avrdude/avr.c

801 lines
19 KiB
C
Raw Normal View History

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2000-2004 Brian S. Dean <bsd@bsdhome.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* $Id$ */
#include "ac_cfg.h"
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/time.h>
#include <time.h>
#include "avr.h"
#include "lists.h"
#include "pindefs.h"
#include "ppi.h"
#include "safemode.h"
#define DEBUG 0
extern char * progname;
extern char progbuf[];
extern PROGRAMMER * pgm;
extern int do_cycles;
int avr_read_byte_default(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char * value)
{
unsigned char cmd[4];
unsigned char res[4];
unsigned char data;
OPCODE * readop;
pgm->pgm_led(pgm, ON);
pgm->err_led(pgm, OFF);
/*
* figure out what opcode to use
*/
if (mem->op[AVR_OP_READ_LO]) {
if (addr & 0x00000001)
readop = mem->op[AVR_OP_READ_HI];
else
readop = mem->op[AVR_OP_READ_LO];
addr = addr / 2;
}
else {
readop = mem->op[AVR_OP_READ];
}
if (readop == NULL) {
#if DEBUG
fprintf(stderr,
"avr_read_byte(): operation not supported on memory type \"%s\"\n",
p->desc);
#endif
return -1;
}
memset(cmd, 0, sizeof(cmd));
avr_set_bits(readop, cmd);
avr_set_addr(readop, cmd, addr);
pgm->cmd(pgm, cmd, res);
data = 0;
avr_get_output(readop, res, &data);
pgm->pgm_led(pgm, OFF);
*value = data;
return 0;
}
/*
* read a byte of data from the indicated memory region
*/
int avr_read_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char * value)
{
int rc;
if (pgm->read_byte) {
rc = pgm->read_byte(pgm, p, mem, addr, value);
if (rc == 0) {
return rc;
}
/* read_byte() method failed, try again with default. */
}
return avr_read_byte_default(pgm, p, mem, addr, value);
}
/*
* Return the number of "interesting" bytes in a memory buffer,
* "interesting" being defined as up to the last non-0xff data
* value. This is useful for determining where to stop when dealing
* with "flash" memory, since writing 0xff to flash is typically a
* no-op. Always return an even number since flash is word addressed.
*/
int avr_mem_hiaddr(AVRMEM * mem)
{
int i, n;
/* return the highest non-0xff address regardless of how much
memory was read */
for (i=mem->size-1; i>0; i--) {
if (mem->buf[i] != 0xff) {
n = i+1;
if (n & 0x01)
return n+1;
else
return n;
}
}
return 0;
}
/*
* Read the entirety of the specified memory type into the
* corresponding buffer of the avrpart pointed to by 'p'. If size =
* 0, read the entire contents, otherwise, read 'size' bytes.
*
* Return the number of bytes read, or < 0 if an error occurs.
*/
int avr_read(PROGRAMMER * pgm, AVRPART * p, char * memtype, int size,
int verbose)
{
unsigned char rbyte;
unsigned long i;
unsigned char * buf;
AVRMEM * mem;
int rc;
mem = avr_locate_mem(p, memtype);
if (mem == NULL) {
fprintf(stderr, "No \"%s\" memory for part %s\n",
memtype, p->desc);
return -1;
}
buf = mem->buf;
if (size == 0) {
size = mem->size;
}
/*
* start with all 0xff
*/
memset(buf, 0xff, size);
if ((strcmp(mem->desc, "flash")==0) || (strcmp(mem->desc, "eeprom")==0)) {
if (pgm->paged_load != NULL) {
/*
* the programmer supports a paged mode read, perhaps more
* efficiently than we can read it directly, so use its routine
* instead
*/
if (mem->paged) {
rc = pgm->paged_load(pgm, p, mem, mem->page_size, size);
if (rc < 0)
return rc;
}
else {
rc = pgm->paged_load(pgm, p, mem, pgm->page_size, size);
if (rc < 0)
return rc;
}
if (strcasecmp(mem->desc, "flash") == 0)
return avr_mem_hiaddr(mem);
else
return rc;
}
}
if (strcmp(mem->desc, "signature") == 0) {
if (pgm->read_sig_bytes) {
return pgm->read_sig_bytes(pgm, p, mem);
}
}
for (i=0; i<size; i++) {
rc = avr_read_byte(pgm, p, mem, i, &rbyte);
if (rc != 0) {
fprintf(stderr, "avr_read(): error reading address 0x%04lx\n", i);
if (rc == -1)
fprintf(stderr,
" read operation not supported for memory \"%s\"\n",
memtype);
return -2;
}
buf[i] = rbyte;
report_progress(i, size, NULL);
}
if (strcasecmp(mem->desc, "flash") == 0)
return avr_mem_hiaddr(mem);
else
return i;
}
/*
* write a page data at the specified address
*/
int avr_write_page(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr)
{
unsigned char cmd[4];
unsigned char res[4];
OPCODE * wp;
wp = mem->op[AVR_OP_WRITEPAGE];
if (wp == NULL) {
fprintf(stderr,
"avr_write_page(): memory \"%s\" not configured for page writes\n",
mem->desc);
return -1;
}
/*
* if this memory is word-addressable, adjust the address
* accordingly
*/
if ((mem->op[AVR_OP_LOADPAGE_LO]) || (mem->op[AVR_OP_READ_LO]))
addr = addr / 2;
pgm->pgm_led(pgm, ON);
pgm->err_led(pgm, OFF);
memset(cmd, 0, sizeof(cmd));
avr_set_bits(wp, cmd);
avr_set_addr(wp, cmd, addr);
pgm->cmd(pgm, cmd, res);
/*
* since we don't know what voltage the target AVR is powered by, be
* conservative and delay the max amount the spec says to wait
*/
usleep(mem->max_write_delay);
pgm->pgm_led(pgm, OFF);
return 0;
}
int avr_write_byte_default(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char data)
{
unsigned char cmd[4];
unsigned char res[4];
unsigned char r;
int ready;
int tries;
unsigned long start_time;
unsigned long prog_time;
unsigned char b;
unsigned short caddr;
OPCODE * writeop;
int rc;
int readok=0;
struct timeval tv;
if (!mem->paged) {
/*
* check to see if the write is necessary by reading the existing
* value and only write if we are changing the value; we can't
* use this optimization for paged addressing.
*/
rc = avr_read_byte(pgm, p, mem, addr, &b);
if (rc != 0) {
if (rc != -1) {
return -2;
}
/*
* the read operation is not support on this memory type
*/
}
else {
readok = 1;
if (b == data) {
return 0;
}
}
}
/*
* determine which memory opcode to use
*/
if (mem->op[AVR_OP_WRITE_LO]) {
if (addr & 0x01)
writeop = mem->op[AVR_OP_WRITE_HI];
else
writeop = mem->op[AVR_OP_WRITE_LO];
caddr = addr / 2;
}
else if (mem->op[AVR_OP_LOADPAGE_LO]) {
if (addr & 0x01)
writeop = mem->op[AVR_OP_LOADPAGE_HI];
else
writeop = mem->op[AVR_OP_LOADPAGE_LO];
caddr = addr / 2;
}
else {
writeop = mem->op[AVR_OP_WRITE];
caddr = addr;
}
if (writeop == NULL) {
#if DEBUG
fprintf(stderr,
"avr_write_byte(): write not supported for memory type \"%s\"\n",
mem->desc);
#endif
return -1;
}
pgm->pgm_led(pgm, ON);
pgm->err_led(pgm, OFF);
memset(cmd, 0, sizeof(cmd));
avr_set_bits(writeop, cmd);
avr_set_addr(writeop, cmd, caddr);
avr_set_input(writeop, cmd, data);
pgm->cmd(pgm, cmd, res);
if (mem->paged) {
/*
* in paged addressing, single bytes to be written to the memory
* page complete immediately, we only need to delay when we commit
* the whole page via the avr_write_page() routine.
*/
pgm->pgm_led(pgm, OFF);
return 0;
}
if (readok == 0) {
/*
* read operation not supported for this memory type, just wait
* the max programming time and then return
*/
usleep(mem->max_write_delay); /* maximum write delay */
pgm->pgm_led(pgm, OFF);
return 0;
}
tries = 0;
ready = 0;
while (!ready) {
if ((data == mem->readback[0]) ||
(data == mem->readback[1])) {
/*
* use an extra long delay when we happen to be writing values
* used for polled data read-back. In this case, polling
* doesn't work, and we need to delay the worst case write time
* specified for the chip.
*/
usleep(mem->max_write_delay);
rc = avr_read_byte(pgm, p, mem, addr, &r);
if (rc != 0) {
pgm->pgm_led(pgm, OFF);
pgm->err_led(pgm, OFF);
return -5;
}
}
else {
gettimeofday (&tv, NULL);
start_time = (tv.tv_sec * 1000000) + tv.tv_usec;
do {
/*
* Do polling, but timeout after max_write_delay.
*/
rc = avr_read_byte(pgm, p, mem, addr, &r);
if (rc != 0) {
pgm->pgm_led(pgm, OFF);
pgm->err_led(pgm, ON);
return -4;
}
gettimeofday (&tv, NULL);
prog_time = (tv.tv_sec * 1000000) + tv.tv_usec;
} while ((r != data) &&
((prog_time-start_time) < mem->max_write_delay));
}
/*
* At this point we either have a valid readback or the
* max_write_delay is expired.
*/
if (r == data) {
ready = 1;
}
else if (mem->pwroff_after_write) {
/*
* The device has been flagged as power-off after write to this
* memory type. The reason we don't just blindly follow the
* flag is that the power-off advice may only apply to some
* memory bits but not all. We only actually power-off the
* device if the data read back does not match what we wrote.
*/
pgm->pgm_led(pgm, OFF);
fprintf(stderr,
"%s: this device must be powered off and back on to continue\n",
progname);
if (pgm->pinno[PPI_AVR_VCC]) {
fprintf(stderr, "%s: attempting to do this now ...\n", progname);
pgm->powerdown(pgm);
usleep(250000);
rc = pgm->initialize(pgm, p);
if (rc < 0) {
fprintf(stderr, "%s: initialization failed, rc=%d\n", progname, rc);
fprintf(stderr,
"%s: can't re-initialize device after programming the "
"%s bits\n", progname, mem->desc);
fprintf(stderr,
"%s: you must manually power-down the device and restart\n"
"%s: %s to continue.\n",
progname, progname, progname);
return -3;
}
fprintf(stderr, "%s: device was successfully re-initialized\n",
progname);
return 0;
}
}
tries++;
if (!ready && tries > 5) {
/*
* we wrote the data, but after waiting for what should have
* been plenty of time, the memory cell still doesn't match what
* we wrote. Indicate a write error.
*/
pgm->pgm_led(pgm, OFF);
pgm->err_led(pgm, ON);
return -6;
}
}
pgm->pgm_led(pgm, OFF);
return 0;
}
/*
* write a byte of data at the specified address
*/
int avr_write_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char data)
{
unsigned char safemode_lfuse;
unsigned char safemode_hfuse;
unsigned char safemode_efuse;
unsigned char safemode_fuse;
int rc;
/* If we write the fuses, then we need to tell safemode that they *should* change */
safemode_memfuses(0, &safemode_lfuse, &safemode_hfuse, &safemode_efuse, &safemode_fuse);
if (strcmp(mem->desc, "fuse")==0) {
safemode_fuse = data;
}
if (strcmp(mem->desc, "lfuse")==0) {
safemode_lfuse = data;
}
if (strcmp(mem->desc, "hfuse")==0) {
safemode_hfuse = data;
}
if (strcmp(mem->desc, "efuse")==0) {
safemode_efuse = data;
}
safemode_memfuses(1, &safemode_lfuse, &safemode_hfuse, &safemode_efuse, &safemode_fuse);
if (pgm->write_byte) {
rc = pgm->write_byte(pgm, p, mem, addr, data);
if (rc == 0) {
return rc;
}
/* write_byte() method failed, try again with default. */
}
return avr_write_byte_default(pgm, p, mem, addr, data);
}
/*
* Write the whole memory region of the specified memory from the
* corresponding buffer of the avrpart pointed to by 'p'. Write up to
* 'size' bytes from the buffer. Data is only written if the new data
* value is different from the existing data value. Data beyond
* 'size' bytes is not affected.
*
* Return the number of bytes written, or -1 if an error occurs.
*/
int avr_write(PROGRAMMER * pgm, AVRPART * p, char * memtype, int size,
int verbose)
{
int rc;
int wsize;
unsigned long i;
unsigned char data;
int werror;
AVRMEM * m;
m = avr_locate_mem(p, memtype);
if (m == NULL) {
fprintf(stderr, "No \"%s\" memory for part %s\n",
memtype, p->desc);
return -1;
}
pgm->err_led(pgm, OFF);
werror = 0;
wsize = m->size;
if (size < wsize) {
wsize = size;
}
else if (size > wsize) {
fprintf(stderr,
"%s: WARNING: %d bytes requested, but memory region is only %d"
"bytes\n"
"%sOnly %d bytes will actually be written\n",
progname, size, wsize,
progbuf, wsize);
}
if ((strcmp(m->desc, "flash")==0) || (strcmp(m->desc, "eeprom")==0)) {
if (pgm->paged_write != NULL) {
/*
* the programmer supports a paged mode write, perhaps more
* efficiently than we can read it directly, so use its routine
* instead
*/
return pgm->paged_write(pgm, p, m, m->page_size, size);
}
}
if (pgm->write_setup) {
pgm->write_setup(pgm, p, m);
}
for (i=0; i<wsize; i++) {
data = m->buf[i];
report_progress(i, wsize, NULL);
rc = avr_write_byte(pgm, p, m, i, data);
if (rc) {
fprintf(stderr, " ***failed; ");
fprintf(stderr, "\n");
pgm->err_led(pgm, ON);
werror = 1;
}
if (m->paged) {
/*
* check to see if it is time to flush the page with a page
* write
*/
if (((i % m->page_size) == m->page_size-1) ||
(i == wsize-1)) {
rc = avr_write_page(pgm, p, m, i);
if (rc) {
fprintf(stderr,
" *** page %ld (addresses 0x%04lx - 0x%04lx) failed "
"to write\n",
i % m->page_size,
i - m->page_size + 1, i);
fprintf(stderr, "\n");
pgm->err_led(pgm, ON);
werror = 1;
}
}
}
if (werror) {
/*
* make sure the error led stay on if there was a previous write
* error, otherwise it gets cleared in avr_write_byte()
*/
pgm->err_led(pgm, ON);
}
}
return i;
}
/*
* read the AVR device's signature bytes
*/
int avr_signature(PROGRAMMER * pgm, AVRPART * p)
{
int rc;
report_progress (0,1,"Reading");
rc = avr_read(pgm, p, "signature", 0, 0);
if (rc < 0) {
fprintf(stderr,
"%s: error reading signature data for part \"%s\", rc=%d\n",
progname, p->desc, rc);
return -1;
}
report_progress (1,1,NULL);
return 0;
}
/*
* Verify the memory buffer of p with that of v. The byte range of v,
* may be a subset of p. The byte range of p should cover the whole
* chip's memory size.
*
* Return the number of bytes verified, or -1 if they don't match.
*/
int avr_verify(AVRPART * p, AVRPART * v, char * memtype, int size)
{
int i;
unsigned char * buf1, * buf2;
int vsize;
AVRMEM * a, * b;
a = avr_locate_mem(p, memtype);
if (a == NULL) {
fprintf(stderr,
"avr_verify(): memory type \"%s\" not defined for part %s\n",
memtype, p->desc);
return -1;
}
b = avr_locate_mem(v, memtype);
if (b == NULL) {
fprintf(stderr,
"avr_verify(): memory type \"%s\" not defined for part %s\n",
memtype, v->desc);
return -1;
}
buf1 = a->buf;
buf2 = b->buf;
vsize = a->size;
if (vsize < size) {
fprintf(stderr,
"%s: WARNING: requested verification for %d bytes\n"
"%s%s memory region only contains %d bytes\n"
"%sOnly %d bytes will be verified.\n",
progname, size,
progbuf, memtype, vsize,
progbuf, vsize);
size = vsize;
}
for (i=0; i<size; i++) {
if (buf1[i] != buf2[i]) {
fprintf(stderr,
"%s: verification error, first mismatch at byte 0x%04x\n"
"%s0x%02x != 0x%02x\n",
progname, i,
progbuf, buf1[i], buf2[i]);
return -1;
}
}
return size;
}
int avr_get_cycle_count(PROGRAMMER * pgm, AVRPART * p, int * cycles)
{
AVRMEM * a;
unsigned int cycle_count = 0;
unsigned char v1;
int rc;
int i;
a = avr_locate_mem(p, "eeprom");
if (a == NULL) {
return -1;
}
for (i=4; i>0; i--) {
rc = avr_read_byte(pgm, p, a, a->size-i, &v1);
if (rc < 0) {
fprintf(stderr, "%s: WARNING: can't read memory for cycle count, rc=%d\n",
progname, rc);
return -1;
}
cycle_count = (cycle_count << 8) | v1;
}
/*
* If the EEPROM is erased, the cycle count reads 0xffffffff.
* In this case we return a cycle_count of zero.
* So, the calling function don't have to care about whether or not
* the cycle count was initialized.
*/
if (cycle_count == 0xffffffff) {
cycle_count = 0;
}
*cycles = (int) cycle_count;
return 0;
}
int avr_put_cycle_count(PROGRAMMER * pgm, AVRPART * p, int cycles)
{
AVRMEM * a;
unsigned char v1;
int rc;
int i;
a = avr_locate_mem(p, "eeprom");
if (a == NULL) {
return -1;
}
for (i=1; i<=4; i++) {
v1 = cycles & 0xff;
cycles = cycles >> 8;
rc = avr_write_byte(pgm, p, a, a->size-i, v1);
if (rc < 0) {
fprintf(stderr, "%s: WARNING: can't write memory for cycle count, rc=%d\n",
progname, rc);
return -1;
}
}
return 0;
}
int avr_chip_erase(PROGRAMMER * pgm, AVRPART * p)
{
int cycles;
int rc;
if (do_cycles) {
rc = avr_get_cycle_count(pgm, p, &cycles);
/*
* Don't update the cycle counter, if read failed
*/
if(rc != 0) {
do_cycles = 0;
}
}
rc = pgm->chip_erase(pgm, p);
/*
* Don't update the cycle counter, if erase failed
*/
if (do_cycles && (rc == 0)) {
cycles++;
fprintf(stderr, "%s: erase-rewrite cycle count is now %d\n",
progname, cycles);
avr_put_cycle_count(pgm, p, cycles);
}
return rc;
}