/* * avrdude - A Downloader/Uploader for AVR device programmers * Copyright (C) 2000, 2001, 2002, 2003 Brian S. Dean * Copyright (C) 2005 Juliane Holzt * Copyright (C) 2011 Darell Tan * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* $Id$ */ #include "ac_cfg.h" #include #include #include #include #include #include #if defined(WIN32) #define WIN32_LEAN_AND_MEAN #include #else #include #include #endif #include "avrdude.h" #include "libavrdude.h" #include "par.h" #include "serbb.h" #include "tpi.h" #include "bitbang.h" static int delay_decrement; #if defined(WIN32) static int has_perfcount; static LARGE_INTEGER freq; #else static volatile int done; typedef void (*mysighandler_t)(int); static mysighandler_t saved_alarmhandler; static void alarmhandler(int signo) { done = 1; signal(SIGALRM, saved_alarmhandler); } #endif /* WIN32 */ /* * Calibrate the microsecond delay loop below. */ static void bitbang_calibrate_delay(void) { #if defined(WIN32) /* * If the hardware supports a high-resolution performance counter, * we ultimately prefer that one, as it gives quite accurate delays * on modern high-speed CPUs. */ if (QueryPerformanceFrequency(&freq)) { has_perfcount = 1; pmsg_notice2("using performance counter for bitbang delays\n"); } else { /* * If a high-resolution performance counter is not available, we * don't have any Win32 implementation for setting up the * per-microsecond delay count, so we can only run on a * preconfigured delay stepping there. The figure below should at * least be correct within an order of magnitude, judging from the * auto-calibration figures seen on various Unix systems on * comparable hardware. */ pmsg_notice2("using guessed per-microsecond delay count for bitbang delays\n"); delay_decrement = 100; } #else /* !WIN32 */ struct itimerval itv; volatile int i; pmsg_notice2("calibrating delay loop ..."); i = 0; done = 0; saved_alarmhandler = signal(SIGALRM, alarmhandler); /* * Set ITIMER_REAL to 100 ms. All known systems have a timer * granularity of 10 ms or better, so counting the delay cycles * accumulating over 100 ms should give us a rather realistic * picture, without annoying the user by a lengthy startup time (as * an alarm(1) would do). Of course, if heavy system activity * happens just during calibration but stops before the remaining * part of AVRDUDE runs, this will yield wrong values. There's not * much we can do about this. */ itv.it_value.tv_sec = 0; itv.it_value.tv_usec = 100000; itv.it_interval.tv_sec = itv.it_interval.tv_usec = 0; setitimer(ITIMER_REAL, &itv, 0); while (!done) i--; itv.it_value.tv_sec = itv.it_value.tv_usec = 0; setitimer(ITIMER_REAL, &itv, 0); /* * Calculate back from 100 ms to 1 us. */ delay_decrement = -i / 100000; msg_notice2(" calibrated to %d cycles per us\n", delay_decrement); #endif /* WIN32 */ } /* * Delay for approximately the number of microseconds specified. * usleep()'s granularity is usually like 1 ms or 10 ms, so it's not * really suitable for short delays in bit-bang algorithms. */ void bitbang_delay(unsigned int us) { #if defined(WIN32) LARGE_INTEGER countNow, countEnd; if (has_perfcount) { QueryPerformanceCounter(&countNow); countEnd.QuadPart = countNow.QuadPart + freq.QuadPart * us / 1000000ll; while (countNow.QuadPart < countEnd.QuadPart) QueryPerformanceCounter(&countNow); } else /* no performance counters -- run normal uncalibrated delay */ { #endif /* WIN32 */ volatile unsigned int del = us * delay_decrement; while (del > 0) del--; #if defined(WIN32) } #endif /* WIN32 */ } /* * transmit and receive a byte of data to/from the AVR device */ static unsigned char bitbang_txrx(const PROGRAMMER *pgm, unsigned char byte) { int i; unsigned char r, b, rbyte; rbyte = 0; for (i=7; i>=0; i--) { /* * Write and read one bit on SPI. * Some notes on timing: Let T be the time it takes to do * one pgm->setpin()-call resp. par clrpin()-call, then * - SCK is high for 2T * - SCK is low for 2T * - SDO setuptime is 1T * - SDO holdtime is 3T * - SCK low to SDI read is 2T to 3T * So we are within programming specs (expect for AT90S1200), * if and only if T>t_CLCL (t_CLCL=clock period of target system). * * Due to the delay introduced by "IN" and "OUT"-commands, * T is greater than 1us (more like 2us) on x86-architectures. * So programming works safely down to 1MHz target clock. */ b = (byte >> i) & 0x01; /* set the data input line as desired */ pgm->setpin(pgm, PIN_AVR_SDO, b); pgm->setpin(pgm, PIN_AVR_SCK, 1); /* * read the result bit (it is either valid from a previous falling * edge or it is ignored in the current context) */ r = pgm->getpin(pgm, PIN_AVR_SDI); pgm->setpin(pgm, PIN_AVR_SCK, 0); rbyte |= r << i; } return rbyte; } static int bitbang_tpi_clk(const PROGRAMMER *pgm) { unsigned char r = 0; pgm->setpin(pgm, PIN_AVR_SCK, 1); r = pgm->getpin(pgm, PIN_AVR_SDI); pgm->setpin(pgm, PIN_AVR_SCK, 0); return r; } void bitbang_tpi_tx(const PROGRAMMER *pgm, unsigned char byte) { int i; unsigned char b, parity; /* start bit */ pgm->setpin(pgm, PIN_AVR_SDO, 0); bitbang_tpi_clk(pgm); parity = 0; for (i = 0; i <= 7; i++) { b = (byte >> i) & 0x01; parity ^= b; /* set the data input line as desired */ pgm->setpin(pgm, PIN_AVR_SDO, b); bitbang_tpi_clk(pgm); } /* parity bit */ pgm->setpin(pgm, PIN_AVR_SDO, parity); bitbang_tpi_clk(pgm); /* 2 stop bits */ pgm->setpin(pgm, PIN_AVR_SDO, 1); bitbang_tpi_clk(pgm); bitbang_tpi_clk(pgm); } int bitbang_tpi_rx(const PROGRAMMER *pgm) { int i; unsigned char b, rbyte, parity; /* make sure pin is on for "pullup" */ pgm->setpin(pgm, PIN_AVR_SDO, 1); /* wait for start bit (up to 10 bits) */ b = 1; for (i = 0; i < 10; i++) { b = bitbang_tpi_clk(pgm); if (b == 0) break; } if (b != 0) { pmsg_error("start bit not received correctly\n"); return -1; } rbyte = 0; parity = 0; for (i=0; i<=7; i++) { b = bitbang_tpi_clk(pgm); parity ^= b; rbyte |= b << i; } /* parity bit */ if (bitbang_tpi_clk(pgm) != parity) { pmsg_error("parity bit is wrong\n"); return -1; } /* 2 stop bits */ b = 1; b &= bitbang_tpi_clk(pgm); b &= bitbang_tpi_clk(pgm); if (b != 1) { pmsg_error("stop bits not received correctly\n"); return -1; } return rbyte; } int bitbang_rdy_led(const PROGRAMMER *pgm, int value) { pgm->setpin(pgm, PIN_LED_RDY, !value); return 0; } int bitbang_err_led(const PROGRAMMER *pgm, int value) { pgm->setpin(pgm, PIN_LED_ERR, !value); return 0; } int bitbang_pgm_led(const PROGRAMMER *pgm, int value) { pgm->setpin(pgm, PIN_LED_PGM, !value); return 0; } int bitbang_vfy_led(const PROGRAMMER *pgm, int value) { pgm->setpin(pgm, PIN_LED_VFY, !value); return 0; } /* * transmit an AVR device command and return the results; 'cmd' and * 'res' must point to at least a 4 byte data buffer */ int bitbang_cmd(const PROGRAMMER *pgm, const unsigned char *cmd, unsigned char *res) { int i; for (i=0; i<4; i++) { res[i] = bitbang_txrx(pgm, cmd[i]); } if(verbose >= 2) { msg_notice2("bitbang_cmd(): [ "); for(i = 0; i < 4; i++) msg_notice2("%02X ", cmd[i]); msg_notice2("] [ "); for(i = 0; i < 4; i++) { msg_notice2("%02X ", res[i]); } msg_notice2("]\n"); } return 0; } int bitbang_cmd_tpi(const PROGRAMMER *pgm, const unsigned char *cmd, int cmd_len, unsigned char *res, int res_len) { int i, r; pgm->pgm_led(pgm, ON); for (i=0; i= 2) { msg_notice2("bitbang_cmd_tpi(): [ "); for(i = 0; i < cmd_len; i++) msg_notice2("%02X ", cmd[i]); msg_notice2("] [ "); for(i = 0; i < res_len; i++) { msg_notice2("%02X ", res[i]); } msg_notice2("]\n"); } pgm->pgm_led(pgm, OFF); if (r == -1) return -1; return 0; } /* * transmit bytes via SPI and return the results; 'cmd' and * 'res' must point to data buffers */ int bitbang_spi(const PROGRAMMER *pgm, const unsigned char *cmd, unsigned char *res, int count) { int i; pgm->setpin(pgm, PIN_LED_PGM, 0); for (i=0; isetpin(pgm, PIN_LED_PGM, 1); if(verbose >= 2) { msg_notice2("bitbang_cmd(): [ "); for(i = 0; i < count; i++) msg_notice2("%02X ", cmd[i]); msg_notice2("] [ "); for(i = 0; i < count; i++) { msg_notice2("%02X ", res[i]); } msg_notice2("]\n"); } return 0; } /* * issue the 'chip erase' command to the AVR device */ int bitbang_chip_erase(const PROGRAMMER *pgm, const AVRPART *p) { unsigned char cmd[4]; unsigned char res[4]; AVRMEM *mem; if (p->prog_modes & PM_TPI) { pgm->pgm_led(pgm, ON); while (avr_tpi_poll_nvmbsy(pgm)); /* NVMCMD <- CHIP_ERASE */ bitbang_tpi_tx(pgm, TPI_CMD_SOUT | TPI_SIO_ADDR(TPI_IOREG_NVMCMD)); bitbang_tpi_tx(pgm, TPI_NVMCMD_CHIP_ERASE); /* CHIP_ERASE */ /* Set Pointer Register */ mem = avr_locate_mem(p, "flash"); if (mem == NULL) { pmsg_error("no flash memory to erase for part %s\n", p->desc); return -1; } bitbang_tpi_tx(pgm, TPI_CMD_SSTPR | 0); bitbang_tpi_tx(pgm, (mem->offset & 0xFF) | 1); /* high byte */ bitbang_tpi_tx(pgm, TPI_CMD_SSTPR | 1); bitbang_tpi_tx(pgm, (mem->offset >> 8) & 0xFF); /* write dummy value to start erase */ bitbang_tpi_tx(pgm, TPI_CMD_SST); bitbang_tpi_tx(pgm, 0xFF); while (avr_tpi_poll_nvmbsy(pgm)); pgm->pgm_led(pgm, OFF); return 0; } if (p->op[AVR_OP_CHIP_ERASE] == NULL) { pmsg_error("chip erase instruction not defined for part %s\n", p->desc); return -1; } pgm->pgm_led(pgm, ON); memset(cmd, 0, sizeof(cmd)); avr_set_bits(p->op[AVR_OP_CHIP_ERASE], cmd); pgm->cmd(pgm, cmd, res); usleep(p->chip_erase_delay); pgm->initialize(pgm, p); pgm->pgm_led(pgm, OFF); return 0; } /* * issue the 'program enable' command to the AVR device */ int bitbang_program_enable(const PROGRAMMER *pgm, const AVRPART *p) { unsigned char cmd[4]; unsigned char res[4]; int i; if (p->prog_modes & PM_TPI) { /* enable NVM programming */ bitbang_tpi_tx(pgm, TPI_CMD_SKEY); for (i = sizeof(tpi_skey) - 1; i >= 0; i--) bitbang_tpi_tx(pgm, tpi_skey[i]); /* check NVMEN bit */ bitbang_tpi_tx(pgm, TPI_CMD_SLDCS | TPI_REG_TPISR); i = bitbang_tpi_rx(pgm); return (i != -1 && (i & TPI_REG_TPISR_NVMEN)) ? 0 : -2; } if (p->op[AVR_OP_PGM_ENABLE] == NULL) { pmsg_error("program enable instruction not defined for part %s\n", p->desc); return -1; } memset(cmd, 0, sizeof(cmd)); avr_set_bits(p->op[AVR_OP_PGM_ENABLE], cmd); pgm->cmd(pgm, cmd, res); if (res[2] != cmd[1]) return -2; return 0; } /* * initialize the AVR device and prepare it to accept commands */ int bitbang_initialize(const PROGRAMMER *pgm, const AVRPART *p) { int rc; int tries; int i; bitbang_calibrate_delay(); pgm->powerup(pgm); usleep(20000); /* TPIDATA is a single line, so SDI & SDO should be connected */ if (p->prog_modes & PM_TPI) { /* make sure cmd_tpi() is defined */ if (pgm->cmd_tpi == NULL) { pmsg_error("%s programmer does not support TPI\n", pgm->type); return -1; } /* bring RESET high first */ pgm->setpin(pgm, PIN_AVR_RESET, 1); usleep(128000); /* wait t_TOUT (32-128ms) */ /* RESET must be LOW in case the existing code is driving the TPI pins: */ pgm->setpin(pgm, PIN_AVR_RESET, 0); msg_notice2("doing SDO-SDI link check\n"); pgm->setpin(pgm, PIN_AVR_SDO, 0); if (pgm->getpin(pgm, PIN_AVR_SDI) != 0) { pmsg_error("SDO->SDI 0 failed\n"); return -1; } pgm->setpin(pgm, PIN_AVR_SDO, 1); if (pgm->getpin(pgm, PIN_AVR_SDI) != 1) { pmsg_error("SDO->SDI 1 failed\n"); return -1; } msg_notice2("SDO-SDI link present\n"); } pgm->setpin(pgm, PIN_AVR_SCK, 0); pgm->setpin(pgm, PIN_AVR_RESET, 0); usleep(20000); if (p->prog_modes & PM_TPI) { /* keep TPIDATA high for 16 clock cycles */ pgm->setpin(pgm, PIN_AVR_SDO, 1); for (i = 0; i < 16; i++) pgm->highpulsepin(pgm, PIN_AVR_SCK); /* remove extra guard timing bits */ bitbang_tpi_tx(pgm, TPI_CMD_SSTCS | TPI_REG_TPIPCR); bitbang_tpi_tx(pgm, 0x7); /* read TPI ident reg */ bitbang_tpi_tx(pgm, TPI_CMD_SLDCS | TPI_REG_TPIIR); rc = bitbang_tpi_rx(pgm); if (rc != 0x80) { pmsg_error("TPIIR not correct\n"); return -1; } } else { pgm->highpulsepin(pgm, PIN_AVR_RESET); } usleep(20000); /* 20 ms XXX should be a per-chip parameter */ /* * Enable programming mode. If we are programming an AT90S1200, we * can only issue the command and hope it worked. If we are using * one of the other chips, the chip will echo 0x53 when issuing the * third byte of the command. In this case, try up to 32 times in * order to possibly get back into sync with the chip if we are out * of sync. */ if (p->flags & AVRPART_IS_AT90S1200) { pgm->program_enable(pgm, p); } else { tries = 0; do { rc = pgm->program_enable(pgm, p); if ((rc == 0)||(rc == -1)) break; pgm->highpulsepin(pgm, p->retry_pulse/*PIN_AVR_SCK*/); tries++; } while (tries < 65); /* * can't sync with the device, maybe it's not attached? */ if (rc) { pmsg_error("AVR device not responding\n"); return -1; } } return 0; } static int verify_pin_assigned(const PROGRAMMER *pgm, int pinfunc, char *desc) { if(pinfunc < 0 || pinfunc >= N_PINS) { pmsg_error("invalid pin function number %d\n", pinfunc); return -1; } if ((pgm->pinno[pinfunc] & PIN_MASK) > PIN_MAX) { pmsg_error("no pin has been assigned for %s\n", desc); return -1; } return 0; } /* * Verify all prerequisites for a bit-bang programmer are present. */ int bitbang_check_prerequisites(const PROGRAMMER *pgm) { if (verify_pin_assigned(pgm, PIN_AVR_RESET, "AVR RESET") < 0) return -1; if (verify_pin_assigned(pgm, PIN_AVR_SCK, "AVR SCK") < 0) return -1; if (verify_pin_assigned(pgm, PIN_AVR_SDI, "AVR SDI") < 0) return -1; if (verify_pin_assigned(pgm, PIN_AVR_SDO, "AVR SDO") < 0) return -1; if (pgm->cmd == NULL) { pmsg_error("no cmd() method defined for bitbang programmer\n"); return -1; } return 0; }