avrdude/src/bitbang.c

645 lines
16 KiB
C

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2000, 2001, 2002, 2003 Brian S. Dean <bsd@bsdhome.com>
* Copyright (C) 2005 Juliane Holzt <avrdude@juliane.holzt.de>
* Copyright (C) 2011 Darell Tan <darell.tan@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* $Id$ */
#include "ac_cfg.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#if defined(WIN32)
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#else
#include <signal.h>
#include <sys/time.h>
#endif
#include "avrdude.h"
#include "libavrdude.h"
#include "par.h"
#include "serbb.h"
#include "tpi.h"
#include "bitbang.h"
static int delay_decrement;
#if defined(WIN32)
static int has_perfcount;
static LARGE_INTEGER freq;
#else
static volatile int done;
typedef void (*mysighandler_t)(int);
static mysighandler_t saved_alarmhandler;
static void alarmhandler(int signo)
{
done = 1;
signal(SIGALRM, saved_alarmhandler);
}
#endif /* WIN32 */
/*
* Calibrate the microsecond delay loop below.
*/
static void bitbang_calibrate_delay(void)
{
#if defined(WIN32)
/*
* If the hardware supports a high-resolution performance counter,
* we ultimately prefer that one, as it gives quite accurate delays
* on modern high-speed CPUs.
*/
if (QueryPerformanceFrequency(&freq))
{
has_perfcount = 1;
pmsg_notice2("using performance counter for bitbang delays\n");
}
else
{
/*
* If a high-resolution performance counter is not available, we
* don't have any Win32 implementation for setting up the
* per-microsecond delay count, so we can only run on a
* preconfigured delay stepping there. The figure below should at
* least be correct within an order of magnitude, judging from the
* auto-calibration figures seen on various Unix systems on
* comparable hardware.
*/
pmsg_notice2("using guessed per-microsecond delay count for bitbang delays\n");
delay_decrement = 100;
}
#else /* !WIN32 */
struct itimerval itv;
volatile int i;
pmsg_notice2("calibrating delay loop ...");
i = 0;
done = 0;
saved_alarmhandler = signal(SIGALRM, alarmhandler);
/*
* Set ITIMER_REAL to 100 ms. All known systems have a timer
* granularity of 10 ms or better, so counting the delay cycles
* accumulating over 100 ms should give us a rather realistic
* picture, without annoying the user by a lengthy startup time (as
* an alarm(1) would do). Of course, if heavy system activity
* happens just during calibration but stops before the remaining
* part of AVRDUDE runs, this will yield wrong values. There's not
* much we can do about this.
*/
itv.it_value.tv_sec = 0;
itv.it_value.tv_usec = 100000;
itv.it_interval.tv_sec = itv.it_interval.tv_usec = 0;
setitimer(ITIMER_REAL, &itv, 0);
while (!done)
i--;
itv.it_value.tv_sec = itv.it_value.tv_usec = 0;
setitimer(ITIMER_REAL, &itv, 0);
/*
* Calculate back from 100 ms to 1 us.
*/
delay_decrement = -i / 100000;
msg_notice2(" calibrated to %d cycles per us\n",
delay_decrement);
#endif /* WIN32 */
}
/*
* Delay for approximately the number of microseconds specified.
* usleep()'s granularity is usually like 1 ms or 10 ms, so it's not
* really suitable for short delays in bit-bang algorithms.
*/
void bitbang_delay(unsigned int us)
{
#if defined(WIN32)
LARGE_INTEGER countNow, countEnd;
if (has_perfcount)
{
QueryPerformanceCounter(&countNow);
countEnd.QuadPart = countNow.QuadPart + freq.QuadPart * us / 1000000ll;
while (countNow.QuadPart < countEnd.QuadPart)
QueryPerformanceCounter(&countNow);
}
else /* no performance counters -- run normal uncalibrated delay */
{
#endif /* WIN32 */
volatile unsigned int del = us * delay_decrement;
while (del > 0)
del--;
#if defined(WIN32)
}
#endif /* WIN32 */
}
/*
* transmit and receive a byte of data to/from the AVR device
*/
static unsigned char bitbang_txrx(const PROGRAMMER *pgm, unsigned char byte) {
int i;
unsigned char r, b, rbyte;
rbyte = 0;
for (i=7; i>=0; i--) {
/*
* Write and read one bit on SPI.
* Some notes on timing: Let T be the time it takes to do
* one pgm->setpin()-call resp. par clrpin()-call, then
* - SCK is high for 2T
* - SCK is low for 2T
* - SDO setuptime is 1T
* - SDO holdtime is 3T
* - SCK low to SDI read is 2T to 3T
* So we are within programming specs (expect for AT90S1200),
* if and only if T>t_CLCL (t_CLCL=clock period of target system).
*
* Due to the delay introduced by "IN" and "OUT"-commands,
* T is greater than 1us (more like 2us) on x86-architectures.
* So programming works safely down to 1MHz target clock.
*/
b = (byte >> i) & 0x01;
/* set the data input line as desired */
pgm->setpin(pgm, PIN_AVR_SDO, b);
pgm->setpin(pgm, PIN_AVR_SCK, 1);
/*
* read the result bit (it is either valid from a previous falling
* edge or it is ignored in the current context)
*/
r = pgm->getpin(pgm, PIN_AVR_SDI);
pgm->setpin(pgm, PIN_AVR_SCK, 0);
rbyte |= r << i;
}
return rbyte;
}
static int bitbang_tpi_clk(const PROGRAMMER *pgm) {
unsigned char r = 0;
pgm->setpin(pgm, PIN_AVR_SCK, 1);
r = pgm->getpin(pgm, PIN_AVR_SDI);
pgm->setpin(pgm, PIN_AVR_SCK, 0);
return r;
}
void bitbang_tpi_tx(const PROGRAMMER *pgm, unsigned char byte) {
int i;
unsigned char b, parity;
/* start bit */
pgm->setpin(pgm, PIN_AVR_SDO, 0);
bitbang_tpi_clk(pgm);
parity = 0;
for (i = 0; i <= 7; i++) {
b = (byte >> i) & 0x01;
parity ^= b;
/* set the data input line as desired */
pgm->setpin(pgm, PIN_AVR_SDO, b);
bitbang_tpi_clk(pgm);
}
/* parity bit */
pgm->setpin(pgm, PIN_AVR_SDO, parity);
bitbang_tpi_clk(pgm);
/* 2 stop bits */
pgm->setpin(pgm, PIN_AVR_SDO, 1);
bitbang_tpi_clk(pgm);
bitbang_tpi_clk(pgm);
}
int bitbang_tpi_rx(const PROGRAMMER *pgm) {
int i;
unsigned char b, rbyte, parity;
/* make sure pin is on for "pullup" */
pgm->setpin(pgm, PIN_AVR_SDO, 1);
/* wait for start bit (up to 10 bits) */
b = 1;
for (i = 0; i < 10; i++) {
b = bitbang_tpi_clk(pgm);
if (b == 0)
break;
}
if (b != 0) {
pmsg_error("start bit not received correctly\n");
return -1;
}
rbyte = 0;
parity = 0;
for (i=0; i<=7; i++) {
b = bitbang_tpi_clk(pgm);
parity ^= b;
rbyte |= b << i;
}
/* parity bit */
if (bitbang_tpi_clk(pgm) != parity) {
pmsg_error("parity bit is wrong\n");
return -1;
}
/* 2 stop bits */
b = 1;
b &= bitbang_tpi_clk(pgm);
b &= bitbang_tpi_clk(pgm);
if (b != 1) {
pmsg_error("stop bits not received correctly\n");
return -1;
}
return rbyte;
}
int bitbang_rdy_led(const PROGRAMMER *pgm, int value) {
pgm->setpin(pgm, PIN_LED_RDY, !value);
return 0;
}
int bitbang_err_led(const PROGRAMMER *pgm, int value) {
pgm->setpin(pgm, PIN_LED_ERR, !value);
return 0;
}
int bitbang_pgm_led(const PROGRAMMER *pgm, int value) {
pgm->setpin(pgm, PIN_LED_PGM, !value);
return 0;
}
int bitbang_vfy_led(const PROGRAMMER *pgm, int value) {
pgm->setpin(pgm, PIN_LED_VFY, !value);
return 0;
}
/*
* transmit an AVR device command and return the results; 'cmd' and
* 'res' must point to at least a 4 byte data buffer
*/
int bitbang_cmd(const PROGRAMMER *pgm, const unsigned char *cmd,
unsigned char *res)
{
int i;
for (i=0; i<4; i++) {
res[i] = bitbang_txrx(pgm, cmd[i]);
}
if(verbose >= 2)
{
msg_notice2("bitbang_cmd(): [ ");
for(i = 0; i < 4; i++)
msg_notice2("%02X ", cmd[i]);
msg_notice2("] [ ");
for(i = 0; i < 4; i++)
{
msg_notice2("%02X ", res[i]);
}
msg_notice2("]\n");
}
return 0;
}
int bitbang_cmd_tpi(const PROGRAMMER *pgm, const unsigned char *cmd,
int cmd_len, unsigned char *res, int res_len)
{
int i, r;
pgm->pgm_led(pgm, ON);
for (i=0; i<cmd_len; i++) {
bitbang_tpi_tx(pgm, cmd[i]);
}
r = 0;
for (i=0; i<res_len; i++) {
r = bitbang_tpi_rx(pgm);
if (r == -1)
break;
res[i] = r;
}
if(verbose >= 2)
{
msg_notice2("bitbang_cmd_tpi(): [ ");
for(i = 0; i < cmd_len; i++)
msg_notice2("%02X ", cmd[i]);
msg_notice2("] [ ");
for(i = 0; i < res_len; i++)
{
msg_notice2("%02X ", res[i]);
}
msg_notice2("]\n");
}
pgm->pgm_led(pgm, OFF);
if (r == -1)
return -1;
return 0;
}
/*
* transmit bytes via SPI and return the results; 'cmd' and
* 'res' must point to data buffers
*/
int bitbang_spi(const PROGRAMMER *pgm, const unsigned char *cmd,
unsigned char *res, int count)
{
int i;
pgm->setpin(pgm, PIN_LED_PGM, 0);
for (i=0; i<count; i++) {
res[i] = bitbang_txrx(pgm, cmd[i]);
}
pgm->setpin(pgm, PIN_LED_PGM, 1);
if(verbose >= 2)
{
msg_notice2("bitbang_cmd(): [ ");
for(i = 0; i < count; i++)
msg_notice2("%02X ", cmd[i]);
msg_notice2("] [ ");
for(i = 0; i < count; i++)
{
msg_notice2("%02X ", res[i]);
}
msg_notice2("]\n");
}
return 0;
}
/*
* issue the 'chip erase' command to the AVR device
*/
int bitbang_chip_erase(const PROGRAMMER *pgm, const AVRPART *p) {
unsigned char cmd[4];
unsigned char res[4];
AVRMEM *mem;
if (p->prog_modes & PM_TPI) {
pgm->pgm_led(pgm, ON);
while (avr_tpi_poll_nvmbsy(pgm));
/* NVMCMD <- CHIP_ERASE */
bitbang_tpi_tx(pgm, TPI_CMD_SOUT | TPI_SIO_ADDR(TPI_IOREG_NVMCMD));
bitbang_tpi_tx(pgm, TPI_NVMCMD_CHIP_ERASE); /* CHIP_ERASE */
/* Set Pointer Register */
mem = avr_locate_mem(p, "flash");
if (mem == NULL) {
pmsg_error("no flash memory to erase for part %s\n", p->desc);
return -1;
}
bitbang_tpi_tx(pgm, TPI_CMD_SSTPR | 0);
bitbang_tpi_tx(pgm, (mem->offset & 0xFF) | 1); /* high byte */
bitbang_tpi_tx(pgm, TPI_CMD_SSTPR | 1);
bitbang_tpi_tx(pgm, (mem->offset >> 8) & 0xFF);
/* write dummy value to start erase */
bitbang_tpi_tx(pgm, TPI_CMD_SST);
bitbang_tpi_tx(pgm, 0xFF);
while (avr_tpi_poll_nvmbsy(pgm));
pgm->pgm_led(pgm, OFF);
return 0;
}
if (p->op[AVR_OP_CHIP_ERASE] == NULL) {
pmsg_error("chip erase instruction not defined for part %s\n", p->desc);
return -1;
}
pgm->pgm_led(pgm, ON);
memset(cmd, 0, sizeof(cmd));
avr_set_bits(p->op[AVR_OP_CHIP_ERASE], cmd);
pgm->cmd(pgm, cmd, res);
usleep(p->chip_erase_delay);
pgm->initialize(pgm, p);
pgm->pgm_led(pgm, OFF);
return 0;
}
/*
* issue the 'program enable' command to the AVR device
*/
int bitbang_program_enable(const PROGRAMMER *pgm, const AVRPART *p) {
unsigned char cmd[4];
unsigned char res[4];
int i;
if (p->prog_modes & PM_TPI) {
/* enable NVM programming */
bitbang_tpi_tx(pgm, TPI_CMD_SKEY);
for (i = sizeof(tpi_skey) - 1; i >= 0; i--)
bitbang_tpi_tx(pgm, tpi_skey[i]);
/* check NVMEN bit */
bitbang_tpi_tx(pgm, TPI_CMD_SLDCS | TPI_REG_TPISR);
i = bitbang_tpi_rx(pgm);
return (i != -1 && (i & TPI_REG_TPISR_NVMEN)) ? 0 : -2;
}
if (p->op[AVR_OP_PGM_ENABLE] == NULL) {
pmsg_error("program enable instruction not defined for part %s\n", p->desc);
return -1;
}
memset(cmd, 0, sizeof(cmd));
avr_set_bits(p->op[AVR_OP_PGM_ENABLE], cmd);
pgm->cmd(pgm, cmd, res);
if (res[2] != cmd[1])
return -2;
return 0;
}
/*
* initialize the AVR device and prepare it to accept commands
*/
int bitbang_initialize(const PROGRAMMER *pgm, const AVRPART *p) {
int rc;
int tries;
int i;
bitbang_calibrate_delay();
pgm->powerup(pgm);
usleep(20000);
/* TPIDATA is a single line, so SDI & SDO should be connected */
if (p->prog_modes & PM_TPI) {
/* make sure cmd_tpi() is defined */
if (pgm->cmd_tpi == NULL) {
pmsg_error("%s programmer does not support TPI\n", pgm->type);
return -1;
}
/* bring RESET high first */
pgm->setpin(pgm, PIN_AVR_RESET, 1);
usleep(128000); /* wait t_TOUT (32-128ms) */
/* RESET must be LOW in case the existing code is driving the TPI pins: */
pgm->setpin(pgm, PIN_AVR_RESET, 0);
msg_notice2("doing SDO-SDI link check\n");
pgm->setpin(pgm, PIN_AVR_SDO, 0);
if (pgm->getpin(pgm, PIN_AVR_SDI) != 0) {
pmsg_error("SDO->SDI 0 failed\n");
return -1;
}
pgm->setpin(pgm, PIN_AVR_SDO, 1);
if (pgm->getpin(pgm, PIN_AVR_SDI) != 1) {
pmsg_error("SDO->SDI 1 failed\n");
return -1;
}
msg_notice2("SDO-SDI link present\n");
}
pgm->setpin(pgm, PIN_AVR_SCK, 0);
pgm->setpin(pgm, PIN_AVR_RESET, 0);
usleep(20000);
if (p->prog_modes & PM_TPI) {
/* keep TPIDATA high for 16 clock cycles */
pgm->setpin(pgm, PIN_AVR_SDO, 1);
for (i = 0; i < 16; i++)
pgm->highpulsepin(pgm, PIN_AVR_SCK);
/* remove extra guard timing bits */
bitbang_tpi_tx(pgm, TPI_CMD_SSTCS | TPI_REG_TPIPCR);
bitbang_tpi_tx(pgm, 0x7);
/* read TPI ident reg */
bitbang_tpi_tx(pgm, TPI_CMD_SLDCS | TPI_REG_TPIIR);
rc = bitbang_tpi_rx(pgm);
if (rc != 0x80) {
pmsg_error("TPIIR not correct\n");
return -1;
}
} else {
pgm->highpulsepin(pgm, PIN_AVR_RESET);
}
usleep(20000); /* 20 ms XXX should be a per-chip parameter */
/*
* Enable programming mode. If we are programming an AT90S1200, we
* can only issue the command and hope it worked. If we are using
* one of the other chips, the chip will echo 0x53 when issuing the
* third byte of the command. In this case, try up to 32 times in
* order to possibly get back into sync with the chip if we are out
* of sync.
*/
if (p->flags & AVRPART_IS_AT90S1200) {
pgm->program_enable(pgm, p);
}
else {
tries = 0;
do {
rc = pgm->program_enable(pgm, p);
if ((rc == 0)||(rc == -1))
break;
pgm->highpulsepin(pgm, p->retry_pulse/*PIN_AVR_SCK*/);
tries++;
} while (tries < 65);
/*
* can't sync with the device, maybe it's not attached?
*/
if (rc) {
pmsg_error("AVR device not responding\n");
return -1;
}
}
return 0;
}
static int verify_pin_assigned(const PROGRAMMER *pgm, int pinfunc, char *desc) {
if(pinfunc < 0 || pinfunc >= N_PINS) {
pmsg_error("invalid pin function number %d\n", pinfunc);
return -1;
}
if ((pgm->pinno[pinfunc] & PIN_MASK) > PIN_MAX) {
pmsg_error("no pin has been assigned for %s\n", desc);
return -1;
}
return 0;
}
/*
* Verify all prerequisites for a bit-bang programmer are present.
*/
int bitbang_check_prerequisites(const PROGRAMMER *pgm) {
if (verify_pin_assigned(pgm, PIN_AVR_RESET, "AVR RESET") < 0)
return -1;
if (verify_pin_assigned(pgm, PIN_AVR_SCK, "AVR SCK") < 0)
return -1;
if (verify_pin_assigned(pgm, PIN_AVR_SDI, "AVR SDI") < 0)
return -1;
if (verify_pin_assigned(pgm, PIN_AVR_SDO, "AVR SDO") < 0)
return -1;
if (pgm->cmd == NULL) {
pmsg_error("no cmd() method defined for bitbang programmer\n");
return -1;
}
return 0;
}