
||||
''' blur + bicubic downsampling
|
||||
Args:
|
||||
x: HxWxC image, [0, 1]
|
||||
k: hxw, double
|
||||
sf: down-scale factor
|
||||
Return:
|
||||
downsampled LR image
|
||||
Reference:
|
||||
@inproceedings{zhang2018learning,
|
||||
title={Learning a single convolutional super-resolution network for multiple degradations},
|
||||
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
||||
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
||||
pages={3262--3271},
|
||||
year={2018}
|
||||
}
|
||||
'''
|
||||
x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
|
||||
x = bicubic_degradation(x, sf=sf)
|
||||
return x
|
||||
|
||||
|
||||
def dpsr_degradation(x, k, sf=3):
|
||||
''' bicubic downsampling + blur
|
||||
Args:
|
||||
x: HxWxC image, [0, 1]
|
||||
k: hxw, double
|
||||
sf: down-scale factor
|
||||
Return:
|
||||
downsampled LR image
|
||||
Reference:
|
||||
@inproceedings{zhang2019deep,
|
||||
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
|
||||
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
||||
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
||||
pages={1671--1681},
|
||||
year={2019}
|
||||
}
|
||||
'''
|
||||
x = bicubic_degradation(x, sf=sf)
|
||||
x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
||||
return x
|
||||
|
||||
|
||||
def classical_degradation(x, k, sf=3):
|
||||
''' blur + downsampling
|
||||
Args:
|
||||
x: HxWxC image, [0, 1]/[0, 255]
|
||||
k: hxw, double
|
||||
sf: down-scale factor
|
||||
Return:
|
||||
downsampled LR image
|
||||
'''
|
||||
x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
||||
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
|
||||
st = 0
|
||||
return x[st::sf, st::sf, ...]
|
||||
|
||||
|
||||
def add_sharpening(img, weight=0.5, radius=50, threshold=10):
|
||||
"""USM sharpening. borrowed from real-ESRGAN
|
||||
Input image: I; Blurry image: B.
|
||||
1. K = I + weight * (I - B)
|
||||
2. Mask = 1 if abs(I - B) > threshold, else: 0
|
||||
3. Blur mask:
|
||||
4. Out = Mask * K + (1 - Mask) * I
|
||||
Args:
|
||||
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
|
||||
weight (float): Sharp weight. Default: 1.
|
||||
radius (float): Kernel size of Gaussian blur. Default: 50.
|
||||
threshold (int):
|
||||
"""
|
||||
if radius % 2 == 0:
|
||||
radius += 1
|
||||
blur = cv2.GaussianBlur(img, (radius, radius), 0)
|
||||
residual = img - blur
|
||||
mask = np.abs(residual) * 255 > threshold
|
||||
mask = mask.astype('float32')
|
||||
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
|
||||
|
||||
K = img + weight * residual
|
||||
K = np.clip(K, 0, 1)
|
||||
return soft_mask * K + (1 - soft_mask) * img
|
||||
|
||||
|
||||
def add_blur(img, sf=4):
|
||||
wd2 = 4.0 + sf
|
||||
wd = 2.0 + 0.2 * sf
|
||||
|
||||
wd2 = wd2/4
|
||||
wd = wd/4
|
||||
|
||||
if random.random() < 0.5:
|
||||
l1 = wd2 * random.random()
|
||||
l2 = wd2 * random.random()
|
||||
k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
|
||||
else:
|
||||
k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
|
||||
img = ndimage.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
|
||||
|
||||
return img
|
||||
|
||||
|
||||
def add_resize(img, sf=4):
|
||||
rnum = np.random.rand()
|
||||
if rnum > 0.8: # up
|
||||
sf1 = random.uniform(1, 2)
|
||||
elif rnum < 0.7: # down
|
||||
sf1 = random.uniform(0.5 / sf, 1)
|
||||
else:
|
||||
sf1 = 1.0
|
||||
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
|
||||
return img
|
||||
|
||||
|
||||
# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
||||
# noise_level = random.randint(noise_level1, noise_level2)
|
||||
# rnum = np.random.rand()
|
||||
# if rnum > 0.6: # add color Gaussian noise
|
||||
# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
||||
# elif rnum < 0.4: # add grayscale Gaussian noise
|
||||
# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
||||
# else: # add noise
|
||||
# L = noise_level2 / 255.
|
||||
# D = np.diag(np.random.rand(3))
|
||||
# U = orth(np.random.rand(3, 3))
|
||||
# conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||
# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
||||
# img = np.clip(img, 0.0, 1.0)
|
||||
# return img
|
||||
|
||||
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
||||
noise_level = random.randint(noise_level1, noise_level2)
|
||||
rnum = np.random.rand()
|
||||
if rnum > 0.6: # add color Gaussian noise
|
||||
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
||||
elif rnum < 0.4: # add grayscale Gaussian noise
|
||||
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
||||
else: # add noise
|
||||
L = noise_level2 / 255.
|
||||
D = np.diag(np.random.rand(3))
|
||||
U = orth(np.random.rand(3, 3))
|
||||
conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
return img
|
||||
|
||||
|
||||
def add_speckle_noise(img, noise_level1=2, noise_level2=25):
|
||||
noise_level = random.randint(noise_level1, noise_level2)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
rnum = random.random()
|
||||
if rnum > 0.6:
|
||||
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
||||
elif rnum < 0.4:
|
||||
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
||||
else:
|
||||
L = noise_level2 / 255.
|
||||
D = np.diag(np.random.rand(3))
|
||||
U = orth(np.random.rand(3, 3))
|
||||
conv = np.dot(np.dot(np.transpose(U), D), U)
|
||||
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
return img
|
||||
|
||||
|
||||
def add_Poisson_noise(img):
|
||||
img = np.clip((img * 255.0).round(), 0, 255) / 255.
|
||||
vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
|
||||
if random.random() < 0.5:
|
||||
img = np.random.poisson(img * vals).astype(np.float32) / vals
|
||||
else:
|
||||
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
|
||||
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
|
||||
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
|
||||
img += noise_gray[:, :, np.newaxis]
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
return img
|
||||
|
||||
|
||||
def add_JPEG_noise(img):
|
||||
quality_factor = random.randint(80, 95)
|
||||
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
|
||||
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
|
||||
img = cv2.imdecode(encimg, 1)
|
||||
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
|
||||
return img
|
||||
|
||||
|
||||
def random_crop(lq, hq, sf=4, lq_patchsize=64):
|
||||
h, w = lq.shape[:2]
|
||||
rnd_h = random.randint(0, h - lq_patchsize)
|
||||
rnd_w = random.randint(0, w - lq_patchsize)
|
||||
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
|
||||
|
||||
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
|
||||
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
|
||||
return lq, hq
|
||||
|
||||
|
||||
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
||||
"""
|
||||
This is the degradation model of BSRGAN from the paper
|
||||
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
||||
----------
|
||||
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
||||
sf: scale factor
|
||||
isp_model: camera ISP model
|
||||
Returns
|
||||
-------
|
||||
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
||||
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
||||
"""
|
||||
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
||||
sf_ori = sf
|
||||
|
||||
h1, w1 = img.shape[:2]
|
||||
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
||||
h, w = img.shape[:2]
|
||||
|
||||
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
||||
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
||||
|
||||
hq = img.copy()
|
||||
|
||||
if sf == 4 and random.random() < scale2_prob: # downsample1
|
||||
if np.random.rand() < 0.5:
|
||||
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]))
|
||||
else:
|
||||
img = util.imresize_np(img, 1 / 2, True)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
sf = 2
|
||||
|
||||
shuffle_order = random.sample(range(7), 7)
|
||||
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
||||
if idx1 > idx2: # keep downsample3 last
|
||||
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
||||
|
||||
for i in shuffle_order:
|
||||
|
||||
if i == 0:
|
||||
img = add_blur(img, sf=sf)
|
||||
|
||||
elif i == 1:
|
||||
img = add_blur(img, sf=sf)
|
||||
|
||||
elif i == 2:
|
||||
a, b = img.shape[1], img.shape[0]
|
||||
# downsample2
|
||||
if random.random() < 0.75:
|
||||
sf1 = random.uniform(1, 2 * sf)
|
||||
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]))
|
||||
else:
|
||||
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
||||
k_shifted = shift_pixel(k, sf)
|
||||
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
||||
img = ndimage.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
||||
img = img[0::sf, 0::sf, ...] # nearest downsampling
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
|
||||
elif i == 3:
|
||||
# downsample3
|
||||
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
|
||||
elif i == 4:
|
||||
# add Gaussian noise
|
||||
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
|
||||
|
||||
elif i == 5:
|
||||
# add JPEG noise
|
||||
if random.random() < jpeg_prob:
|
||||
img = add_JPEG_noise(img)
|
||||
|
||||
elif i == 6:
|
||||
# add processed camera sensor noise
|
||||
if random.random() < isp_prob and isp_model is not None:
|
||||
with torch.no_grad():
|
||||
img, hq = isp_model.forward(img.copy(), hq)
|
||||
|
||||
# add final JPEG compression noise
|
||||
img = add_JPEG_noise(img)
|
||||
|
||||
# random crop
|
||||
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
|
||||
|
||||
return img, hq
|
||||
|
||||
|
||||
# todo no isp_model?
|
||||
def degradation_bsrgan_variant(image, sf=4, isp_model=None, up=False):
|
||||
"""
|
||||
This is the degradation model of BSRGAN from the paper
|
||||
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
||||
----------
|
||||
sf: scale factor
|
||||
isp_model: camera ISP model
|
||||
Returns
|
||||
-------
|
||||
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
||||
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
||||
"""
|
||||
image = util.uint2single(image)
|
||||
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
||||
sf_ori = sf
|
||||
|
||||
h1, w1 = image.shape[:2]
|
||||
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
||||
h, w = image.shape[:2]
|
||||
|
||||
hq = image.copy()
|
||||
|
||||
if sf == 4 and random.random() < scale2_prob: # downsample1
|
||||
if np.random.rand() < 0.5:
|
||||
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]))
|
||||
else:
|
||||
image = util.imresize_np(image, 1 / 2, True)
|
||||
image = np.clip(image, 0.0, 1.0)
|
||||
sf = 2
|
||||
|
||||
shuffle_order = random.sample(range(7), 7)
|
||||
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
||||
if idx1 > idx2: # keep downsample3 last
|
||||
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
||||
|
||||
for i in shuffle_order:
|
||||
|
||||
if i == 0:
|
||||
image = add_blur(image, sf=sf)
|
||||
|
||||
# elif i == 1:
|
||||
# image = add_blur(image, sf=sf)
|
||||
|
||||
if i == 0:
|
||||
pass
|
||||
|
||||
elif i == 2:
|
||||
a, b = image.shape[1], image.shape[0]
|
||||
# downsample2
|
||||
if random.random() < 0.8:
|
||||
sf1 = random.uniform(1, 2 * sf)
|
||||
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
|
||||
interpolation=random.choice([1, 2, 3]))
|
||||
else:
|
||||
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
||||
k_shifted = shift_pixel(k, sf)
|
||||
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
||||
image = ndimage.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
||||
image = image[0::sf, 0::sf, ...] # nearest downsampling
|
||||
|
||||
image = np.clip(image, 0.0, 1.0)
|
||||
|
||||
elif i == 3:
|
||||
# downsample3
|
||||
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
||||
image = np.clip(image, 0.0, 1.0)
|
||||
|
||||
elif i == 4:
|
||||
# add Gaussian noise
|
||||
image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
|
||||
|
||||
elif i == 5:
|
||||
# add JPEG noise
|
||||
if random.random() < jpeg_prob:
|
||||
image = add_JPEG_noise(image)
|
||||
#
|
||||
# elif i == 6:
|
||||
# # add processed camera sensor noise
|
||||
# if random.random() < isp_prob and isp_model is not None:
|
||||
# with torch.no_grad():
|
||||
# img, hq = isp_model.forward(img.copy(), hq)
|
||||
|
||||
# add final JPEG compression noise
|
||||
image = add_JPEG_noise(image)
|
||||
image = util.single2uint(image)
|
||||
if up:
|
||||
image = cv2.resize(image, (w1, h1), interpolation=cv2.INTER_CUBIC) # todo: random, as above? want to condition on it then
|
||||
example = {"image": image}
|
||||
return example
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print("hey")
|
||||
img = util.imread_uint('utils/test.png', 3)
|
||||
img = img[:448, :448]
|
||||
h = img.shape[0] // 4
|
||||
print("resizing to", h)
|
||||
sf = 4
|
||||
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
|
||||
for i in range(20):
|
||||
print(i)
|
||||
img_hq = img
|
||||
img_lq = deg_fn(img)["image"]
|
||||
img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
|
||||
print(img_lq)
|
||||
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
|
||||
print(img_lq.shape)
|
||||
print("bicubic", img_lq_bicubic.shape)
|
||||
print(img_hq.shape)
|
||||
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
||||
interpolation=0)
|
||||
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
|
||||
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
||||
interpolation=0)
|
||||
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
|
||||
util.imsave(img_concat, str(i) + '.png')
|
Binary file not shown.
Before Width: | Height: | Size: 431 KiB |
|
@ -1,916 +0,0 @@
|
|||
import os
|
||||
import math
|
||||
import random
|
||||
import numpy as np
|
||||
import torch
|
||||
import cv2
|
||||
from torchvision.utils import make_grid
|
||||
from datetime import datetime
|
||||
#import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
|
||||
|
||||
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
|
||||
|
||||
|
||||
'''
|
||||
# --------------------------------------------
|
||||
# Kai Zhang (github: https://github.com/cszn)
|
||||
# 03/Mar/2019
|
||||
# --------------------------------------------
|
||||
# https://github.com/twhui/SRGAN-pyTorch
|
||||
# https://github.com/xinntao/BasicSR
|
||||
# --------------------------------------------
|
||||
'''
|
||||
|
||||
|
||||
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
|
||||
|
||||
|
||||
def is_image_file(filename):
|
||||
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
|
||||
|
||||
|
||||
def get_timestamp():
|
||||
return datetime.now().strftime('%y%m%d-%H%M%S')
|
||||
|
||||
|
||||
def imshow(x, title=None, cbar=False, figsize=None):
|
||||
plt.figure(figsize=figsize)
|
||||
plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
|
||||
if title:
|
||||
plt.title(title)
|
||||
if cbar:
|
||||
plt.colorbar()
|
||||
plt.show()
|
||||
|
||||
|
||||
def surf(Z, cmap='rainbow', figsize=None):
|
||||
plt.figure(figsize=figsize)
|
||||
ax3 = plt.axes(projection='3d')
|
||||
|
||||
w, h = Z.shape[:2]
|
||||
xx = np.arange(0,w,1)
|
||||
yy = np.arange(0,h,1)
|
||||
X, Y = np.meshgrid(xx, yy)
|
||||
ax3.plot_surface(X,Y,Z,cmap=cmap)
|
||||
#ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
|
||||
plt.show()
|
||||
|
||||
|
||||
'''
|
||||
# --------------------------------------------
|
||||
# get image pathes
|
||||
# --------------------------------------------
|
||||
'''
|
||||
|
||||
|
||||
def get_image_paths(dataroot):
|
||||
paths = None # return None if dataroot is None
|
||||
if dataroot is not None:
|
||||
paths = sorted(_get_paths_from_images(dataroot))
|
||||
return paths
|
||||
|
||||
|
||||
def _get_paths_from_images(path):
|
||||
assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
|
||||
images = []
|
||||
for dirpath, _, fnames in sorted(os.walk(path)):
|
||||
for fname in sorted(fnames):
|
||||
if is_image_file(fname):
|
||||
img_path = os.path.join(dirpath, fname)
|
||||
images.append(img_path)
|
||||
assert images, '{:s} has no valid image file'.format(path)
|
||||
return images
|
||||
|
||||
|
||||
'''
|
||||
# --------------------------------------------
|
||||
# split large images into small images
|
||||
# --------------------------------------------
|
||||
'''
|
||||
|
||||
|
||||
def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
|
||||
w, h = img.shape[:2]
|
||||
patches = []
|
||||
if w > p_max and h > p_max:
|
||||
w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
|
||||
h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
|
||||
w1.append(w-p_size)
|
||||
h1.append(h-p_size)
|
||||
# print(w1)
|
||||
# print(h1)
|
||||
for i in w1:
|
||||
for j in h1:
|
||||
patches.append(img[i:i+p_size, j:j+p_size,:])
|
||||
else:
|
||||
patches.append(img)
|
||||
|
||||
return patches
|
||||
|
||||
|
||||
def imssave(imgs, img_path):
|
||||
"""
|
||||
imgs: list, N images of size WxHxC
|
||||
"""
|
||||
img_name, ext = os.path.splitext(os.path.basename(img_path))
|
||||
|
||||
for i, img in enumerate(imgs):
|
||||
if img.ndim == 3:
|
||||
img = img[:, :, [2, 1, 0]]
|
||||
new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
|
||||
cv2.imwrite(new_path, img)
|
||||
|
||||
|
||||
def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
|
||||
"""
|
||||
split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
|
||||
and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
|
||||
will be splitted.
|
||||
Args:
|
||||
original_dataroot:
|
||||
taget_dataroot:
|
||||
p_size: size of small images
|
||||
p_overlap: patch size in training is a good choice
|
||||
p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
|
||||
"""
|
||||
paths = get_image_paths(original_dataroot)
|
||||
for img_path in paths:
|
||||
# img_name, ext = os.path.splitext(os.path.basename(img_path))
|
||||
img = imread_uint(img_path, n_channels=n_channels)
|
||||
patches = patches_from_image(img, p_size, p_overlap, p_max)
|
||||
imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
|
||||
#if original_dataroot == taget_dataroot:
|
||||
#del img_path
|
||||
|
||||
'''
|
||||
# --------------------------------------------
|
||||
# makedir
|
||||
# --------------------------------------------
|
||||
'''
|
||||
|
||||
|
||||
def mkdir(path):
|
||||
if not os.path.exists(path):
|
||||
os.makedirs(path)
|
||||
|
||||
|
||||
def mkdirs(paths):
|
||||
if isinstance(paths, str):
|
||||
mkdir(paths)
|
||||
else:
|
||||
for path in paths:
|
||||
mkdir(path)
|
||||
|
||||
|
||||
def mkdir_and_rename(path):
|
||||
if os.path.exists(path):
|
||||
new_name = path + '_archived_' + get_timestamp()
|
||||
print('Path already exists. Rename it to [{:s}]'.format(new_name))
|
||||
os.rename(path, new_name)
|
||||
os.makedirs(path)
|
||||
|
||||
|
||||
'''
|
||||
# --------------------------------------------
|
||||
# read image from path
|
||||
# opencv is fast, but read BGR numpy image
|
||||
# --------------------------------------------
|
||||
'''
|
||||
|
||||
|
||||
# --------------------------------------------
|
||||
# get uint8 image of size HxWxn_channles (RGB)
|
||||
# --------------------------------------------
|
||||
def imread_uint(path, n_channels=3):
|
||||
# input: path
|
||||
# output: HxWx3(RGB or GGG), or HxWx1 (G)
|
||||
if n_channels == 1:
|
||||
img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE
|
||||
img = np.expand_dims(img, axis=2) # HxWx1
|
||||
elif n_channels == 3:
|
||||
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G
|
||||
if img.ndim == 2:
|
||||
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG
|
||||
else:
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB
|
||||
return img
|
||||
|
||||
|
||||
# --------------------------------------------
|
||||
# matlab's imwrite
|
||||
# --------------------------------------------
|
||||
def imsave(img, img_path):
|
||||
img = np.squeeze(img)
|
||||
if img.ndim == 3:
|
||||
img = img[:, :, [2, 1, 0]]
|
||||
cv2.imwrite(img_path, img)
|
||||
|
||||
def imwrite(img, img_path):
|
||||
img = np.squeeze(img)
|
||||
if img.ndim == 3:
|
||||
img = img[:, :, [2, 1, 0]]
|
||||
cv2.imwrite(img_path, img)
|
||||
|
||||
|
||||
|
||||
# --------------------------------------------
|
||||
# get single image of size HxWxn_channles (BGR)
|
||||
# --------------------------------------------
|
||||
def read_img(path):
|
||||
# read image by cv2
|
||||
# return: Numpy float32, HWC, BGR, [0,1]
|
||||
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE
|
||||
img = img.astype(np.float32) / 255.
|
||||
if img.ndim == 2:
|
||||
img = np.expand_dims(img, axis=2)
|
||||
# some images have 4 channels
|
||||
if img.shape[2] > 3:
|
||||
img = img[:, :, :3]
|
||||
return img
|
||||
|
||||
|
||||
'''
|
||||
# --------------------------------------------
|
||||
# image format conversion
|
||||
# --------------------------------------------
|
||||
# numpy(single) <---> numpy(unit)
|
||||
# numpy(single) <---> tensor
|
||||
# numpy(unit) <---> tensor
|
||||
# --------------------------------------------
|
||||
'''
|
||||
|
||||
|
||||
# --------------------------------------------
|
||||
# numpy(single) [0, 1] <---> numpy(unit)
|
||||
# --------------------------------------------
|
||||
|
||||
|
||||
def uint2single(img):
|
||||
|
||||
return np.float32(img/255.)
|
||||
|
||||
|
||||
def single2uint(img):
|
||||
|
||||
return np.uint8((img.clip(0, 1)*255.).round())
|
||||
|
||||
|
||||
def uint162single(img):
|
||||
|
||||
return np.float32(img/65535.)
|
||||
|
||||
|
||||
def single2uint16(img):
|
||||
|
||||
return np.uint16((img.clip(0, 1)*65535.).round())
|
||||
|
||||
|
||||
# --------------------------------------------
|
||||
# numpy(unit) (HxWxC or HxW) <---> tensor
|
||||
# --------------------------------------------
|
||||
|
||||
|
||||
# convert uint to 4-dimensional torch tensor
|
||||
def uint2tensor4(img):
|
||||
if img.ndim == 2:
|
||||
img = np.expand_dims(img, axis=2)
|
||||
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
|
||||
|
||||
|
||||
# convert uint to 3-dimensional torch tensor
|
||||
def uint2tensor3(img):
|
||||
if img.ndim == 2:
|
||||
img = np.expand_dims(img, axis=2)
|
||||
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
|
||||
|
||||
|
||||
# convert 2/3/4-dimensional torch tensor to uint
|
||||
def tensor2uint(img):
|
||||
img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
|
||||
if img.ndim == 3:
|
||||
img = np.transpose(img, (1, 2, 0))
|
||||
return np.uint8((img*255.0).round())
|
||||
|
||||
|
||||
# --------------------------------------------
|
||||
# numpy(single) (HxWxC) <---> tensor
|
||||
# --------------------------------------------
|
||||
|
||||
|
||||
# convert single (HxWxC) to 3-dimensional torch tensor
|
||||
def single2tensor3(img):
|
||||
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
|
||||
|
||||
|
||||
# convert single (HxWxC) to 4-dimensional torch tensor
|
||||
def single2tensor4(img):
|
||||
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
|
||||
|
||||
|
||||
# convert torch tensor to single
|
||||
def tensor2single(img):
|
||||
img = img.data.squeeze().float().cpu().numpy()
|
||||
if img.ndim == 3:
|
||||
img = np.transpose(img, (1, 2, 0))
|
||||
|
||||
return img
|
||||
|
||||
# convert torch tensor to single
|
||||
def tensor2single3(img):
|
||||
img = img.data.squeeze().float().cpu().numpy()
|
||||
if img.ndim == 3:
|
||||
img = np.transpose(img, (1, 2, 0))
|
||||
elif img.ndim == 2:
|
||||
img = np.expand_dims(img, axis=2)
|
||||
return img
|
||||
|
||||
|
||||
def single2tensor5(img):
|
||||
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
|
||||
|
||||
|
||||
def single32tensor5(img):
|
||||
return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
|
||||
|
||||
|
||||
def single42tensor4(img):
|
||||
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
|
||||
|
||||
|
||||
# from skimage.io import imread, imsave
|
||||
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
|
||||
'''
|
||||
Converts a torch Tensor into an image Numpy array of BGR channel order
|
||||
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
|
||||
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
|
||||
'''
|
||||
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
|
||||
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
|
||||
n_dim = tensor.dim()
|
||||
if n_dim == 4:
|
||||
n_img = len(tensor)
|
||||
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
|
||||
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
|
||||
elif n_dim == 3:
|
||||
img_np = tensor.numpy()
|
||||
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
|
||||
elif n_dim == 2:
|
||||
img_np = tensor.numpy()
|
||||
else:
|
||||
raise TypeError(
|
||||
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
|
||||
if out_type == np.uint8:
|
||||
img_np = (img_np * 255.0).round()
|
||||
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
|
||||
return img_np.astype(out_type)
|
||||
|
||||
|
||||
'''
|
||||
# --------------------------------------------
|
||||
# Augmentation, flipe and/or rotate
|
||||
# --------------------------------------------
|
||||
# The following two are enough.
|
||||
# (1) augmet_img: numpy image of WxHxC or WxH
|
||||
# (2) augment_img_tensor4: tensor image 1xCxWxH
|
||||
# --------------------------------------------
|
||||
'''
|
||||
|
||||
|
||||
def augment_img(img, mode=0):
|
||||
'''Kai Zhang (github: https://github.com/cszn)
|
||||
'''
|
||||
if mode == 0:
|
||||
return img
|
||||
elif mode == 1:
|
||||
return np.flipud(np.rot90(img))
|
||||
elif mode == 2:
|
||||
return np.flipud(img)
|
||||
elif mode == 3:
|
||||
return np.rot90(img, k=3)
|
||||
elif mode == 4:
|
||||
return np.flipud(np.rot90(img, k=2))
|
||||
elif mode == 5:
|
||||
return np.rot90(img)
|
||||
elif mode == 6:
|
||||
return np.rot90(img, k=2)
|
||||
elif mode == 7:
|
||||
return np.flipud(np.rot90(img, k=3))
|
||||
|
||||
|
||||
def augment_img_tensor4(img, mode=0):
|
||||
'''Kai Zhang (github: https://github.com/cszn)
|
||||
'''
|
||||
if mode == 0:
|
||||
return img
|
||||
elif mode == 1:
|
||||
return img.rot90(1, [2, 3]).flip([2])
|
||||
elif mode == 2:
|
||||
return img.flip([2])
|
||||
elif mode == 3:
|
||||
return img.rot90(3, [2, 3])
|
||||
elif mode == 4:
|
||||
return img.rot90(2, [2, 3]).flip([2])
|
||||
elif mode == 5:
|
||||
return img.rot90(1, [2, 3])
|
||||
elif mode == 6:
|
||||
return img.rot90(2, [2, 3])
|
||||
elif mode == 7:
|
||||
return img.rot90(3, [2, 3]).flip([2])
|
||||
|
||||
|
||||
def augment_img_tensor(img, mode=0):
|
||||
'''Kai Zhang (github: https://github.com/cszn)
|
||||
'''
|
||||
img_size = img.size()
|
||||
img_np = img.data.cpu().numpy()
|
||||
if len(img_size) == 3:
|
||||
img_np = np.transpose(img_np, (1, 2, 0))
|
||||
elif len(img_size) == 4:
|
||||
img_np = np.transpose(img_np, (2, 3, 1, 0))
|
||||
img_np = augment_img(img_np, mode=mode)
|
||||
img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
|
||||
if len(img_size) == 3:
|
||||
img_tensor = img_tensor.permute(2, 0, 1)
|
||||
elif len(img_size) == 4:
|
||||
img_tensor = img_tensor.permute(3, 2, 0, 1)
|
||||
|
||||
return img_tensor.type_as(img)
|
||||
|
||||
|
||||
def augment_img_np3(img, mode=0):
|
||||
if mode == 0:
|
||||
return img
|
||||
elif mode == 1:
|
||||
return img.transpose(1, 0, 2)
|
||||
elif mode == 2:
|
||||
return img[::-1, :, :]
|
||||
elif mode == 3:
|
||||
img = img[::-1, :, :]
|
||||
img = img.transpose(1, 0, 2)
|
||||
return img
|
||||
elif mode == 4:
|
||||
return img[:, ::-1, :]
|
||||
elif mode == 5:
|
||||
img = img[:, ::-1, :]
|
||||
img = img.transpose(1, 0, 2)
|
||||
return img
|
||||
elif mode == 6:
|
||||
img = img[:, ::-1, :]
|
||||
img = img[::-1, :, :]
|
||||
return img
|
||||
elif mode == 7:
|
||||
img = img[:, ::-1, :]
|
||||
img = img[::-1, :, :]
|
||||
img = img.transpose(1, 0, 2)
|
||||
return img
|
||||
|
||||
|
||||
def augment_imgs(img_list, hflip=True, rot=True):
|
||||
# horizontal flip OR rotate
|
||||
hflip = hflip and random.random() < 0.5
|
||||
vflip = rot and random.random() < 0.5
|
||||
rot90 = rot and random.random() < 0.5
|
||||
|
||||
def _augment(img):
|
||||
if hflip:
|
||||
img = img[:, ::-1, :]
|
||||
if vflip:
|
||||
img = img[::-1, :, :]
|
||||
if rot90:
|
||||
img = img.transpose(1, 0, 2)
|
||||
return img
|
||||
|
||||
return [_augment(img) for img in img_list]
|
||||
|
||||
|
||||
'''
|
||||
# --------------------------------------------
|
||||
# modcrop and shave
|
||||
# --------------------------------------------
|
||||
'''
|
||||
|
||||
|
||||
def modcrop(img_in, scale):
|
||||
# img_in: Numpy, HWC or HW
|
||||
img = np.copy(img_in)
|
||||
if img.ndim == 2:
|
||||
H, W = img.shape
|
||||
H_r, W_r = H % scale, W % scale
|
||||
img = img[:H - H_r, :W - W_r]
|
||||
elif img.ndim == 3:
|
||||
H, W, C = img.shape
|
||||
H_r, W_r = H % scale, W % scale
|
||||
img = img[:H - H_r, :W - W_r, :]
|
||||
else:
|
||||
raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
|
||||
return img
|
||||
|
||||
|
||||
def shave(img_in, border=0):
|
||||
# img_in: Numpy, HWC or HW
|
||||
img = np.copy(img_in)
|
||||
h, w = img.shape[:2]
|
||||
img = img[border:h-border, border:w-border]
|
||||
return img
|
||||
|
||||
|
||||
'''
|
||||
# --------------------------------------------
|
||||
# image processing process on numpy image
|
||||
# channel_convert(in_c, tar_type, img_list):
|
||||
# rgb2ycbcr(img, only_y=True):
|
||||
# bgr2ycbcr(img, only_y=True):
|
||||
# ycbcr2rgb(img):
|
||||
# --------------------------------------------
|
||||
'''
|
||||
|
||||
|
||||
def rgb2ycbcr(img, only_y=True):
|
||||
'''same as matlab rgb2ycbcr
|
||||
only_y: only return Y channel
|
||||
Input:
|
||||
uint8, [0, 255]
|
||||
float, [0, 1]
|
||||
'''
|
||||
in_img_type = img.dtype
|
||||
img.astype(np.float32)
|
||||
if in_img_type != np.uint8:
|
||||
img *= 255.
|
||||
# convert
|
||||
if only_y:
|
||||
rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
|
||||
else:
|
||||
rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
|
||||
[24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
|
||||
if in_img_type == np.uint8:
|
||||
rlt = rlt.round()
|
||||
else:
|
||||
rlt /= 255.
|
||||
return rlt.astype(in_img_type)
|
||||
|
||||
|
||||
def ycbcr2rgb(img):
|
||||
'''same as matlab ycbcr2rgb
|
||||
Input:
|
||||
uint8, [0, 255]
|
||||
float, [0, 1]
|
||||
'''
|
||||
in_img_type = img.dtype
|
||||
img.astype(np.float32)
|
||||
if in_img_type != np.uint8:
|
||||
img *= 255.
|
||||
# convert
|
||||
rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
|
||||
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
|
||||
if in_img_type == np.uint8:
|
||||
rlt = rlt.round()
|
||||
else:
|
||||
rlt /= 255.
|
||||
return rlt.astype(in_img_type)
|
||||
|
||||
|
||||
def bgr2ycbcr(img, only_y=True):
|
||||
'''bgr version of rgb2ycbcr
|
||||
only_y: only return Y channel
|
||||
Input:
|
||||
uint8, [0, 255]
|
||||
float, [0, 1]
|
||||
'''
|
||||
in_img_type = img.dtype
|
||||
img.astype(np.float32)
|
||||
if in_img_type != np.uint8:
|
||||
img *= 255.
|
||||
# convert
|
||||
if only_y:
|
||||
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
|
||||
else:
|
||||
rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
|
||||
[65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
|
||||
if in_img_type == np.uint8:
|
||||
rlt = rlt.round()
|
||||
else:
|
||||
rlt /= 255.
|
||||
return rlt.astype(in_img_type)
|
||||
|
||||
|
||||
def channel_convert(in_c, tar_type, img_list):
|
||||
# conversion among BGR, gray and y
|
||||
if in_c == 3 and tar_type == 'gray': # BGR to gray
|
||||
gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
|
||||
return [np.expand_dims(img, axis=2) for img in gray_list]
|
||||
elif in_c == 3 and tar_type == 'y': # BGR to y
|
||||
y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
|
||||
return [np.expand_dims(img, axis=2) for img in y_list]
|
||||
elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR
|
||||
return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
|
||||
else:
|
||||
return img_list
|
||||
|
||||
|
||||
'''
|
||||
# --------------------------------------------
|
||||
# metric, PSNR and SSIM
|
||||
# --------------------------------------------
|
||||
'''
|
||||
|
||||
|
||||
# --------------------------------------------
|
||||
# PSNR
|
||||
# --------------------------------------------
|
||||
def calculate_psnr(img1, img2, border=0):
|
||||
# img1 and img2 have range [0, 255]
|
||||
#img1 = img1.squeeze()
|
||||
#img2 = img2.squeeze()
|
||||
if not img1.shape == img2.shape:
|
||||
raise ValueError('Input images must have the same dimensions.')
|
||||
h, w = img1.shape[:2]
|
||||
img1 = img1[border:h-border, border:w-border]
|
||||
img2 = img2[border:h-border, border:w-border]
|
||||
|
||||
img1 = img1.astype(np.float64)
|
||||
img2 = img2.astype(np.float64)
|
||||
mse = np.mean((img1 - img2)**2)
|
||||
if mse == 0:
|
||||
return float('inf')
|
||||
return 20 * math.log10(255.0 / math.sqrt(mse))
|
||||
|
||||
|
||||
# --------------------------------------------
|
||||
# SSIM
|
||||
# --------------------------------------------
|
||||
def calculate_ssim(img1, img2, border=0):
|
||||
'''calculate SSIM
|
||||
the same outputs as MATLAB's
|
||||
img1, img2: [0, 255]
|
||||
'''
|
||||
#img1 = img1.squeeze()
|
||||
#img2 = img2.squeeze()
|
||||
if not img1.shape == img2.shape:
|
||||
raise ValueError('Input images must have the same dimensions.')
|
||||
h, w = img1.shape[:2]
|
||||
img1 = img1[border:h-border, border:w-border]
|
||||
img2 = img2[border:h-border, border:w-border]
|
||||
|
||||
if img1.ndim == 2:
|
||||
return ssim(img1, img2)
|
||||
elif img1.ndim == 3:
|
||||
if img1.shape[2] == 3:
|
||||
ssims = []
|
||||
for i in range(3):
|
||||
ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
|
||||
return np.array(ssims).mean()
|
||||
elif img1.shape[2] == 1:
|
||||
return ssim(np.squeeze(img1), np.squeeze(img2))
|
||||
else:
|
||||
raise ValueError('Wrong input image dimensions.')
|
||||
|
||||
|
||||
def ssim(img1, img2):
|
||||
C1 = (0.01 * 255)**2
|
||||
C2 = (0.03 * 255)**2
|
||||
|
||||
img1 = img1.astype(np.float64)
|
||||
img2 = img2.astype(np.float64)
|
||||
kernel = cv2.getGaussianKernel(11, 1.5)
|
||||
window = np.outer(kernel, kernel.transpose())
|
||||
|
||||
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
|
||||
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
||||
mu1_sq = mu1**2
|
||||
mu2_sq = mu2**2
|
||||
mu1_mu2 = mu1 * mu2
|
||||
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
|
||||
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
|
||||
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
||||
|
||||
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
|
||||
(sigma1_sq + sigma2_sq + C2))
|
||||
return ssim_map.mean()
|
||||
|
||||
|
||||
'''
|
||||
# --------------------------------------------
|
||||
# matlab's bicubic imresize (numpy and torch) [0, 1]
|
||||
# --------------------------------------------
|
||||
'''
|
||||
|
||||
|
||||
# matlab 'imresize' function, now only support 'bicubic'
|
||||
def cubic(x):
|
||||
absx = torch.abs(x)
|
||||
absx2 = absx**2
|
||||
absx3 = absx**3
|
||||
return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
|
||||
(-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
|
||||
|
||||
|
||||
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
|
||||
if (scale < 1) and (antialiasing):
|
||||
# Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
|
||||
kernel_width = kernel_width / scale
|
||||
|
||||
# Output-space coordinates
|
||||
x = torch.linspace(1, out_length, out_length)
|
||||
|
||||
# Input-space coordinates. Calculate the inverse mapping such that 0.5
|
||||
# in output space maps to 0.5 in input space, and 0.5+scale in output
|
||||
# space maps to 1.5 in input space.
|
||||
u = x / scale + 0.5 * (1 - 1 / scale)
|
||||
|
||||
# What is the left-most pixel that can be involved in the computation?
|
||||
left = torch.floor(u - kernel_width / 2)
|
||||
|
||||
# What is the maximum number of pixels that can be involved in the
|
||||
# computation? Note: it's OK to use an extra pixel here; if the
|
||||
# corresponding weights are all zero, it will be eliminated at the end
|
||||
# of this function.
|
||||
P = math.ceil(kernel_width) + 2
|
||||
|
||||
# The indices of the input pixels involved in computing the k-th output
|
||||
# pixel are in row k of the indices matrix.
|
||||
indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
|
||||
1, P).expand(out_length, P)
|
||||
|
||||
# The weights used to compute the k-th output pixel are in row k of the
|
||||
# weights matrix.
|
||||
distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
|
||||
# apply cubic kernel
|
||||
if (scale < 1) and (antialiasing):
|
||||
weights = scale * cubic(distance_to_center * scale)
|
||||
else:
|
||||
weights = cubic(distance_to_center)
|
||||
# Normalize the weights matrix so that each row sums to 1.
|
||||
weights_sum = torch.sum(weights, 1).view(out_length, 1)
|
||||
weights = weights / weights_sum.expand(out_length, P)
|
||||
|
||||
# If a column in weights is all zero, get rid of it. only consider the first and last column.
|
||||
weights_zero_tmp = torch.sum((weights == 0), 0)
|
||||
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
|
||||
indices = indices.narrow(1, 1, P - 2)
|
||||
weights = weights.narrow(1, 1, P - 2)
|
||||
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
|
||||
indices = indices.narrow(1, 0, P - 2)
|
||||
weights = weights.narrow(1, 0, P - 2)
|
||||
weights = weights.contiguous()
|
||||
indices = indices.contiguous()
|
||||
sym_len_s = -indices.min() + 1
|
||||
sym_len_e = indices.max() - in_length
|
||||
indices = indices + sym_len_s - 1
|
||||
return weights, indices, int(sym_len_s), int(sym_len_e)
|
||||
|
||||
|
||||
# --------------------------------------------
|
||||
# imresize for tensor image [0, 1]
|
||||
# --------------------------------------------
|
||||
def imresize(img, scale, antialiasing=True):
|
||||
# Now the scale should be the same for H and W
|
||||
# input: img: pytorch tensor, CHW or HW [0,1]
|
||||
# output: CHW or HW [0,1] w/o round
|
||||
need_squeeze = True if img.dim() == 2 else False
|
||||
if need_squeeze:
|
||||
img.unsqueeze_(0)
|
||||
in_C, in_H, in_W = img.size()
|
||||
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
|
||||
kernel_width = 4
|
||||
kernel = 'cubic'
|
||||
|
||||
# Return the desired dimension order for performing the resize. The
|
||||
# strategy is to perform the resize first along the dimension with the
|
||||
# smallest scale factor.
|
||||
# Now we do not support this.
|
||||
|
||||
# get weights and indices
|
||||
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
|
||||
in_H, out_H, scale, kernel, kernel_width, antialiasing)
|
||||
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
|
||||
in_W, out_W, scale, kernel, kernel_width, antialiasing)
|
||||
# process H dimension
|
||||
# symmetric copying
|
||||
img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
|
||||
img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
|
||||
|
||||
sym_patch = img[:, :sym_len_Hs, :]
|
||||
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
||||
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
||||
img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
|
||||
|
||||
sym_patch = img[:, -sym_len_He:, :]
|
||||
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
||||
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
||||
img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
|
||||
|
||||
out_1 = torch.FloatTensor(in_C, out_H, in_W)
|
||||
kernel_width = weights_H.size(1)
|
||||
for i in range(out_H):
|
||||
idx = int(indices_H[i][0])
|
||||
for j in range(out_C):
|
||||
out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
|
||||
|
||||
# process W dimension
|
||||
# symmetric copying
|
||||
out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
|
||||
out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
|
||||
|
||||
sym_patch = out_1[:, :, :sym_len_Ws]
|
||||
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
|
||||
sym_patch_inv = sym_patch.index_select(2, inv_idx)
|
||||
out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
|
||||
|
||||
sym_patch = out_1[:, :, -sym_len_We:]
|
||||
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
|
||||
sym_patch_inv = sym_patch.index_select(2, inv_idx)
|
||||
out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
|
||||
|
||||
out_2 = torch.FloatTensor(in_C, out_H, out_W)
|
||||
kernel_width = weights_W.size(1)
|
||||
for i in range(out_W):
|
||||
idx = int(indices_W[i][0])
|
||||
for j in range(out_C):
|
||||
out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
|
||||
if need_squeeze:
|
||||
out_2.squeeze_()
|
||||
return out_2
|
||||
|
||||
|
||||
# --------------------------------------------
|
||||
# imresize for numpy image [0, 1]
|
||||
# --------------------------------------------
|
||||
def imresize_np(img, scale, antialiasing=True):
|
||||
# Now the scale should be the same for H and W
|
||||
# input: img: Numpy, HWC or HW [0,1]
|
||||
# output: HWC or HW [0,1] w/o round
|
||||
img = torch.from_numpy(img)
|
||||
need_squeeze = True if img.dim() == 2 else False
|
||||
if need_squeeze:
|
||||
img.unsqueeze_(2)
|
||||
|
||||
in_H, in_W, in_C = img.size()
|
||||
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
|
||||
kernel_width = 4
|
||||
kernel = 'cubic'
|
||||
|
||||
# Return the desired dimension order for performing the resize. The
|
||||
# strategy is to perform the resize first along the dimension with the
|
||||
# smallest scale factor.
|
||||
# Now we do not support this.
|
||||
|
||||
# get weights and indices
|
||||
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
|
||||
in_H, out_H, scale, kernel, kernel_width, antialiasing)
|
||||
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
|
||||
in_W, out_W, scale, kernel, kernel_width, antialiasing)
|
||||
# process H dimension
|
||||
# symmetric copying
|
||||
img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
|
||||
img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
|
||||
|
||||
sym_patch = img[:sym_len_Hs, :, :]
|
||||
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
|
||||
sym_patch_inv = sym_patch.index_select(0, inv_idx)
|
||||
img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
|
||||
|
||||
sym_patch = img[-sym_len_He:, :, :]
|
||||
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
|
||||
sym_patch_inv = sym_patch.index_select(0, inv_idx)
|
||||
img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
|
||||
|
||||
out_1 = torch.FloatTensor(out_H, in_W, in_C)
|
||||
kernel_width = weights_H.size(1)
|
||||
for i in range(out_H):
|
||||
idx = int(indices_H[i][0])
|
||||
for j in range(out_C):
|
||||
out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
|
||||
|
||||
# process W dimension
|
||||
# symmetric copying
|
||||
out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
|
||||
out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
|
||||
|
||||
sym_patch = out_1[:, :sym_len_Ws, :]
|
||||
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
||||
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
||||
out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
|
||||
|
||||
sym_patch = out_1[:, -sym_len_We:, :]
|
||||
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
||||
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
||||
out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
|
||||
|
||||
out_2 = torch.FloatTensor(out_H, out_W, in_C)
|
||||
kernel_width = weights_W.size(1)
|
||||
for i in range(out_W):
|
||||
idx = int(indices_W[i][0])
|
||||
for j in range(out_C):
|
||||
out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
|
||||
if need_squeeze:
|
||||
out_2.squeeze_()
|
||||
|
||||
return out_2.numpy()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print('---')
|
||||
# img = imread_uint('test.bmp', 3)
|
||||
# img = uint2single(img)
|
||||
# img_bicubic = imresize_np(img, 1/4)
|
|
@ -1,170 +0,0 @@
|
|||
# based on https://github.com/isl-org/MiDaS
|
||||
|
||||
import cv2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torchvision.transforms import Compose
|
||||
|
||||
from ldm.modules.midas.midas.dpt_depth import DPTDepthModel
|
||||
from ldm.modules.midas.midas.midas_net import MidasNet
|
||||
from ldm.modules.midas.midas.midas_net_custom import MidasNet_small
|
||||
from ldm.modules.midas.midas.transforms import Resize, NormalizeImage, PrepareForNet
|
||||
|
||||
|
||||
ISL_PATHS = {
|
||||
"dpt_large": "midas_models/dpt_large-midas-2f21e586.pt",
|
||||
"dpt_hybrid": "midas_models/dpt_hybrid-midas-501f0c75.pt",
|
||||
"midas_v21": "",
|
||||
"midas_v21_small": "",
|
||||
}
|
||||
|
||||
|
||||
def disabled_train(self, mode=True):
|
||||
"""Overwrite model.train with this function to make sure train/eval mode
|
||||
does not change anymore."""
|
||||
return self
|
||||
|
||||
|
||||
def load_midas_transform(model_type):
|
||||
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
||||
# load transform only
|
||||
if model_type == "dpt_large": # DPT-Large
|
||||
net_w, net_h = 384, 384
|
||||
resize_mode = "minimal"
|
||||
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
||||
|
||||
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
||||
net_w, net_h = 384, 384
|
||||
resize_mode = "minimal"
|
||||
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
||||
|
||||
elif model_type == "midas_v21":
|
||||
net_w, net_h = 384, 384
|
||||
resize_mode = "upper_bound"
|
||||
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
|
||||
elif model_type == "midas_v21_small":
|
||||
net_w, net_h = 256, 256
|
||||
resize_mode = "upper_bound"
|
||||
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
|
||||
else:
|
||||
assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
|
||||
|
||||
transform = Compose(
|
||||
[
|
||||
Resize(
|
||||
net_w,
|
||||
net_h,
|
||||
resize_target=None,
|
||||
keep_aspect_ratio=True,
|
||||
ensure_multiple_of=32,
|
||||
resize_method=resize_mode,
|
||||
image_interpolation_method=cv2.INTER_CUBIC,
|
||||
),
|
||||
normalization,
|
||||
PrepareForNet(),
|
||||
]
|
||||
)
|
||||
|
||||
return transform
|
||||
|
||||
|
||||
def load_model(model_type):
|
||||
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
||||
# load network
|
||||
model_path = ISL_PATHS[model_type]
|
||||
if model_type == "dpt_large": # DPT-Large
|
||||
model = DPTDepthModel(
|
||||
path=model_path,
|
||||
backbone="vitl16_384",
|
||||
non_negative=True,
|
||||
)
|
||||
net_w, net_h = 384, 384
|
||||
resize_mode = "minimal"
|
||||
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
||||
|
||||
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
||||
model = DPTDepthModel(
|
||||
path=model_path,
|
||||
backbone="vitb_rn50_384",
|
||||
non_negative=True,
|
||||
)
|
||||
net_w, net_h = 384, 384
|
||||
resize_mode = "minimal"
|
||||
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
||||
|
||||
elif model_type == "midas_v21":
|
||||
model = MidasNet(model_path, non_negative=True)
|
||||
net_w, net_h = 384, 384
|
||||
resize_mode = "upper_bound"
|
||||
normalization = NormalizeImage(
|
||||
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
||||
)
|
||||
|
||||
elif model_type == "midas_v21_small":
|
||||
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
|
||||
non_negative=True, blocks={'expand': True})
|
||||
net_w, net_h = 256, 256
|
||||
resize_mode = "upper_bound"
|
||||
normalization = NormalizeImage(
|
||||
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
||||
)
|
||||
|
||||
else:
|
||||
print(f"model_type '{model_type}' not implemented, use: --model_type large")
|
||||
assert False
|
||||
|
||||
transform = Compose(
|
||||
[
|
||||
Resize(
|
||||
net_w,
|
||||
net_h,
|
||||
resize_target=None,
|
||||
keep_aspect_ratio=True,
|
||||
ensure_multiple_of=32,
|
||||
resize_method=resize_mode,
|
||||
image_interpolation_method=cv2.INTER_CUBIC,
|
||||
),
|
||||
normalization,
|
||||
PrepareForNet(),
|
||||
]
|
||||
)
|
||||
|
||||
return model.eval(), transform
|
||||
|
||||
|
||||
class MiDaSInference(nn.Module):
|
||||
MODEL_TYPES_TORCH_HUB = [
|
||||
"DPT_Large",
|
||||
"DPT_Hybrid",
|
||||
"MiDaS_small"
|
||||
]
|
||||
MODEL_TYPES_ISL = [
|
||||
"dpt_large",
|
||||
"dpt_hybrid",
|
||||
"midas_v21",
|
||||
"midas_v21_small",
|
||||
]
|
||||
|
||||
def __init__(self, model_type):
|
||||
super().__init__()
|
||||
assert (model_type in self.MODEL_TYPES_ISL)
|
||||
model, _ = load_model(model_type)
|
||||
self.model = model
|
||||
self.model.train = disabled_train
|
||||
|
||||
def forward(self, x):
|
||||
# x in 0..1 as produced by calling self.transform on a 0..1 float64 numpy array
|
||||
# NOTE: we expect that the correct transform has been called during dataloading.
|
||||
with torch.no_grad():
|
||||
prediction = self.model(x)
|
||||
prediction = torch.nn.functional.interpolate(
|
||||
prediction.unsqueeze(1),
|
||||
size=x.shape[2:],
|
||||
mode="bicubic",
|
||||
align_corners=False,
|
||||
)
|
||||
assert prediction.shape == (x.shape[0], 1, x.shape[2], x.shape[3])
|
||||
return prediction
|
||||
|
|
@ -1,16 +0,0 @@
|
|||
import torch
|
||||
|
||||
|
||||
class BaseModel(torch.nn.Module):
|
||||
def load(self, path):
|
||||
"""Load model from file.
|
||||
|
||||
Args:
|
||||
path (str): file path
|
||||
"""
|
||||
parameters = torch.load(path, map_location=torch.device('cpu'))
|
||||
|
||||
if "optimizer" in parameters:
|
||||
parameters = parameters["model"]
|
||||
|
||||
self.load_state_dict(parameters)
|
|
@ -1,342 +0,0 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from .vit import (
|
||||
_make_pretrained_vitb_rn50_384,
|
||||
_make_pretrained_vitl16_384,
|
||||
_make_pretrained_vitb16_384,
|
||||
forward_vit,
|
||||
)
|
||||
|
||||
def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
|
||||
if backbone == "vitl16_384":
|
||||
pretrained = _make_pretrained_vitl16_384(
|
||||
use_pretrained, hooks=hooks, use_readout=use_readout
|
||||
)
|
||||
scratch = _make_scratch(
|
||||
[256, 512, 1024, 1024], features, groups=groups, expand=expand
|
||||
) # ViT-L/16 - 85.0% Top1 (backbone)
|
||||
elif backbone == "vitb_rn50_384":
|
||||
pretrained = _make_pretrained_vitb_rn50_384(
|
||||
use_pretrained,
|
||||
hooks=hooks,
|
||||
use_vit_only=use_vit_only,
|
||||
use_readout=use_readout,
|
||||
)
|
||||
scratch = _make_scratch(
|
||||
[256, 512, 768, 768], features, groups=groups, expand=expand
|
||||
) # ViT-H/16 - 85.0% Top1 (backbone)
|
||||
elif backbone == "vitb16_384":
|
||||
pretrained = _make_pretrained_vitb16_384(
|
||||
use_pretrained, hooks=hooks, use_readout=use_readout
|
||||
)
|
||||
scratch = _make_scratch(
|
||||
[96, 192, 384, 768], features, groups=groups, expand=expand
|
||||
) # ViT-B/16 - 84.6% Top1 (backbone)
|
||||
elif backbone == "resnext101_wsl":
|
||||
pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
|
||||
scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3
|
||||
elif backbone == "efficientnet_lite3":
|
||||
pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
|
||||
scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3
|
||||
else:
|
||||
print(f"Backbone '{backbone}' not implemented")
|
||||
assert False
|
||||
|
||||
return pretrained, scratch
|
||||
|
||||
|
||||
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
||||
scratch = nn.Module()
|
||||
|
||||
out_shape1 = out_shape
|
||||
out_shape2 = out_shape
|
||||
out_shape3 = out_shape
|
||||
out_shape4 = out_shape
|
||||
if expand==True:
|
||||
out_shape1 = out_shape
|
||||
out_shape2 = out_shape*2
|
||||
out_shape3 = out_shape*4
|
||||
out_shape4 = out_shape*8
|
||||
|
||||
scratch.layer1_rn = nn.Conv2d(
|
||||
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
||||
)
|
||||
scratch.layer2_rn = nn.Conv2d(
|
||||
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
||||
)
|
||||
scratch.layer3_rn = nn.Conv2d(
|
||||
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
||||
)
|
||||
scratch.layer4_rn = nn.Conv2d(
|
||||
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
||||
)
|
||||
|
||||
return scratch
|
||||
|
||||
|
||||
def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
|
||||
efficientnet = torch.hub.load(
|
||||
"rwightman/gen-efficientnet-pytorch",
|
||||
"tf_efficientnet_lite3",
|
||||
pretrained=use_pretrained,
|
||||
exportable=exportable
|
||||
)
|
||||
return _make_efficientnet_backbone(efficientnet)
|
||||
|
||||
|
||||
def _make_efficientnet_backbone(effnet):
|
||||
pretrained = nn.Module()
|
||||
|
||||
pretrained.layer1 = nn.Sequential(
|
||||
effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
|
||||
)
|
||||
pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
|
||||
pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
|
||||
pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
|
||||
|
||||
return pretrained
|
||||
|
||||
|
||||
def _make_resnet_backbone(resnet):
|
||||
pretrained = nn.Module()
|
||||
pretrained.layer1 = nn.Sequential(
|
||||
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
|
||||
)
|
||||
|
||||
pretrained.layer2 = resnet.layer2
|
||||
pretrained.layer3 = resnet.layer3
|
||||
pretrained.layer4 = resnet.layer4
|
||||
|
||||
return pretrained
|
||||
|
||||
|
||||
def _make_pretrained_resnext101_wsl(use_pretrained):
|
||||
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
|
||||
return _make_resnet_backbone(resnet)
|
||||
|
||||
|
||||
|
||||
class Interpolate(nn.Module):
|
||||
"""Interpolation module.
|
||||
"""
|
||||
|
||||
def __init__(self, scale_factor, mode, align_corners=False):
|
||||
"""Init.
|
||||
|
||||
Args:
|
||||
scale_factor (float): scaling
|
||||
mode (str): interpolation mode
|
||||
"""
|
||||
super(Interpolate, self).__init__()
|
||||
|
||||
self.interp = nn.functional.interpolate
|
||||
self.scale_factor = scale_factor
|
||||
self.mode = mode
|
||||
self.align_corners = align_corners
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass.
|
||||
|
||||
Args:
|
||||
x (tensor): input
|
||||
|
||||
Returns:
|
||||
tensor: interpolated data
|
||||
"""
|
||||
|
||||
x = self.interp(
|
||||
x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
|
||||
)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class ResidualConvUnit(nn.Module):
|
||||
"""Residual convolution module.
|
||||
"""
|
||||
|
||||
def __init__(self, features):
|
||||
"""Init.
|
||||
|
||||
Args:
|
||||
features (int): number of features
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.conv1 = nn.Conv2d(
|
||||
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
||||
)
|
||||
|
||||
self.conv2 = nn.Conv2d(
|
||||
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
||||
)
|
||||
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass.
|
||||
|
||||
Args:
|
||||
x (tensor): input
|
||||
|
||||
Returns:
|
||||
tensor: output
|
||||
"""
|
||||
out = self.relu(x)
|
||||
out = self.conv1(out)
|
||||
out = self.relu(out)
|
||||
out = self.conv2(out)
|
||||
|
||||
return out + x
|
||||
|
||||
|
||||
class FeatureFusionBlock(nn.Module):
|
||||
"""Feature fusion block.
|
||||
"""
|
||||
|
||||
def __init__(self, features):
|
||||
"""Init.
|
||||
|
||||
Args:
|
||||
features (int): number of features
|
||||
"""
|
||||
super(FeatureFusionBlock, self).__init__()
|
||||
|
||||
self.resConfUnit1 = ResidualConvUnit(features)
|
||||
self.resConfUnit2 = ResidualConvUnit(features)
|
||||
|
||||
def forward(self, *xs):
|
||||
"""Forward pass.
|
||||
|
||||
Returns:
|
||||
tensor: output
|
||||
"""
|
||||
output = xs[0]
|
||||
|
||||
if len(xs) == 2:
|
||||
output += self.resConfUnit1(xs[1])
|
||||
|
||||
output = self.resConfUnit2(output)
|
||||
|
||||
output = nn.functional.interpolate(
|
||||
output, scale_factor=2, mode="bilinear", align_corners=True
|
||||
)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
|
||||
|
||||
class ResidualConvUnit_custom(nn.Module):
|
||||
"""Residual convolution module.
|
||||
"""
|
||||
|
||||
def __init__(self, features, activation, bn):
|
||||
"""Init.
|
||||
|
||||
Args:
|
||||
features (int): number of features
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.bn = bn
|
||||
|
||||
self.groups=1
|
||||
|
||||
self.conv1 = nn.Conv2d(
|
||||
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
||||
)
|
||||
|
||||
self.conv2 = nn.Conv2d(
|
||||
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
||||
)
|
||||
|
||||
if self.bn==True:
|
||||
self.bn1 = nn.BatchNorm2d(features)
|
||||
self.bn2 = nn.BatchNorm2d(features)
|
||||
|
||||
self.activation = activation
|
||||
|
||||
self.skip_add = nn.quantized.FloatFunctional()
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass.
|
||||
|
||||
Args:
|
||||
x (tensor): input
|
||||
|
||||
Returns:
|
||||
tensor: output
|
||||
"""
|
||||
|
||||
out = self.activation(x)
|
||||
out = self.conv1(out)
|
||||
if self.bn==True:
|
||||
out = self.bn1(out)
|
||||
|
||||
out = self.activation(out)
|
||||
out = self.conv2(out)
|
||||
if self.bn==True:
|
||||
out = self.bn2(out)
|
||||
|
||||
if self.groups > 1:
|
||||
out = self.conv_merge(out)
|
||||
|
||||
return self.skip_add.add(out, x)
|
||||
|
||||
# return out + x
|
||||
|
||||
|
||||
class FeatureFusionBlock_custom(nn.Module):
|
||||
"""Feature fusion block.
|
||||
"""
|
||||
|
||||
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
|
||||
"""Init.
|
||||
|
||||
Args:
|
||||
features (int): number of features
|
||||
"""
|
||||
super(FeatureFusionBlock_custom, self).__init__()
|
||||
|
||||
self.deconv = deconv
|
||||
self.align_corners = align_corners
|
||||
|
||||
self.groups=1
|
||||
|
||||
self.expand = expand
|
||||
out_features = features
|
||||
if self.expand==True:
|
||||
out_features = features//2
|
||||
|
||||
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
|
||||
|
||||
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
|
||||
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
|
||||
|
||||
self.skip_add = nn.quantized.FloatFunctional()
|
||||
|
||||
def forward(self, *xs):
|
||||
"""Forward pass.
|
||||
|
||||
Returns:
|
||||
tensor: output
|
||||
"""
|
||||
output = xs[0]
|
||||
|
||||
if len(xs) == 2:
|
||||
res = self.resConfUnit1(xs[1])
|
||||
output = self.skip_add.add(output, res)
|
||||
# output += res
|
||||
|
||||
output = self.resConfUnit2(output)
|
||||
|
||||
output = nn.functional.interpolate(
|
||||
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
|
||||
)
|
||||
|
||||
output = self.out_conv(output)
|
||||
|
||||
return output
|
||||
|
|
@ -1,109 +0,0 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from .base_model import BaseModel
|
||||
from .blocks import (
|
||||
FeatureFusionBlock,
|
||||
FeatureFusionBlock_custom,
|
||||
Interpolate,
|
||||
_make_encoder,
|
||||
forward_vit,
|
||||
)
|
||||
|
||||
|
||||
def _make_fusion_block(features, use_bn):
|
||||
return FeatureFusionBlock_custom(
|
||||
features,
|
||||
nn.ReLU(False),
|
||||
deconv=False,
|
||||
bn=use_bn,
|
||||
expand=False,
|
||||
align_corners=True,
|
||||
)
|
||||
|
||||
|
||||
class DPT(BaseModel):
|
||||
def __init__(
|
||||
self,
|
||||
head,
|
||||
features=256,
|
||||
backbone="vitb_rn50_384",
|
||||
readout="project",
|
||||
channels_last=False,
|
||||
use_bn=False,
|
||||
):
|
||||
|
||||
super(DPT, self).__init__()
|
||||
|
||||
self.channels_last = channels_last
|
||||
|
||||
hooks = {
|
||||
"vitb_rn50_384": [0, 1, 8, 11],
|
||||
"vitb16_384": [2, 5, 8, 11],
|
||||
"vitl16_384": [5, 11, 17, 23],
|
||||
}
|
||||
|
||||
# Instantiate backbone and reassemble blocks
|
||||
self.pretrained, self.scratch = _make_encoder(
|
||||
backbone,
|
||||
features,
|
||||
False, # Set to true of you want to train from scratch, uses ImageNet weights
|
||||
groups=1,
|
||||
expand=False,
|
||||
exportable=False,
|
||||
hooks=hooks[backbone],
|
||||
use_readout=readout,
|
||||
)
|
||||
|
||||
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
||||
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
||||
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
||||
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
||||
|
||||
self.scratch.output_conv = head
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
if self.channels_last == True:
|
||||
x.contiguous(memory_format=torch.channels_last)
|
||||
|
||||
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
|
||||
|
||||
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
||||
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
||||
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
||||
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
||||
|
||||
path_4 = self.scratch.refinenet4(layer_4_rn)
|
||||
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
||||
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
||||
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
||||
|
||||
out = self.scratch.output_conv(path_1)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class DPTDepthModel(DPT):
|
||||
def __init__(self, path=None, non_negative=True, **kwargs):
|
||||
features = kwargs["features"] if "features" in kwargs else 256
|
||||
|
||||
head = nn.Sequential(
|
||||
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
|
||||
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
|
||||
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
|
||||
nn.ReLU(True),
|
||||
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
||||
nn.ReLU(True) if non_negative else nn.Identity(),
|
||||
nn.Identity(),
|
||||
)
|
||||
|
||||
super().__init__(head, **kwargs)
|
||||
|
||||
if path is not None:
|
||||
self.load(path)
|
||||
|
||||
def forward(self, x):
|
||||
return super().forward(x).squeeze(dim=1)
|
||||
|
|
@ -1,76 +0,0 @@
|
|||
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
||||
This file contains code that is adapted from
|
||||
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
||||
"""
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from .base_model import BaseModel
|
||||
from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
|
||||
|
||||
|
||||
class MidasNet(BaseModel):
|
||||
"""Network for monocular depth estimation.
|
||||
"""
|
||||
|
||||
def __init__(self, path=None, features=256, non_negative=True):
|
||||
"""Init.
|
||||
|
||||
Args:
|
||||
path (str, optional): Path to saved model. Defaults to None.
|
||||
features (int, optional): Number of features. Defaults to 256.
|
||||
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
||||
"""
|
||||
print("Loading weights: ", path)
|
||||
|
||||
super(MidasNet, self).__init__()
|
||||
|
||||
use_pretrained = False if path is None else True
|
||||
|
||||
self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
|
||||
|
||||
self.scratch.refinenet4 = FeatureFusionBlock(features)
|
||||
self.scratch.refinenet3 = FeatureFusionBlock(features)
|
||||
self.scratch.refinenet2 = FeatureFusionBlock(features)
|
||||
self.scratch.refinenet1 = FeatureFusionBlock(features)
|
||||
|
||||
self.scratch.output_conv = nn.Sequential(
|
||||
nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
|
||||
Interpolate(scale_factor=2, mode="bilinear"),
|
||||
nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
|
||||
nn.ReLU(True),
|
||||
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
||||
nn.ReLU(True) if non_negative else nn.Identity(),
|
||||
)
|
||||
|
||||
if path:
|
||||
self.load(path)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass.
|
||||
|
||||
Args:
|
||||
x (tensor): input data (image)
|
||||
|
||||
Returns:
|
||||
tensor: depth
|
||||
"""
|
||||
|
||||
layer_1 = self.pretrained.layer1(x)
|
||||
layer_2 = self.pretrained.layer2(layer_1)
|
||||
layer_3 = self.pretrained.layer3(layer_2)
|
||||
layer_4 = self.pretrained.layer4(layer_3)
|
||||
|
||||
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
||||
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
||||
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
||||
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
||||
|
||||
path_4 = self.scratch.refinenet4(layer_4_rn)
|
||||
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
||||
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
||||
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
||||
|
||||
out = self.scratch.output_conv(path_1)
|
||||
|
||||
return torch.squeeze(out, dim=1)
|
|
@ -1,128 +0,0 @@
|
|||
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
||||
This file contains code that is adapted from
|
||||
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
||||
"""
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from .base_model import BaseModel
|
||||
from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
|
||||
|
||||
|
||||
class MidasNet_small(BaseModel):
|
||||
"""Network for monocular depth estimation.
|
||||
"""
|
||||
|
||||
def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
|
||||
blocks={'expand': True}):
|
||||
"""Init.
|
||||
|
||||
Args:
|
||||
path (str, optional): Path to saved model. Defaults to None.
|
||||
features (int, optional): Number of features. Defaults to 256.
|
||||
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
||||
"""
|
||||
print("Loading weights: ", path)
|
||||
|
||||
super(MidasNet_small, self).__init__()
|
||||
|
||||
use_pretrained = False if path else True
|
||||
|
||||
self.channels_last = channels_last
|
||||
self.blocks = blocks
|
||||
self.backbone = backbone
|
||||
|
||||
self.groups = 1
|
||||
|
||||
features1=features
|
||||
features2=features
|
||||
features3=features
|
||||
features4=features
|
||||
self.expand = False
|
||||
if "expand" in self.blocks and self.blocks['expand'] == True:
|
||||
self.expand = True
|
||||
features1=features
|
||||
features2=features*2
|
||||
features3=features*4
|
||||
features4=features*8
|
||||
|
||||
self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
|
||||
|
||||
self.scratch.activation = nn.ReLU(False)
|
||||
|
||||
self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
||||
self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
||||
self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
||||
self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
|
||||
|
||||
|
||||
self.scratch.output_conv = nn.Sequential(
|
||||
nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
|
||||
Interpolate(scale_factor=2, mode="bilinear"),
|
||||
nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
|
||||
self.scratch.activation,
|
||||
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
||||
nn.ReLU(True) if non_negative else nn.Identity(),
|
||||
nn.Identity(),
|
||||
)
|
||||
|
||||
if path:
|
||||
self.load(path)
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass.
|
||||
|
||||
Args:
|
||||
x (tensor): input data (image)
|
||||
|
||||
Returns:
|
||||
tensor: depth
|
||||
"""
|
||||
if self.channels_last==True:
|
||||
print("self.channels_last = ", self.channels_last)
|
||||
x.contiguous(memory_format=torch.channels_last)
|
||||
|
||||
|
||||
layer_1 = self.pretrained.layer1(x)
|
||||
layer_2 = self.pretrained.layer2(layer_1)
|
||||
layer_3 = self.pretrained.layer3(layer_2)
|
||||
layer_4 = self.pretrained.layer4(layer_3)
|
||||
|
||||
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
||||
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
||||
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
||||
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
||||
|
||||
|
||||
path_4 = self.scratch.refinenet4(layer_4_rn)
|
||||
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
||||
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
||||
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
||||
|
||||
out = self.scratch.output_conv(path_1)
|
||||
|
||||
return torch.squeeze(out, dim=1)
|
||||
|
||||
|
||||
|
||||
def fuse_model(m):
|
||||
prev_previous_type = nn.Identity()
|
||||
prev_previous_name = ''
|
||||
previous_type = nn.Identity()
|
||||
previous_name = ''
|
||||
for name, module in m.named_modules():
|
||||
if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
|
||||
# print("FUSED ", prev_previous_name, previous_name, name)
|
||||
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
|
||||
elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
|
||||
# print("FUSED ", prev_previous_name, previous_name)
|
||||
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
|
||||
# elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
|
||||
# print("FUSED ", previous_name, name)
|
||||
# torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
|
||||
|
||||
prev_previous_type = previous_type
|
||||
prev_previous_name = previous_name
|
||||
previous_type = type(module)
|
||||
previous_name = name
|
|
@ -1,234 +0,0 @@
|
|||
import numpy as np
|
||||
import cv2
|
||||
import math
|
||||
|
||||
|
||||
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
|
||||
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
|
||||
|
||||
Args:
|
||||
sample (dict): sample
|
||||
size (tuple): image size
|
||||
|
||||
Returns:
|
||||
tuple: new size
|
||||
"""
|
||||
shape = list(sample["disparity"].shape)
|
||||
|
||||
if shape[0] >= size[0] and shape[1] >= size[1]:
|
||||
return sample
|
||||
|
||||
scale = [0, 0]
|
||||
scale[0] = size[0] / shape[0]
|
||||
scale[1] = size[1] / shape[1]
|
||||
|
||||
scale = max(scale)
|
||||
|
||||
shape[0] = math.ceil(scale * shape[0])
|
||||
shape[1] = math.ceil(scale * shape[1])
|
||||
|
||||
# resize
|
||||
sample["image"] = cv2.resize(
|
||||
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
|
||||
)
|
||||
|
||||
sample["disparity"] = cv2.resize(
|
||||
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
|
||||
)
|
||||
sample["mask"] = cv2.resize(
|
||||
sample["mask"].astype(np.float32),
|
||||
tuple(shape[::-1]),
|
||||
interpolation=cv2.INTER_NEAREST,
|
||||
)
|
||||
sample["mask"] = sample["mask"].astype(bool)
|
||||
|
||||
return tuple(shape)
|
||||
|
||||
|
||||
class Resize(object):
|
||||
"""Resize sample to given size (width, height).
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
width,
|
||||
height,
|
||||
resize_target=True,
|
||||
keep_aspect_ratio=False,
|
||||
ensure_multiple_of=1,
|
||||
resize_method="lower_bound",
|
||||
image_interpolation_method=cv2.INTER_AREA,
|
||||
):
|
||||
"""Init.
|
||||
|
||||
Args:
|
||||
width (int): desired output width
|
||||
height (int): desired output height
|
||||
resize_target (bool, optional):
|
||||
True: Resize the full sample (image, mask, target).
|
||||
False: Resize image only.
|
||||
Defaults to True.
|
||||
keep_aspect_ratio (bool, optional):
|
||||
True: Keep the aspect ratio of the input sample.
|
||||
Output sample might not have the given width and height, and
|
||||
resize behaviour depends on the parameter 'resize_method'.
|
||||
Defaults to False.
|
||||
ensure_multiple_of (int, optional):
|
||||
Output width and height is constrained to be multiple of this parameter.
|
||||
Defaults to 1.
|
||||
resize_method (str, optional):
|
||||
"lower_bound": Output will be at least as large as the given size.
|
||||
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
||||
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
||||
Defaults to "lower_bound".
|
||||
"""
|
||||
self.__width = width
|
||||
self.__height = height
|
||||
|
||||
self.__resize_target = resize_target
|
||||
self.__keep_aspect_ratio = keep_aspect_ratio
|
||||
self.__multiple_of = ensure_multiple_of
|
||||
self.__resize_method = resize_method
|
||||
self.__image_interpolation_method = image_interpolation_method
|
||||
|
||||
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
||||
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
||||
|
||||
if max_val is not None and y > max_val:
|
||||
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
||||
|
||||
if y < min_val:
|
||||
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
||||
|
||||
return y
|
||||
|
||||
def get_size(self, width, height):
|
||||
# determine new height and width
|
||||
scale_height = self.__height / height
|
||||
scale_width = self.__width / width
|
||||
|
||||
if self.__keep_aspect_ratio:
|
||||
if self.__resize_method == "lower_bound":
|
||||
# scale such that output size is lower bound
|
||||
if scale_width > scale_height:
|
||||
# fit width
|
||||
scale_height = scale_width
|
||||
else:
|
||||
# fit height
|
||||
scale_width = scale_height
|
||||
elif self.__resize_method == "upper_bound":
|
||||
# scale such that output size is upper bound
|
||||
if scale_width < scale_height:
|
||||
# fit width
|
||||
scale_height = scale_width
|
||||
else:
|
||||
# fit height
|
||||
scale_width = scale_height
|
||||
elif self.__resize_method == "minimal":
|
||||
# scale as least as possbile
|
||||
if abs(1 - scale_width) < abs(1 - scale_height):
|
||||
# fit width
|
||||
scale_height = scale_width
|
||||
else:
|
||||
# fit height
|
||||
scale_width = scale_height
|
||||
else:
|
||||
raise ValueError(
|
||||
f"resize_method {self.__resize_method} not implemented"
|
||||
)
|
||||
|
||||
if self.__resize_method == "lower_bound":
|
||||
new_height = self.constrain_to_multiple_of(
|
||||
scale_height * height, min_val=self.__height
|
||||
)
|
||||
new_width = self.constrain_to_multiple_of(
|
||||
scale_width * width, min_val=self.__width
|
||||
)
|
||||
elif self.__resize_method == "upper_bound":
|
||||
new_height = self.constrain_to_multiple_of(
|
||||
scale_height * height, max_val=self.__height
|
||||
)
|
||||
new_width = self.constrain_to_multiple_of(
|
||||
scale_width * width, max_val=self.__width
|
||||
)
|
||||
elif self.__resize_method == "minimal":
|
||||
new_height = self.constrain_to_multiple_of(scale_height * height)
|
||||
new_width = self.constrain_to_multiple_of(scale_width * width)
|
||||
else:
|
||||
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
||||
|
||||
return (new_width, new_height)
|
||||
|
||||
def __call__(self, sample):
|
||||
width, height = self.get_size(
|
||||
sample["image"].shape[1], sample["image"].shape[0]
|
||||
)
|
||||
|
||||
# resize sample
|
||||
sample["image"] = cv2.resize(
|
||||
sample["image"],
|
||||
(width, height),
|
||||
interpolation=self.__image_interpolation_method,
|
||||
)
|
||||
|
||||
if self.__resize_target:
|
||||
if "disparity" in sample:
|
||||
sample["disparity"] = cv2.resize(
|
||||
sample["disparity"],
|
||||
(width, height),
|
||||
interpolation=cv2.INTER_NEAREST,
|
||||
)
|
||||
|
||||
if "depth" in sample:
|
||||
sample["depth"] = cv2.resize(
|
||||
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
|
||||
)
|
||||
|
||||
sample["mask"] = cv2.resize(
|
||||
sample["mask"].astype(np.float32),
|
||||
(width, height),
|
||||
interpolation=cv2.INTER_NEAREST,
|
||||
)
|
||||
sample["mask"] = sample["mask"].astype(bool)
|
||||
|
||||
return sample
|
||||
|
||||
|
||||
class NormalizeImage(object):
|
||||
"""Normlize image by given mean and std.
|
||||
"""
|
||||
|
||||
def __init__(self, mean, std):
|
||||
self.__mean = mean
|
||||
self.__std = std
|
||||
|
||||
def __call__(self, sample):
|
||||
sample["image"] = (sample["image"] - self.__mean) / self.__std
|
||||
|
||||
return sample
|
||||
|
||||
|
||||
class PrepareForNet(object):
|
||||
"""Prepare sample for usage as network input.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def __call__(self, sample):
|
||||
image = np.transpose(sample["image"], (2, 0, 1))
|
||||
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
|
||||
|
||||
if "mask" in sample:
|
||||
sample["mask"] = sample["mask"].astype(np.float32)
|
||||
sample["mask"] = np.ascontiguousarray(sample["mask"])
|
||||
|
||||
if "disparity" in sample:
|
||||
disparity = sample["disparity"].astype(np.float32)
|
||||
sample["disparity"] = np.ascontiguousarray(disparity)
|
||||
|
||||
if "depth" in sample:
|
||||
depth = sample["depth"].astype(np.float32)
|
||||
sample["depth"] = np.ascontiguousarray(depth)
|
||||
|
||||
return sample
|
|
@ -1,491 +0,0 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import timm
|
||||
import types
|
||||
import math
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class Slice(nn.Module):
|
||||
def __init__(self, start_index=1):
|
||||
super(Slice, self).__init__()
|
||||
self.start_index = start_index
|
||||
|
||||
def forward(self, x):
|
||||
return x[:, self.start_index :]
|
||||
|
||||
|
||||
class AddReadout(nn.Module):
|
||||
def __init__(self, start_index=1):
|
||||
super(AddReadout, self).__init__()
|
||||
self.start_index = start_index
|
||||
|
||||
def forward(self, x):
|
||||
if self.start_index == 2:
|
||||
readout = (x[:, 0] + x[:, 1]) / 2
|
||||
else:
|
||||
readout = x[:, 0]
|
||||
return x[:, self.start_index :] + readout.unsqueeze(1)
|
||||
|
||||
|
||||
class ProjectReadout(nn.Module):
|
||||
def __init__(self, in_features, start_index=1):
|
||||
super(ProjectReadout, self).__init__()
|
||||
self.start_index = start_index
|
||||
|
||||
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
|
||||
|
||||
def forward(self, x):
|
||||
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
|
||||
features = torch.cat((x[:, self.start_index :], readout), -1)
|
||||
|
||||
return self.project(features)
|
||||
|
||||
|
||||
class Transpose(nn.Module):
|
||||
def __init__(self, dim0, dim1):
|
||||
super(Transpose, self).__init__()
|
||||
self.dim0 = dim0
|
||||
self.dim1 = dim1
|
||||
|
||||
def forward(self, x):
|
||||
x = x.transpose(self.dim0, self.dim1)
|
||||
return x
|
||||
|
||||
|
||||
def forward_vit(pretrained, x):
|
||||
b, c, h, w = x.shape
|
||||
|
||||
glob = pretrained.model.forward_flex(x)
|
||||
|
||||
layer_1 = pretrained.activations["1"]
|
||||
layer_2 = pretrained.activations["2"]
|
||||
layer_3 = pretrained.activations["3"]
|
||||
layer_4 = pretrained.activations["4"]
|
||||
|
||||
layer_1 = pretrained.act_postprocess1[0:2](layer_1)
|
||||
layer_2 = pretrained.act_postprocess2[0:2](layer_2)
|
||||
layer_3 = pretrained.act_postprocess3[0:2](layer_3)
|
||||
layer_4 = pretrained.act_postprocess4[0:2](layer_4)
|
||||
|
||||
unflatten = nn.Sequential(
|
||||
nn.Unflatten(
|
||||
2,
|
||||
torch.Size(
|
||||
[
|
||||
h // pretrained.model.patch_size[1],
|
||||
w // pretrained.model.patch_size[0],
|
||||
]
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
if layer_1.ndim == 3:
|
||||
layer_1 = unflatten(layer_1)
|
||||
if layer_2.ndim == 3:
|
||||
layer_2 = unflatten(layer_2)
|
||||
if layer_3.ndim == 3:
|
||||
layer_3 = unflatten(layer_3)
|
||||
if layer_4.ndim == 3:
|
||||
layer_4 = unflatten(layer_4)
|
||||
|
||||
layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
|
||||
layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
|
||||
layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
|
||||
layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
|
||||
|
||||
return layer_1, layer_2, layer_3, layer_4
|
||||
|
||||
|
||||
def _resize_pos_embed(self, posemb, gs_h, gs_w):
|
||||
posemb_tok, posemb_grid = (
|
||||
posemb[:, : self.start_index],
|
||||
posemb[0, self.start_index :],
|
||||
)
|
||||
|
||||
gs_old = int(math.sqrt(len(posemb_grid)))
|
||||
|
||||
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
|
||||
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
|
||||
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
|
||||
|
||||
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
||||
|
||||
return posemb
|
||||
|
||||
|
||||
def forward_flex(self, x):
|
||||
b, c, h, w = x.shape
|
||||
|
||||
pos_embed = self._resize_pos_embed(
|
||||
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
|
||||
)
|
||||
|
||||
B = x.shape[0]
|
||||
|
||||
if hasattr(self.patch_embed, "backbone"):
|
||||
x = self.patch_embed.backbone(x)
|
||||
if isinstance(x, (list, tuple)):
|
||||
x = x[-1] # last feature if backbone outputs list/tuple of features
|
||||
|
||||
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
|
||||
|
||||
if getattr(self, "dist_token", None) is not None:
|
||||
cls_tokens = self.cls_token.expand(
|
||||
B, -1, -1
|
||||
) # stole cls_tokens impl from Phil Wang, thanks
|
||||
dist_token = self.dist_token.expand(B, -1, -1)
|
||||
x = torch.cat((cls_tokens, dist_token, x), dim=1)
|
||||
else:
|
||||
cls_tokens = self.cls_token.expand(
|
||||
B, -1, -1
|
||||
) # stole cls_tokens impl from Phil Wang, thanks
|
||||
x = torch.cat((cls_tokens, x), dim=1)
|
||||
|
||||
x = x + pos_embed
|
||||
x = self.pos_drop(x)
|
||||
|
||||
for blk in self.blocks:
|
||||
x = blk(x)
|
||||
|
||||
x = self.norm(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
activations = {}
|
||||
|
||||
|
||||
def get_activation(name):
|
||||
def hook(model, input, output):
|
||||
activations[name] = output
|
||||
|
||||
return hook
|
||||
|
||||
|
||||
def get_readout_oper(vit_features, features, use_readout, start_index=1):
|
||||
if use_readout == "ignore":
|
||||
readout_oper = [Slice(start_index)] * len(features)
|
||||
elif use_readout == "add":
|
||||
readout_oper = [AddReadout(start_index)] * len(features)
|
||||
elif use_readout == "project":
|
||||
readout_oper = [
|
||||
ProjectReadout(vit_features, start_index) for out_feat in features
|
||||
]
|
||||
else:
|
||||
assert (
|
||||
False
|
||||
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
|
||||
|
||||
return readout_oper
|
||||
|
||||
|
||||
def _make_vit_b16_backbone(
|
||||
model,
|
||||
features=[96, 192, 384, 768],
|
||||
size=[384, 384],
|
||||
hooks=[2, 5, 8, 11],
|
||||
vit_features=768,
|
||||
use_readout="ignore",
|
||||
start_index=1,
|
||||
):
|
||||
pretrained = nn.Module()
|
||||
|
||||
pretrained.model = model
|
||||
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
||||
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
||||
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
||||
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
||||
|
||||
pretrained.activations = activations
|
||||
|
||||
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
||||
|
||||
# 32, 48, 136, 384
|
||||
pretrained.act_postprocess1 = nn.Sequential(
|
||||
readout_oper[0],
|
||||
Transpose(1, 2),
|
||||
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
||||
nn.Conv2d(
|
||||
in_channels=vit_features,
|
||||
out_channels=features[0],
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
),
|
||||
nn.ConvTranspose2d(
|
||||
in_channels=features[0],
|
||||
out_channels=features[0],
|
||||
kernel_size=4,
|
||||
stride=4,
|
||||
padding=0,
|
||||
bias=True,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
),
|
||||
)
|
||||
|
||||
pretrained.act_postprocess2 = nn.Sequential(
|
||||
readout_oper[1],
|
||||
Transpose(1, 2),
|
||||
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
||||
nn.Conv2d(
|
||||
in_channels=vit_features,
|
||||
out_channels=features[1],
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
),
|
||||
nn.ConvTranspose2d(
|
||||
in_channels=features[1],
|
||||
out_channels=features[1],
|
||||
kernel_size=2,
|
||||
stride=2,
|
||||
padding=0,
|
||||
bias=True,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
),
|
||||
)
|
||||
|
||||
pretrained.act_postprocess3 = nn.Sequential(
|
||||
readout_oper[2],
|
||||
Transpose(1, 2),
|
||||
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
||||
nn.Conv2d(
|
||||
in_channels=vit_features,
|
||||
out_channels=features[2],
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
),
|
||||
)
|
||||
|
||||
pretrained.act_postprocess4 = nn.Sequential(
|
||||
readout_oper[3],
|
||||
Transpose(1, 2),
|
||||
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
||||
nn.Conv2d(
|
||||
in_channels=vit_features,
|
||||
out_channels=features[3],
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
),
|
||||
nn.Conv2d(
|
||||
in_channels=features[3],
|
||||
out_channels=features[3],
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=1,
|
||||
),
|
||||
)
|
||||
|
||||
pretrained.model.start_index = start_index
|
||||
pretrained.model.patch_size = [16, 16]
|
||||
|
||||
# We inject this function into the VisionTransformer instances so that
|
||||
# we can use it with interpolated position embeddings without modifying the library source.
|
||||
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
||||
pretrained.model._resize_pos_embed = types.MethodType(
|
||||
_resize_pos_embed, pretrained.model
|
||||
)
|
||||
|
||||
return pretrained
|
||||
|
||||
|
||||
def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
|
||||
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
|
||||
|
||||
hooks = [5, 11, 17, 23] if hooks == None else hooks
|
||||
return _make_vit_b16_backbone(
|
||||
model,
|
||||
features=[256, 512, 1024, 1024],
|
||||
hooks=hooks,
|
||||
vit_features=1024,
|
||||
use_readout=use_readout,
|
||||
)
|
||||
|
||||
|
||||
def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
|
||||
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
|
||||
|
||||
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
||||
return _make_vit_b16_backbone(
|
||||
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
||||
)
|
||||
|
||||
|
||||
def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
|
||||
model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
|
||||
|
||||
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
||||
return _make_vit_b16_backbone(
|
||||
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
||||
)
|
||||
|
||||
|
||||
def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
|
||||
model = timm.create_model(
|
||||
"vit_deit_base_distilled_patch16_384", pretrained=pretrained
|
||||
)
|
||||
|
||||
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
||||
return _make_vit_b16_backbone(
|
||||
model,
|
||||
features=[96, 192, 384, 768],
|
||||
hooks=hooks,
|
||||
use_readout=use_readout,
|
||||
start_index=2,
|
||||
)
|
||||
|
||||
|
||||
def _make_vit_b_rn50_backbone(
|
||||
model,
|
||||
features=[256, 512, 768, 768],
|
||||
size=[384, 384],
|
||||
hooks=[0, 1, 8, 11],
|
||||
vit_features=768,
|
||||
use_vit_only=False,
|
||||
use_readout="ignore",
|
||||
start_index=1,
|
||||
):
|
||||
pretrained = nn.Module()
|
||||
|
||||
pretrained.model = model
|
||||
|
||||
if use_vit_only == True:
|
||||
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
||||
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
||||
else:
|
||||
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
|
||||
get_activation("1")
|
||||
)
|
||||
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
|
||||
get_activation("2")
|
||||
)
|
||||
|
||||
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
||||
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
||||
|
||||
pretrained.activations = activations
|
||||
|
||||
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
||||
|
||||
if use_vit_only == True:
|
||||
pretrained.act_postprocess1 = nn.Sequential(
|
||||
readout_oper[0],
|
||||
Transpose(1, 2),
|
||||
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
||||
nn.Conv2d(
|
||||
in_channels=vit_features,
|
||||
out_channels=features[0],
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
),
|
||||
nn.ConvTranspose2d(
|
||||
in_channels=features[0],
|
||||
out_channels=features[0],
|
||||
kernel_size=4,
|
||||
stride=4,
|
||||
padding=0,
|
||||
bias=True,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
),
|
||||
)
|
||||
|
||||
pretrained.act_postprocess2 = nn.Sequential(
|
||||
readout_oper[1],
|
||||
Transpose(1, 2),
|
||||
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
||||
nn.Conv2d(
|
||||
in_channels=vit_features,
|
||||
out_channels=features[1],
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
),
|
||||
nn.ConvTranspose2d(
|
||||
in_channels=features[1],
|
||||
out_channels=features[1],
|
||||
kernel_size=2,
|
||||
stride=2,
|
||||
padding=0,
|
||||
bias=True,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
),
|
||||
)
|
||||
else:
|
||||
pretrained.act_postprocess1 = nn.Sequential(
|
||||
nn.Identity(), nn.Identity(), nn.Identity()
|
||||
)
|
||||
pretrained.act_postprocess2 = nn.Sequential(
|
||||
nn.Identity(), nn.Identity(), nn.Identity()
|
||||
)
|
||||
|
||||
pretrained.act_postprocess3 = nn.Sequential(
|
||||
readout_oper[2],
|
||||
Transpose(1, 2),
|
||||
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
||||
nn.Conv2d(
|
||||
in_channels=vit_features,
|
||||
out_channels=features[2],
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
),
|
||||
)
|
||||
|
||||
pretrained.act_postprocess4 = nn.Sequential(
|
||||
readout_oper[3],
|
||||
Transpose(1, 2),
|
||||
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
||||
nn.Conv2d(
|
||||
in_channels=vit_features,
|
||||
out_channels=features[3],
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
),
|
||||
nn.Conv2d(
|
||||
in_channels=features[3],
|
||||
out_channels=features[3],
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=1,
|
||||
),
|
||||
)
|
||||
|
||||
pretrained.model.start_index = start_index
|
||||
pretrained.model.patch_size = [16, 16]
|
||||
|
||||
# We inject this function into the VisionTransformer instances so that
|
||||
# we can use it with interpolated position embeddings without modifying the library source.
|
||||
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
||||
|
||||
# We inject this function into the VisionTransformer instances so that
|
||||
# we can use it with interpolated position embeddings without modifying the library source.
|
||||
pretrained.model._resize_pos_embed = types.MethodType(
|
||||
_resize_pos_embed, pretrained.model
|
||||
)
|
||||
|
||||
return pretrained
|
||||
|
||||
|
||||
def _make_pretrained_vitb_rn50_384(
|
||||
pretrained, use_readout="ignore", hooks=None, use_vit_only=False
|
||||
):
|
||||
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
|
||||
|
||||
hooks = [0, 1, 8, 11] if hooks == None else hooks
|
||||
return _make_vit_b_rn50_backbone(
|
||||
model,
|
||||
features=[256, 512, 768, 768],
|
||||
size=[384, 384],
|
||||
hooks=hooks,
|
||||
use_vit_only=use_vit_only,
|
||||
use_readout=use_readout,
|
||||
)
|
|
@ -1,189 +0,0 @@
|
|||
"""Utils for monoDepth."""
|
||||
import sys
|
||||
import re
|
||||
import numpy as np
|
||||
import cv2
|
||||
import torch
|
||||
|
||||
|
||||
def read_pfm(path):
|
||||
"""Read pfm file.
|
||||
|
||||
Args:
|
||||
path (str): path to file
|
||||
|
||||
Returns:
|
||||
tuple: (data, scale)
|
||||
"""
|
||||
with open(path, "rb") as file:
|
||||
|
||||
color = None
|
||||
width = None
|
||||
height = None
|
||||
scale = None
|
||||
endian = None
|
||||
|
||||
header = file.readline().rstrip()
|
||||
if header.decode("ascii") == "PF":
|
||||
color = True
|
||||
elif header.decode("ascii") == "Pf":
|
||||
color = False
|
||||
else:
|
||||
raise Exception("Not a PFM file: " + path)
|
||||
|
||||
dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
|
||||
if dim_match:
|
||||
width, height = list(map(int, dim_match.groups()))
|
||||
else:
|
||||
raise Exception("Malformed PFM header.")
|
||||
|
||||
scale = float(file.readline().decode("ascii").rstrip())
|
||||
if scale < 0:
|
||||
# little-endian
|
||||
endian = "<"
|
||||
scale = -scale
|
||||
else:
|
||||
# big-endian
|
||||
endian = ">"
|
||||
|
||||
data = np.fromfile(file, endian + "f")
|
||||
shape = (height, width, 3) if color else (height, width)
|
||||
|
||||
data = np.reshape(data, shape)
|
||||
data = np.flipud(data)
|
||||
|
||||
return data, scale
|
||||
|
||||
|
||||
def write_pfm(path, image, scale=1):
|
||||
"""Write pfm file.
|
||||
|
||||
Args:
|
||||
path (str): pathto file
|
||||
image (array): data
|
||||
scale (int, optional): Scale. Defaults to 1.
|
||||
"""
|
||||
|
||||
with open(path, "wb") as file:
|
||||
color = None
|
||||
|
||||
if image.dtype.name != "float32":
|
||||
raise Exception("Image dtype must be float32.")
|
||||
|
||||
image = np.flipud(image)
|
||||
|
||||
if len(image.shape) == 3 and image.shape[2] == 3: # color image
|
||||
color = True
|
||||
elif (
|
||||
len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
|
||||
): # greyscale
|
||||
color = False
|
||||
else:
|
||||
raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
|
||||
|
||||
file.write("PF\n" if color else "Pf\n".encode())
|
||||
file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
|
||||
|
||||
endian = image.dtype.byteorder
|
||||
|
||||
if endian == "<" or endian == "=" and sys.byteorder == "little":
|
||||
scale = -scale
|
||||
|
||||
file.write("%f\n".encode() % scale)
|
||||
|
||||
image.tofile(file)
|
||||
|
||||
|
||||
def read_image(path):
|
||||
"""Read image and output RGB image (0-1).
|
||||
|
||||
Args:
|
||||
path (str): path to file
|
||||
|
||||
Returns:
|
||||
array: RGB image (0-1)
|
||||
"""
|
||||
img = cv2.imread(path)
|
||||
|
||||
if img.ndim == 2:
|
||||
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
||||
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
|
||||
|
||||
return img
|
||||
|
||||
|
||||
def resize_image(img):
|
||||
"""Resize image and make it fit for network.
|
||||
|
||||
Args:
|
||||
img (array): image
|
||||
|
||||
Returns:
|
||||
tensor: data ready for network
|
||||
"""
|
||||
height_orig = img.shape[0]
|
||||
width_orig = img.shape[1]
|
||||
|
||||
if width_orig > height_orig:
|
||||
scale = width_orig / 384
|
||||
else:
|
||||
scale = height_orig / 384
|
||||
|
||||
height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
|
||||
width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
|
||||
|
||||
img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
|
||||
|
||||
img_resized = (
|
||||
torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
|
||||
)
|
||||
img_resized = img_resized.unsqueeze(0)
|
||||
|
||||
return img_resized
|
||||
|
||||
|
||||
def resize_depth(depth, width, height):
|
||||
"""Resize depth map and bring to CPU (numpy).
|
||||
|
||||
Args:
|
||||
depth (tensor): depth
|
||||
width (int): image width
|
||||
height (int): image height
|
||||
|
||||
Returns:
|
||||
array: processed depth
|
||||
"""
|
||||
depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
|
||||
|
||||
depth_resized = cv2.resize(
|
||||
depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
|
||||
)
|
||||
|
||||
return depth_resized
|
||||
|
||||
def write_depth(path, depth, bits=1):
|
||||
"""Write depth map to pfm and png file.
|
||||
|
||||
Args:
|
||||
path (str): filepath without extension
|
||||
depth (array): depth
|
||||
"""
|
||||
write_pfm(path + ".pfm", depth.astype(np.float32))
|
||||
|
||||
depth_min = depth.min()
|
||||
depth_max = depth.max()
|
||||
|
||||
max_val = (2**(8*bits))-1
|
||||
|
||||
if depth_max - depth_min > np.finfo("float").eps:
|
||||
out = max_val * (depth - depth_min) / (depth_max - depth_min)
|
||||
else:
|
||||
out = np.zeros(depth.shape, dtype=depth.type)
|
||||
|
||||
if bits == 1:
|
||||
cv2.imwrite(path + ".png", out.astype("uint8"))
|
||||
elif bits == 2:
|
||||
cv2.imwrite(path + ".png", out.astype("uint16"))
|
||||
|
||||
return
|
197
ldm/util.py
197
ldm/util.py
|
@ -1,197 +0,0 @@
|
|||
import importlib
|
||||
|
||||
import torch
|
||||
from torch import optim
|
||||
import numpy as np
|
||||
|
||||
from inspect import isfunction
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
|
||||
|
||||
def log_txt_as_img(wh, xc, size=10):
|
||||
# wh a tuple of (width, height)
|
||||
# xc a list of captions to plot
|
||||
b = len(xc)
|
||||
txts = list()
|
||||
for bi in range(b):
|
||||
txt = Image.new("RGB", wh, color="white")
|
||||
draw = ImageDraw.Draw(txt)
|
||||
font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
|
||||
nc = int(40 * (wh[0] / 256))
|
||||
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
|
||||
|
||||
try:
|
||||
draw.text((0, 0), lines, fill="black", font=font)
|
||||
except UnicodeEncodeError:
|
||||
print("Cant encode string for logging. Skipping.")
|
||||
|
||||
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
||||
txts.append(txt)
|
||||
txts = np.stack(txts)
|
||||
txts = torch.tensor(txts)
|
||||
return txts
|
||||
|
||||
|
||||
def ismap(x):
|
||||
if not isinstance(x, torch.Tensor):
|
||||
return False
|
||||
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
||||
|
||||
|
||||
def isimage(x):
|
||||
if not isinstance(x,torch.Tensor):
|
||||
return False
|
||||
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
||||
|
||||
|
||||
def exists(x):
|
||||
return x is not None
|
||||
|
||||
|
||||
def default(val, d):
|
||||
if exists(val):
|
||||
return val
|
||||
return d() if isfunction(d) else d
|
||||
|
||||
|
||||
def mean_flat(tensor):
|
||||
"""
|
||||
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
|
||||
Take the mean over all non-batch dimensions.
|
||||
"""
|
||||
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
||||
|
||||
|
||||
def count_params(model, verbose=False):
|
||||
total_params = sum(p.numel() for p in model.parameters())
|
||||
if verbose:
|
||||
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
|
||||
return total_params
|
||||
|
||||
|
||||
def instantiate_from_config(config):
|
||||
if not "target" in config:
|
||||
if config == '__is_first_stage__':
|
||||
return None
|
||||
elif config == "__is_unconditional__":
|
||||
return None
|
||||
raise KeyError("Expected key `target` to instantiate.")
|
||||
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
||||
|
||||
|
||||
def get_obj_from_str(string, reload=False):
|
||||
module, cls = string.rsplit(".", 1)
|
||||
if reload:
|
||||
module_imp = importlib.import_module(module)
|
||||
importlib.reload(module_imp)
|
||||
return getattr(importlib.import_module(module, package=None), cls)
|
||||
|
||||
|
||||
class AdamWwithEMAandWings(optim.Optimizer):
|
||||
# credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298
|
||||
def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8, # TODO: check hyperparameters before using
|
||||
weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999, # ema decay to match previous code
|
||||
ema_power=1., param_names=()):
|
||||
"""AdamW that saves EMA versions of the parameters."""
|
||||
if not 0.0 <= lr:
|
||||
raise ValueError("Invalid learning rate: {}".format(lr))
|
||||
if not 0.0 <= eps:
|
||||
raise ValueError("Invalid epsilon value: {}".format(eps))
|
||||
if not 0.0 <= betas[0] < 1.0:
|
||||
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
||||
if not 0.0 <= betas[1] < 1.0:
|
||||
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
||||
if not 0.0 <= weight_decay:
|
||||
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
|
||||
if not 0.0 <= ema_decay <= 1.0:
|
||||
raise ValueError("Invalid ema_decay value: {}".format(ema_decay))
|
||||
defaults = dict(lr=lr, betas=betas, eps=eps,
|
||||
weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay,
|
||||
ema_power=ema_power, param_names=param_names)
|
||||
super().__init__(params, defaults)
|
||||
|
||||
def __setstate__(self, state):
|
||||
super().__setstate__(state)
|
||||
for group in self.param_groups:
|
||||
group.setdefault('amsgrad', False)
|
||||
|
||||
@torch.no_grad()
|
||||
def step(self, closure=None):
|
||||
"""Performs a single optimization step.
|
||||
Args:
|
||||
closure (callable, optional): A closure that reevaluates the model
|
||||
and returns the loss.
|
||||
"""
|
||||
loss = None
|
||||
if closure is not None:
|
||||
with torch.enable_grad():
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
params_with_grad = []
|
||||
grads = []
|
||||
exp_avgs = []
|
||||
exp_avg_sqs = []
|
||||
ema_params_with_grad = []
|
||||
state_sums = []
|
||||
max_exp_avg_sqs = []
|
||||
state_steps = []
|
||||
amsgrad = group['amsgrad']
|
||||
beta1, beta2 = group['betas']
|
||||
ema_decay = group['ema_decay']
|
||||
ema_power = group['ema_power']
|
||||
|
||||
for p in group['params']:
|
||||
if p.grad is None:
|
||||
continue
|
||||
params_with_grad.append(p)
|
||||
if p.grad.is_sparse:
|
||||
raise RuntimeError('AdamW does not support sparse gradients')
|
||||
grads.append(p.grad)
|
||||
|
||||
state = self.state[p]
|
||||
|
||||
# State initialization
|
||||
if len(state) == 0:
|
||||
state['step'] = 0
|
||||
# Exponential moving average of gradient values
|
||||
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||
# Exponential moving average of squared gradient values
|
||||
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||
if amsgrad:
|
||||
# Maintains max of all exp. moving avg. of sq. grad. values
|
||||
state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||
# Exponential moving average of parameter values
|
||||
state['param_exp_avg'] = p.detach().float().clone()
|
||||
|
||||
exp_avgs.append(state['exp_avg'])
|
||||
exp_avg_sqs.append(state['exp_avg_sq'])
|
||||
ema_params_with_grad.append(state['param_exp_avg'])
|
||||
|
||||
if amsgrad:
|
||||
max_exp_avg_sqs.append(state['max_exp_avg_sq'])
|
||||
|
||||
# update the steps for each param group update
|
||||
state['step'] += 1
|
||||
# record the step after step update
|
||||
state_steps.append(state['step'])
|
||||
|
||||
optim._functional.adamw(params_with_grad,
|
||||
grads,
|
||||
exp_avgs,
|
||||
exp_avg_sqs,
|
||||
max_exp_avg_sqs,
|
||||
state_steps,
|
||||
amsgrad=amsgrad,
|
||||
beta1=beta1,
|
||||
beta2=beta2,
|
||||
lr=group['lr'],
|
||||
weight_decay=group['weight_decay'],
|
||||
eps=group['eps'],
|
||||
maximize=False)
|
||||
|
||||
cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power)
|
||||
for param, ema_param in zip(params_with_grad, ema_params_with_grad):
|
||||
ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay)
|
||||
|
||||
return loss
|
|
@ -1,380 +0,0 @@
|
|||
# Copyright 2022 Lunar Ring. All rights reserved.
|
||||
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import torch
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.set_grad_enabled(False)
|
||||
import numpy as np
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore')
|
||||
import warnings
|
||||
import torch
|
||||
from PIL import Image
|
||||
import torch
|
||||
from typing import Optional
|
||||
from omegaconf import OmegaConf
|
||||
from torch import autocast
|
||||
from contextlib import nullcontext
|
||||
from ldm.util import instantiate_from_config
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from einops import repeat, rearrange
|
||||
from utils import interpolate_spherical
|
||||
|
||||
|
||||
def pad_image(input_image):
|
||||
pad_w, pad_h = np.max(((2, 2), np.ceil(
|
||||
np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size
|
||||
im_padded = Image.fromarray(
|
||||
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
|
||||
return im_padded
|
||||
|
||||
|
||||
def make_batch_superres(
|
||||
image,
|
||||
txt,
|
||||
device,
|
||||
num_samples=1):
|
||||
image = np.array(image.convert("RGB"))
|
||||
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
||||
batch = {
|
||||
"lr": rearrange(image, 'h w c -> 1 c h w'),
|
||||
"txt": num_samples * [txt],
|
||||
}
|
||||
batch["lr"] = repeat(batch["lr"].to(device=device),
|
||||
"1 ... -> n ...", n=num_samples)
|
||||
return batch
|
||||
|
||||
|
||||
def make_noise_augmentation(model, batch, noise_level=None):
|
||||
x_low = batch[model.low_scale_key]
|
||||
x_low = x_low.to(memory_format=torch.contiguous_format).float()
|
||||
x_aug, noise_level = model.low_scale_model(x_low, noise_level)
|
||||
return x_aug, noise_level
|
||||
|
||||
|
||||
class StableDiffusionHolder:
|
||||
def __init__(self,
|
||||
fp_ckpt: str = None,
|
||||
fp_config: str = None,
|
||||
num_inference_steps: int = 30,
|
||||
height: Optional[int] = None,
|
||||
width: Optional[int] = None,
|
||||
device: str = None,
|
||||
precision: str = 'autocast',
|
||||
):
|
||||
r"""
|
||||
Initializes the stable diffusion holder, which contains the models and sampler.
|
||||
Args:
|
||||
fp_ckpt: File pointer to the .ckpt model file
|
||||
fp_config: File pointer to the .yaml config file
|
||||
num_inference_steps: Number of diffusion iterations. Will be overwritten by latent blending.
|
||||
height: Height of the resulting image.
|
||||
width: Width of the resulting image.
|
||||
device: Device to run the model on.
|
||||
precision: Precision to run the model on.
|
||||
"""
|
||||
self.seed = 42
|
||||
self.guidance_scale = 5.0
|
||||
|
||||
if device is None:
|
||||
self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||||
else:
|
||||
self.device = device
|
||||
self.precision = precision
|
||||
self.init_model(fp_ckpt, fp_config)
|
||||
|
||||
self.f = 8 # downsampling factor, most often 8 or 16"
|
||||
self.C = 4
|
||||
self.ddim_eta = 0
|
||||
self.num_inference_steps = num_inference_steps
|
||||
|
||||
if height is None and width is None:
|
||||
self.init_auto_res()
|
||||
else:
|
||||
assert height is not None, "specify both width and height"
|
||||
assert width is not None, "specify both width and height"
|
||||
self.height = height
|
||||
self.width = width
|
||||
|
||||
self.negative_prompt = [""]
|
||||
|
||||
def init_model(self, fp_ckpt, fp_config):
|
||||
r"""Loads the models and sampler.
|
||||
"""
|
||||
|
||||
assert os.path.isfile(fp_ckpt), f"Your model checkpoint file does not exist: {fp_ckpt}"
|
||||
self.fp_ckpt = fp_ckpt
|
||||
|
||||
# Auto init the config?
|
||||
if fp_config is None:
|
||||
fn_ckpt = os.path.basename(fp_ckpt)
|
||||
if 'depth' in fn_ckpt:
|
||||
fp_config = 'configs/v2-midas-inference.yaml'
|
||||
elif 'upscaler' in fn_ckpt:
|
||||
fp_config = 'configs/x4-upscaling.yaml'
|
||||
elif '512' in fn_ckpt:
|
||||
fp_config = 'configs/v2-inference.yaml'
|
||||
elif '768' in fn_ckpt:
|
||||
fp_config = 'configs/v2-inference-v.yaml'
|
||||
elif 'v1-5' in fn_ckpt:
|
||||
fp_config = 'configs/v1-inference.yaml'
|
||||
else:
|
||||
raise ValueError("auto detect of config failed. please specify fp_config manually!")
|
||||
|
||||
assert os.path.isfile(fp_config), "Auto-init of the config file failed. Please specify manually."
|
||||
|
||||
assert os.path.isfile(fp_config), f"Your config file does not exist: {fp_config}"
|
||||
|
||||
config = OmegaConf.load(fp_config)
|
||||
|
||||
self.model = instantiate_from_config(config.model)
|
||||
self.model.load_state_dict(torch.load(fp_ckpt)["state_dict"], strict=False)
|
||||
|
||||
self.model = self.model.to(self.device)
|
||||
self.sampler = DDIMSampler(self.model)
|
||||
|
||||
def init_auto_res(self):
|
||||
r"""Automatically set the resolution to the one used in training.
|
||||
"""
|
||||
if '768' in self.fp_ckpt:
|
||||
self.height = 768
|
||||
self.width = 768
|
||||
else:
|
||||
self.height = 512
|
||||
self.width = 512
|
||||
|
||||
def get_noise(self, seed, mode='standard'):
|
||||
r"""
|
||||
Helper function to get noise given seed.
|
||||
Args:
|
||||
seed: int
|
||||
"""
|
||||
|
||||
generator = torch.Generator(device=self.device).manual_seed(int(seed))
|
||||
if mode == 'standard':
|
||||
shape_latents = [self.C, self.height // self.f, self.width // self.f]
|
||||
C, H, W = shape_latents
|
||||
elif mode == 'upscale':
|
||||
w = self.image1_lowres.size[0]
|
||||
h = self.image1_lowres.size[1]
|
||||
shape_latents = [self.model.channels, h, w]
|
||||
C, H, W = shape_latents
|
||||
return torch.randn((1, C, H, W), generator=generator, device=self.device)
|
||||
|
||||
def set_negative_prompt(self, negative_prompt):
|
||||
r"""Set the negative prompt. Currenty only one negative prompt is supported
|
||||
"""
|
||||
|
||||
if isinstance(negative_prompt, str):
|
||||
self.negative_prompt = [negative_prompt]
|
||||
else:
|
||||
self.negative_prompt = negative_prompt
|
||||
|
||||
if len(self.negative_prompt) > 1:
|
||||
self.negative_prompt = [self.negative_prompt[0]]
|
||||
|
||||
def get_text_embedding(self, prompt):
|
||||
c = self.model.get_learned_conditioning(prompt)
|
||||
return c
|
||||
|
||||
@torch.no_grad()
|
||||
def get_cond_upscaling(self, image, text_embedding, noise_level):
|
||||
r"""
|
||||
Initializes the conditioning for the x4 upscaling model.
|
||||
"""
|
||||
image = pad_image(image) # resize to integer multiple of 32
|
||||
w, h = image.size
|
||||
noise_level = torch.Tensor(1 * [noise_level]).to(self.sampler.model.device).long()
|
||||
batch = make_batch_superres(image, txt="placeholder", device=self.device, num_samples=1)
|
||||
|
||||
x_augment, noise_level = make_noise_augmentation(self.model, batch, noise_level)
|
||||
|
||||
cond = {"c_concat": [x_augment], "c_crossattn": [text_embedding], "c_adm": noise_level}
|
||||
# uncond cond
|
||||
uc_cross = self.model.get_unconditional_conditioning(1, "")
|
||||
uc_full = {"c_concat": [x_augment], "c_crossattn": [uc_cross], "c_adm": noise_level}
|
||||
return cond, uc_full
|
||||
|
||||
@torch.no_grad()
|
||||
def run_diffusion_standard(
|
||||
self,
|
||||
text_embeddings: torch.FloatTensor,
|
||||
latents_start: torch.FloatTensor,
|
||||
idx_start: int = 0,
|
||||
list_latents_mixing=None,
|
||||
mixing_coeffs=0.0,
|
||||
spatial_mask=None,
|
||||
return_image: Optional[bool] = False):
|
||||
r"""
|
||||
Diffusion standard version.
|
||||
Args:
|
||||
text_embeddings: torch.FloatTensor
|
||||
Text embeddings used for diffusion
|
||||
latents_for_injection: torch.FloatTensor or list
|
||||
Latents that are used for injection
|
||||
idx_start: int
|
||||
Index of the diffusion process start and where the latents_for_injection are injected
|
||||
mixing_coeff:
|
||||
mixing coefficients for latent blending
|
||||
spatial_mask:
|
||||
experimental feature for enforcing pixels from list_latents_mixing
|
||||
return_image: Optional[bool]
|
||||
Optionally return image directly
|
||||
"""
|
||||
# Asserts
|
||||
if type(mixing_coeffs) == float:
|
||||
list_mixing_coeffs = self.num_inference_steps * [mixing_coeffs]
|
||||
elif type(mixing_coeffs) == list:
|
||||
assert len(mixing_coeffs) == self.num_inference_steps
|
||||
list_mixing_coeffs = mixing_coeffs
|
||||
else:
|
||||
raise ValueError("mixing_coeffs should be float or list with len=num_inference_steps")
|
||||
|
||||
if np.sum(list_mixing_coeffs) > 0:
|
||||
assert len(list_latents_mixing) == self.num_inference_steps
|
||||
|
||||
precision_scope = autocast if self.precision == "autocast" else nullcontext
|
||||
with precision_scope("cuda"):
|
||||
with self.model.ema_scope():
|
||||
if self.guidance_scale != 1.0:
|
||||
uc = self.model.get_learned_conditioning(self.negative_prompt)
|
||||
else:
|
||||
uc = None
|
||||
self.sampler.make_schedule(ddim_num_steps=self.num_inference_steps - 1, ddim_eta=self.ddim_eta, verbose=False)
|
||||
latents = latents_start.clone()
|
||||
timesteps = self.sampler.ddim_timesteps
|
||||
time_range = np.flip(timesteps)
|
||||
total_steps = timesteps.shape[0]
|
||||
# Collect latents
|
||||
list_latents_out = []
|
||||
for i, step in enumerate(time_range):
|
||||
# Set the right starting latents
|
||||
if i < idx_start:
|
||||
list_latents_out.append(None)
|
||||
continue
|
||||
elif i == idx_start:
|
||||
latents = latents_start.clone()
|
||||
# Mix latents
|
||||
if i > 0 and list_mixing_coeffs[i] > 0:
|
||||
latents_mixtarget = list_latents_mixing[i - 1].clone()
|
||||
latents = interpolate_spherical(latents, latents_mixtarget, list_mixing_coeffs[i])
|
||||
|
||||
if spatial_mask is not None and list_latents_mixing is not None:
|
||||
latents = interpolate_spherical(latents, list_latents_mixing[i - 1], 1 - spatial_mask)
|
||||
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full((1,), step, device=self.device, dtype=torch.long)
|
||||
outs = self.sampler.p_sample_ddim(latents, text_embeddings, ts, index=index, use_original_steps=False,
|
||||
quantize_denoised=False, temperature=1.0,
|
||||
noise_dropout=0.0, score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=self.guidance_scale,
|
||||
unconditional_conditioning=uc,
|
||||
dynamic_threshold=None)
|
||||
latents, pred_x0 = outs
|
||||
list_latents_out.append(latents.clone())
|
||||
if return_image:
|
||||
return self.latent2image(latents)
|
||||
else:
|
||||
return list_latents_out
|
||||
|
||||
@torch.no_grad()
|
||||
def run_diffusion_upscaling(
|
||||
self,
|
||||
cond,
|
||||
uc_full,
|
||||
latents_start: torch.FloatTensor,
|
||||
idx_start: int = -1,
|
||||
list_latents_mixing: list = None,
|
||||
mixing_coeffs: float = 0.0,
|
||||
return_image: Optional[bool] = False):
|
||||
r"""
|
||||
Diffusion upscaling version.
|
||||
"""
|
||||
|
||||
# Asserts
|
||||
if type(mixing_coeffs) == float:
|
||||
list_mixing_coeffs = self.num_inference_steps * [mixing_coeffs]
|
||||
elif type(mixing_coeffs) == list:
|
||||
assert len(mixing_coeffs) == self.num_inference_steps
|
||||
list_mixing_coeffs = mixing_coeffs
|
||||
else:
|
||||
raise ValueError("mixing_coeffs should be float or list with len=num_inference_steps")
|
||||
|
||||
if np.sum(list_mixing_coeffs) > 0:
|
||||
assert len(list_latents_mixing) == self.num_inference_steps
|
||||
|
||||
precision_scope = autocast if self.precision == "autocast" else nullcontext
|
||||
h = uc_full['c_concat'][0].shape[2]
|
||||
w = uc_full['c_concat'][0].shape[3]
|
||||
with precision_scope("cuda"):
|
||||
with self.model.ema_scope():
|
||||
|
||||
shape_latents = [self.model.channels, h, w]
|
||||
self.sampler.make_schedule(ddim_num_steps=self.num_inference_steps - 1, ddim_eta=self.ddim_eta, verbose=False)
|
||||
C, H, W = shape_latents
|
||||
size = (1, C, H, W)
|
||||
b = size[0]
|
||||
latents = latents_start.clone()
|
||||
timesteps = self.sampler.ddim_timesteps
|
||||
time_range = np.flip(timesteps)
|
||||
total_steps = timesteps.shape[0]
|
||||
# collect latents
|
||||
list_latents_out = []
|
||||
for i, step in enumerate(time_range):
|
||||
# Set the right starting latents
|
||||
if i < idx_start:
|
||||
list_latents_out.append(None)
|
||||
continue
|
||||
elif i == idx_start:
|
||||
latents = latents_start.clone()
|
||||
# Mix the latents.
|
||||
if i > 0 and list_mixing_coeffs[i] > 0:
|
||||
latents_mixtarget = list_latents_mixing[i - 1].clone()
|
||||
latents = interpolate_spherical(latents, latents_mixtarget, list_mixing_coeffs[i])
|
||||
# print(f"diffusion iter {i}")
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full((b,), step, device=self.device, dtype=torch.long)
|
||||
outs = self.sampler.p_sample_ddim(latents, cond, ts, index=index, use_original_steps=False,
|
||||
quantize_denoised=False, temperature=1.0,
|
||||
noise_dropout=0.0, score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=self.guidance_scale,
|
||||
unconditional_conditioning=uc_full,
|
||||
dynamic_threshold=None)
|
||||
latents, pred_x0 = outs
|
||||
list_latents_out.append(latents.clone())
|
||||
|
||||
if return_image:
|
||||
return self.latent2image(latents)
|
||||
else:
|
||||
return list_latents_out
|
||||
|
||||
@torch.no_grad()
|
||||
def latent2image(
|
||||
self,
|
||||
latents: torch.FloatTensor):
|
||||
r"""
|
||||
Returns an image provided a latent representation from diffusion.
|
||||
Args:
|
||||
latents: torch.FloatTensor
|
||||
Result of the diffusion process.
|
||||
"""
|
||||
x_sample = self.model.decode_first_stage(latents)
|
||||
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
x_sample = 255 * x_sample[0, :, :].permute([1, 2, 0]).cpu().numpy()
|
||||
image = x_sample.astype(np.uint8)
|
||||
return image
|
Loading…
Reference in New Issue