avrdude/src/linuxgpio.c

367 lines
9.4 KiB
C
Raw Normal View History

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Support for bitbanging GPIO pins using the /sys/class/gpio interface
*
* Copyright (C) 2013 Radoslav Kolev <radoslav@kolev.info>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "ac_cfg.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <sys/stat.h>
#include "avrdude.h"
#include "libavrdude.h"
#include "bitbang.h"
#if HAVE_LINUXGPIO
/*
* GPIO user space helpers
*
* Copyright 2009 Analog Devices Inc.
* Michael Hennerich (hennerich@blackfin.uclinux.org)
*
* Licensed under the GPL-2 or later
*/
/*
* GPIO user space helpers
* The following functions are acting on an "unsigned gpio" argument, which corresponds to the
* gpio numbering scheme in the kernel (starting from 0).
*/
#define GPIO_DIR_IN 0
#define GPIO_DIR_OUT 1
static int linuxgpio_export(unsigned int gpio)
{
int fd, len, r;
char buf[11];
fd = open("/sys/class/gpio/export", O_WRONLY);
if (fd < 0) {
pmsg_ext_error("cannot open /sys/class/gpio/export: %s\n", strerror(errno));
return fd;
}
len = snprintf(buf, sizeof(buf), "%u", gpio);
r = write(fd, buf, len);
close(fd);
return r;
}
static int linuxgpio_unexport(unsigned int gpio)
{
int fd, len, r;
char buf[11];
fd = open("/sys/class/gpio/unexport", O_WRONLY);
if (fd < 0) {
pmsg_ext_error("cannot open /sys/class/gpio/unexport: %s\n", strerror(errno));
return fd;
}
len = snprintf(buf, sizeof(buf), "%u", gpio);
r = write(fd, buf, len);
close(fd);
return r;
}
static int linuxgpio_openfd(unsigned int gpio)
{
char filepath[60];
snprintf(filepath, sizeof(filepath), "/sys/class/gpio/gpio%u/value", gpio);
return (open(filepath, O_RDWR));
}
static int linuxgpio_dir(unsigned int gpio, unsigned int dir)
{
int fd, r;
char buf[60];
snprintf(buf, sizeof(buf), "/sys/class/gpio/gpio%u/direction", gpio);
fd = open(buf, O_WRONLY);
if (fd < 0) {
pmsg_ext_error("cannot open %s: %s\n", buf, strerror(errno));
return fd;
}
if (dir == GPIO_DIR_OUT)
r = write(fd, "out", 4);
else
r = write(fd, "in", 3);
close(fd);
return r;
}
static int linuxgpio_dir_out(unsigned int gpio)
{
return linuxgpio_dir(gpio, GPIO_DIR_OUT);
}
static int linuxgpio_dir_in(unsigned int gpio)
{
return linuxgpio_dir(gpio, GPIO_DIR_IN);
}
/*
* End of GPIO user space helpers
*/
#define N_GPIO (PIN_MAX + 1)
/* Delay between checks for successful GPIO export (100ms) */
#define GPIO_SYSFS_OPEN_DELAY 100000
/* Number of retries to check for successful GPIO exports */
#define GPIO_SYSFS_OPEN_RETRIES 10
/*
* an array which holds open FDs to /sys/class/gpio/gpioXX/value for all needed pins
*/
static int linuxgpio_fds[N_GPIO] ;
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
static int linuxgpio_setpin(const PROGRAMMER *pgm, int pinfunc, int value) {
if(pinfunc < 0 || pinfunc >= N_PINS)
return -1;
unsigned pin = pgm->pinno[pinfunc];
if (pin & PIN_INVERSE)
value = !value;
pin &= PIN_MASK;
if (pin > PIN_MAX || linuxgpio_fds[pin] < 0)
return -1;
if (write(linuxgpio_fds[pin], value? "1": "0", 1) != 1)
return -1;
if (pgm->ispdelay > 1)
bitbang_delay(pgm->ispdelay);
return 0;
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
static int linuxgpio_getpin(const PROGRAMMER *pgm, int pinfunc) {
if(pinfunc < 0 || pinfunc >= N_PINS)
return -1;
unsigned int pin = pgm->pinno[pinfunc];
int invert = !!(pin & PIN_INVERSE);
pin &= PIN_MASK;
if(pin > PIN_MAX || linuxgpio_fds[pin] < 0)
return -1;
if(lseek(linuxgpio_fds[pin], 0, SEEK_SET) < 0)
return -1;
char c;
if(read(linuxgpio_fds[pin], &c, 1) != 1)
return -1;
return c=='0'? 0+invert: c=='1'? 1-invert: -1;
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
static int linuxgpio_highpulsepin(const PROGRAMMER *pgm, int pinfunc) {
if(pinfunc < 0 || pinfunc >= N_PINS)
return -1;
unsigned int pin = pgm->pinno[pinfunc] & PIN_MASK;
if (pin > PIN_MAX || linuxgpio_fds[pin] < 0 )
return -1;
linuxgpio_setpin(pgm, pinfunc, 1);
linuxgpio_setpin(pgm, pinfunc, 0);
return 0;
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
static void linuxgpio_display(const PROGRAMMER *pgm, const char *p) {
msg_info("%sPin assignment : /sys/class/gpio/gpio{n}\n",p);
pgm_display_generic_mask(pgm, p, SHOW_AVR_PINS);
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
static void linuxgpio_enable(PROGRAMMER *pgm, const AVRPART *p) {
/* nothing */
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
static void linuxgpio_disable(const PROGRAMMER *pgm) {
/* nothing */
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
static void linuxgpio_powerup(const PROGRAMMER *pgm) {
/* nothing */
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
static void linuxgpio_powerdown(const PROGRAMMER *pgm) {
/* nothing */
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
static int linuxgpio_open(PROGRAMMER *pgm, const char *port) {
int r, i, pin;
char gpio_path[60];
struct stat stat_buf;
if (bitbang_check_prerequisites(pgm) < 0)
return -1;
for (i=0; i<N_GPIO; i++)
linuxgpio_fds[i] = -1;
// Avrdude assumes that if a pin number is invalid it means not used/available
for (i = 1; i < N_PINS; i++) { // The pin enumeration in libavrdude.h starts with PPI_AVR_VCC = 1
if ((pgm->pinno[i] & PIN_MASK) <= PIN_MAX) {
pin = pgm->pinno[i] & PIN_MASK;
if ((r=linuxgpio_export(pin)) < 0) {
pmsg_ext_error("cannot export GPIO %d, already exported/busy?: %s",
pin, strerror(errno));
return r;
}
/* Wait until GPIO directory appears */
snprintf(gpio_path, sizeof(gpio_path), "/sys/class/gpio/gpio%u", pin);
unsigned int retry_count;
for (retry_count = 0; retry_count < GPIO_SYSFS_OPEN_RETRIES; retry_count++) {
int ret = stat(gpio_path, &stat_buf);
if (ret == 0) {
break;
} else if (ret < 0 && errno != ENOENT) {
linuxgpio_unexport(pin);
return ret;
}
usleep(GPIO_SYSFS_OPEN_DELAY);
}
/* Write direction, looping in case of EACCES errors due to delayed
* udev permission rule application after export */
for (retry_count = 0; retry_count < GPIO_SYSFS_OPEN_RETRIES; retry_count++) {
usleep(GPIO_SYSFS_OPEN_DELAY);
if (i == PIN_AVR_SDI)
r=linuxgpio_dir_in(pin);
else
r=linuxgpio_dir_out(pin);
if (r >= 0)
break;
if (errno != EACCES) {
linuxgpio_unexport(pin);
return r;
}
}
if (retry_count)
pmsg_notice2("needed %d retr%s for linuxgpio_dir_%s(%s)\n",
retry_count, retry_count > 1? "ies": "y",
i == PIN_AVR_SDI? "in": "out", avr_pin_name(pin));
if (r < 0) {
linuxgpio_unexport(pin);
return r;
}
if ((linuxgpio_fds[pin]=linuxgpio_openfd(pin)) < 0)
return linuxgpio_fds[pin];
}
}
return(0);
}
static void linuxgpio_close(PROGRAMMER *pgm)
{
int i, reset_pin;
reset_pin = pgm->pinno[PIN_AVR_RESET] & PIN_MASK;
//first configure all pins as input, except RESET
//this should avoid possible conflicts when AVR firmware starts
for (i=0; i<N_GPIO; i++) {
if (linuxgpio_fds[i] >= 0 && i != reset_pin) {
close(linuxgpio_fds[i]);
linuxgpio_fds[i] = -1;
linuxgpio_dir_in(i);
linuxgpio_unexport(i);
}
}
//configure RESET as input, if there's external pull up it will go high
if(reset_pin <= PIN_MAX && linuxgpio_fds[reset_pin] >= 0) {
close(linuxgpio_fds[reset_pin]);
linuxgpio_fds[reset_pin] = -1;
linuxgpio_dir_in(reset_pin);
linuxgpio_unexport(reset_pin);
}
}
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
void linuxgpio_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "linuxgpio");
pgm_fill_old_pins(pgm); // TODO to be removed if old pin data no longer needed
pgm->rdy_led = bitbang_rdy_led;
pgm->err_led = bitbang_err_led;
pgm->pgm_led = bitbang_pgm_led;
pgm->vfy_led = bitbang_vfy_led;
pgm->initialize = bitbang_initialize;
pgm->display = linuxgpio_display;
pgm->enable = linuxgpio_enable;
pgm->disable = linuxgpio_disable;
pgm->powerup = linuxgpio_powerup;
pgm->powerdown = linuxgpio_powerdown;
pgm->program_enable = bitbang_program_enable;
pgm->chip_erase = bitbang_chip_erase;
pgm->cmd = bitbang_cmd;
pgm->cmd_tpi = bitbang_cmd_tpi;
pgm->open = linuxgpio_open;
pgm->close = linuxgpio_close;
pgm->setpin = linuxgpio_setpin;
pgm->getpin = linuxgpio_getpin;
pgm->highpulsepin = linuxgpio_highpulsepin;
pgm->read_byte = avr_read_byte_default;
pgm->write_byte = avr_write_byte_default;
}
const char linuxgpio_desc[] = "GPIO bitbanging using the Linux sysfs interface";
#else /* !HAVE_LINUXGPIO */
Use const in PROGRAMMER function arguments where appropriate In order to get meaningful const properties for the PROGRAMMER, AVRPART and AVRMEM arguments, some code needed to be moved around, otherwise a network of "tainted" assignments risked rendering nothing const: - Change void (*enable)(PROGRAMMER *pgm) to void (*enable)(PROGRAMMER *pgm, const AVRPART *p); this allows changes in the PROGRAMMER structure after the part is known. For example, use TPI, UPDI, PDI functions in that programmer appropriate to the part. This used to be done later in the process, eg, in the initialize() function, which "taints" all other programmer functions wrt const and sometimes requires other finessing with flags etc. Much clearer with the modified enable() interface. - Move TPI initpgm-type code from initialize() to enable() --- note that initpgm() does not have the info at the time when it is called whether or not TPI is required - buspirate.c: move pgm->flag to PDATA(pgm)->flag (so legitimate modification of the flag does not change PROGRAMMER structure) - Move AVRPART_INIT_SMC and AVRPART_WRITE bits from the flags field in AVRPART to jtagmkII.c's private data flags32 fiels as FLAGS32_INIT_SMC and FLAGS32_WRITE bits - Move the xbeeResetPin component to private data in stk500.c as this is needed by xbee when it saddles on the stk500 code (previously, the flags component of the part was re-dedicated to this) - Change the way the "chained" private data are used in jtag3.c whilst keeping the PROGRAMMER structure read-only otherwise - In stk500v2.c move the STK600 pgm update from stk500v2_initialize() to stk500v2_enable() so the former keeps the PROGRAMMER structure read-only (for const assertion). - In usbasp change the code from changing PROGRAMMER functions late to dispatching to TPI or regular SPI protocol functions at runtime; reason being the decision whether to use TPI protocol is done at run-time depending on the capability of the attached programmer Also fixes Issue #1071, the treatment of default eecr value.
2022-08-17 15:05:28 +00:00
void linuxgpio_initpgm(PROGRAMMER *pgm) {
pmsg_error("Linux sysfs GPIO support not available in this configuration\n");
}
const char linuxgpio_desc[] = "GPIO bitbanging using the Linux sysfs interface (not available)";
#endif /* HAVE_LINUXGPIO */