# Copyright 2022 Lunar Ring. All rights reserved. # Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import warnings from latent_blending import LatentBlending from diffusers_holder import DiffusersHolder from diffusers import DiffusionPipeline from movie_util import concatenate_movies torch.set_grad_enabled(False) torch.backends.cudnn.benchmark = False warnings.filterwarnings('ignore') # %% First let us spawn a stable diffusion holder. Uncomment your version of choice. pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0" pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16) pipe.to('cuda') dh = DiffusersHolder(pipe) # %% Let's setup the multi transition fps = 30 duration_single_trans = 20 depth_strength = 0.25 # Specifies how deep (in terms of diffusion iterations the first branching happens) size_output = (1280, 768) num_inference_steps = 30 # Specify a list of prompts below list_prompts = [] list_prompts.append("A beautiful astronomic photo of a nebula, with intricate microscopic structures, mitochondria") list_prompts.append("Microscope fluorescence photo, cell filaments, intricate galaxy, astronomic nebula") list_prompts.append("telescope photo starry sky, nebula, cell core, dna, stunning") # You can optionally specify the seeds list_seeds = [95437579, 33259350, 956051013] t_compute_max_allowed = 20 # per segment fp_movie = 'movie_example2.mp4' lb = LatentBlending(dh) lb.set_dimensions(size_output) lb.dh.set_num_inference_steps(num_inference_steps) list_movie_parts = [] for i in range(len(list_prompts) - 1): # For a multi transition we can save some computation time and recycle the latents if i == 0: lb.set_prompt1(list_prompts[i]) lb.set_prompt2(list_prompts[i + 1]) recycle_img1 = False else: lb.swap_forward() lb.set_prompt2(list_prompts[i + 1]) recycle_img1 = True fp_movie_part = f"tmp_part_{str(i).zfill(3)}.mp4" fixed_seeds = list_seeds[i:i + 2] # Run latent blending lb.run_transition( recycle_img1=recycle_img1, depth_strength=depth_strength, t_compute_max_allowed=t_compute_max_allowed, fixed_seeds=fixed_seeds) # Save movie lb.write_movie_transition(fp_movie_part, duration_single_trans) list_movie_parts.append(fp_movie_part) # Finally, concatente the result concatenate_movies(fp_movie, list_movie_parts)