latentblending/example2_multitrans.py

82 lines
3.0 KiB
Python
Raw Normal View History

2023-02-18 07:19:40 +00:00
# Copyright 2022 Lunar Ring. All rights reserved.
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import warnings
2023-02-22 09:15:03 +00:00
from latent_blending import LatentBlending
2023-10-11 10:17:15 +00:00
from diffusers_holder import DiffusersHolder
from diffusers import DiffusionPipeline
2023-02-22 09:15:03 +00:00
from movie_util import concatenate_movies
2023-11-16 14:37:02 +00:00
torch.set_grad_enabled(False)
torch.backends.cudnn.benchmark = False
warnings.filterwarnings('ignore')
2023-02-18 07:19:40 +00:00
2023-02-22 09:15:03 +00:00
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice.
2023-10-11 10:17:15 +00:00
pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16)
2023-11-16 12:57:11 +00:00
pipe.to('cuda')
2023-10-11 10:17:15 +00:00
dh = DiffusersHolder(pipe)
2023-02-18 07:19:40 +00:00
2023-02-22 09:15:03 +00:00
# %% Let's setup the multi transition
2023-02-18 07:19:40 +00:00
fps = 30
2023-10-11 10:17:15 +00:00
duration_single_trans = 20
depth_strength = 0.25 # Specifies how deep (in terms of diffusion iterations the first branching happens)
2023-11-16 14:37:02 +00:00
size_output = (1280, 768)
num_inference_steps = 30
2023-02-18 07:19:40 +00:00
# Specify a list of prompts below
list_prompts = []
2023-11-16 14:37:02 +00:00
list_prompts.append("A beautiful astronomic photo of a nebula, with intricate microscopic structures, mitochondria")
list_prompts.append("Microscope fluorescence photo, cell filaments, intricate galaxy, astronomic nebula")
list_prompts.append("telescope photo starry sky, nebula, cell core, dna, stunning")
2023-10-11 10:17:15 +00:00
2023-02-18 07:19:40 +00:00
# You can optionally specify the seeds
2023-11-16 14:37:02 +00:00
list_seeds = [95437579, 33259350, 956051013]
2023-10-11 10:17:15 +00:00
t_compute_max_allowed = 20 # per segment
2023-02-18 07:19:40 +00:00
fp_movie = 'movie_example2.mp4'
2023-10-11 10:17:15 +00:00
lb = LatentBlending(dh)
2023-11-16 14:37:02 +00:00
lb.set_dimensions(size_output)
lb.dh.set_num_inference_steps(num_inference_steps)
2023-10-11 10:17:15 +00:00
2023-02-18 07:19:40 +00:00
2023-02-22 09:15:03 +00:00
list_movie_parts = []
for i in range(len(list_prompts) - 1):
2023-02-18 07:44:28 +00:00
# For a multi transition we can save some computation time and recycle the latents
2023-02-22 09:15:03 +00:00
if i == 0:
2023-02-18 07:44:28 +00:00
lb.set_prompt1(list_prompts[i])
2023-02-22 09:15:03 +00:00
lb.set_prompt2(list_prompts[i + 1])
2023-02-18 07:44:28 +00:00
recycle_img1 = False
else:
lb.swap_forward()
2023-02-22 09:15:03 +00:00
lb.set_prompt2(list_prompts[i + 1])
recycle_img1 = True
2023-02-18 07:19:40 +00:00
fp_movie_part = f"tmp_part_{str(i).zfill(3)}.mp4"
2023-02-22 09:15:03 +00:00
fixed_seeds = list_seeds[i:i + 2]
2023-02-18 07:19:40 +00:00
# Run latent blending
lb.run_transition(
2023-11-16 14:37:02 +00:00
recycle_img1=recycle_img1,
2023-02-22 09:15:03 +00:00
depth_strength=depth_strength,
t_compute_max_allowed=t_compute_max_allowed,
fixed_seeds=fixed_seeds)
2023-02-18 07:19:40 +00:00
# Save movie
lb.write_movie_transition(fp_movie_part, duration_single_trans)
list_movie_parts.append(fp_movie_part)
# Finally, concatente the result
2023-02-22 09:15:03 +00:00
concatenate_movies(fp_movie, list_movie_parts)