avrdude/src/jtag3.c

2651 lines
73 KiB
C
Raw Normal View History

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2012 Joerg Wunsch <j@uriah.heep.sax.de>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* $Id$ */
/*
* avrdude interface for Atmel JTAGICE3 programmer
*/
#include "ac_cfg.h"
#include <ctype.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <errno.h>
#include <unistd.h>
#include <sys/time.h>
#include <time.h>
#include "avrdude.h"
#include "libavrdude.h"
#include "crc16.h"
#include "jtag3.h"
#include "jtag3_private.h"
#include "usbdevs.h"
/*
* Private data for this programmer.
*/
struct pdata
{
unsigned short command_sequence; /* Next cmd seqno to issue. */
/*
* See jtag3_read_byte() for an explanation of the flash and
* EEPROM page caches.
*/
unsigned char *flash_pagecache;
unsigned long flash_pageaddr;
unsigned int flash_pagesize;
unsigned char *eeprom_pagecache;
unsigned long eeprom_pageaddr;
unsigned int eeprom_pagesize;
int prog_enabled; /* Cached value of PROGRAMMING status. */
/* JTAG chain stuff */
unsigned char jtagchain[4];
/* Start address of Xmega boot area */
unsigned long boot_start;
/* Flag for triggering HV UPDI */
bool use_hvupdi;
/* Function to set the appropriate clock parameter */
int (*set_sck)(PROGRAMMER *, unsigned char *);
};
#define PDATA(pgm) ((struct pdata *)(pgm->cookie))
/*
* pgm->flag is marked as "for private use of the programmer".
* The following defines this programmer's use of that field.
*/
#define PGM_FL_IS_DW (0x0001)
#define PGM_FL_IS_PDI (0x0002)
#define PGM_FL_IS_JTAG (0x0004)
#define PGM_FL_IS_EDBG (0x0008)
#define PGM_FL_IS_UPDI (0x0010)
static int jtag3_open(PROGRAMMER * pgm, char * port);
static int jtag3_edbg_prepare(PROGRAMMER * pgm);
static int jtag3_edbg_signoff(PROGRAMMER * pgm);
static int jtag3_edbg_send(PROGRAMMER * pgm, unsigned char * data, size_t len);
static int jtag3_edbg_recv_frame(PROGRAMMER * pgm, unsigned char **msg);
static int jtag3_initialize(PROGRAMMER * pgm, AVRPART * p);
static int jtag3_chip_erase(PROGRAMMER * pgm, AVRPART * p);
static int jtag3_read_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char * value);
static int jtag3_write_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char data);
static int jtag3_set_sck_period(PROGRAMMER * pgm, double v);
static void jtag3_print_parms1(PROGRAMMER * pgm, const char * p);
static int jtag3_paged_write(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes);
static unsigned char jtag3_memtype(PROGRAMMER * pgm, AVRPART * p, unsigned long addr);
static unsigned int jtag3_memaddr(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m, unsigned long addr);
void jtag3_setup(PROGRAMMER * pgm)
{
if ((pgm->cookie = malloc(sizeof(struct pdata))) == 0) {
avrdude_message(MSG_INFO, "%s: jtag3_setup(): Out of memory allocating private data\n",
progname);
exit(1);
}
memset(pgm->cookie, 0, sizeof(struct pdata));
}
void jtag3_teardown(PROGRAMMER * pgm)
{
free(pgm->cookie);
}
static unsigned long
b4_to_u32(unsigned char *b)
{
unsigned long l;
l = b[0];
l += (unsigned)b[1] << 8;
l += (unsigned)b[2] << 16;
l += (unsigned)b[3] << 24;
return l;
}
static void
u32_to_b4(unsigned char *b, unsigned long l)
{
b[0] = l & 0xff;
b[1] = (l >> 8) & 0xff;
b[2] = (l >> 16) & 0xff;
b[3] = (l >> 24) & 0xff;
}
static unsigned short
b2_to_u16(unsigned char *b)
{
unsigned short l;
l = b[0];
l += (unsigned)b[1] << 8;
return l;
}
static void
u16_to_b2(unsigned char *b, unsigned short l)
{
b[0] = l & 0xff;
b[1] = (l >> 8) & 0xff;
}
static bool matches(const char *s, const char *pat)
{
return strncmp(s, pat, strlen(pat)) == 0;
}
static void jtag3_print_data(unsigned char *b, size_t s)
{
int i;
if (s < 2)
return;
for (i = 0; i < s; i++) {
avrdude_message(MSG_INFO, "0x%02x", b[i]);
if (i % 16 == 15)
putc('\n', stderr);
else
putc(' ', stderr);
}
if (i % 16 != 0)
putc('\n', stderr);
}
static void jtag3_prmsg(PROGRAMMER * pgm, unsigned char * data, size_t len)
{
int i;
if (verbose >= 4) {
avrdude_message(MSG_TRACE, "Raw message:\n");
for (i = 0; i < len; i++) {
avrdude_message(MSG_TRACE, "%02x ", data[i]);
if (i % 16 == 15)
putc('\n', stderr);
else
putc(' ', stderr);
}
if (i % 16 != 0)
putc('\n', stderr);
}
switch (data[0]) {
case SCOPE_INFO:
avrdude_message(MSG_INFO, "[info] ");
break;
case SCOPE_GENERAL:
avrdude_message(MSG_INFO, "[general] ");
break;
case SCOPE_AVR_ISP:
avrdude_message(MSG_INFO, "[AVRISP] ");
jtag3_print_data(data + 1, len - 1);
return;
case SCOPE_AVR:
avrdude_message(MSG_INFO, "[AVR] ");
break;
default:
avrdude_message(MSG_INFO, "[scope 0x%02x] ", data[0]);
break;
}
switch (data[1]) {
case RSP3_OK:
avrdude_message(MSG_INFO, "OK\n");
break;
case RSP3_FAILED:
avrdude_message(MSG_INFO, "FAILED");
if (len > 3)
{
char reason[50];
sprintf(reason, "0x%02x", data[3]);
switch (data[3])
{
case RSP3_FAIL_NO_ANSWER:
strcpy(reason, "target does not answer");
break;
case RSP3_FAIL_NO_TARGET_POWER:
strcpy(reason, "no target power");
break;
case RSP3_FAIL_NOT_UNDERSTOOD:
strcpy(reason, "command not understood");
break;
case RSP3_FAIL_WRONG_MODE:
strcpy(reason, "wrong (programming) mode");
break;
case RSP3_FAIL_PDI:
strcpy(reason, "PDI failure");
break;
case RSP3_FAIL_UNSUPP_MEMORY:
strcpy(reason, "unsupported memory type");
break;
case RSP3_FAIL_WRONG_LENGTH:
strcpy(reason, "wrong length in memory access");
break;
case RSP3_FAIL_DEBUGWIRE:
strcpy(reason, "debugWIRE communication failed");
break;
}
avrdude_message(MSG_INFO, ", reason: %s\n", reason);
}
else
{
avrdude_message(MSG_INFO, ", unspecified reason\n");
}
break;
case RSP3_DATA:
avrdude_message(MSG_INFO, "Data returned:\n");
jtag3_print_data(data + 2, len - 2);
break;
case RSP3_INFO:
avrdude_message(MSG_INFO, "Info returned:\n");
for (i = 2; i < len; i++) {
if (isprint(data[i]))
putc(data[i], stderr);
else
avrdude_message(MSG_INFO, "\\%03o", data[i]);
}
putc('\n', stderr);
break;
case RSP3_PC:
if (len < 7)
{
avrdude_message(MSG_INFO, "PC reply too short\n");
}
else
{
unsigned long pc = (data[6] << 24) | (data[5] << 16)
| (data[4] << 8) | data[3];
avrdude_message(MSG_INFO, "PC 0x%0lx\n", pc);
}
break;
default:
avrdude_message(MSG_INFO, "unknown message 0x%02x\n", data[1]);
}
}
static void jtag3_prevent(PROGRAMMER * pgm, unsigned char * data, size_t len)
{
int i;
if (verbose >= 4) {
avrdude_message(MSG_TRACE, "Raw event:\n");
for (i = 0; i < len; i++) {
avrdude_message(MSG_TRACE, "%02x ", data[i]);
if (i % 16 == 15)
putc('\n', stderr);
else
putc(' ', stderr);
}
if (i % 16 != 0)
putc('\n', stderr);
}
avrdude_message(MSG_INFO, "Event serial 0x%04x, ",
(data[3] << 8) | data[2]);
switch (data[4]) {
case SCOPE_INFO:
avrdude_message(MSG_INFO, "[info] ");
break;
case SCOPE_GENERAL:
avrdude_message(MSG_INFO, "[general] ");
break;
case SCOPE_AVR:
avrdude_message(MSG_INFO, "[AVR] ");
break;
default:
avrdude_message(MSG_INFO, "[scope 0x%02x] ", data[0]);
break;
}
switch (data[5]) {
case EVT3_BREAK:
avrdude_message(MSG_INFO, "BREAK");
if (len >= 11) {
avrdude_message(MSG_INFO, ", PC = 0x%lx, reason ", b4_to_u32(data + 6));
switch (data[10]) {
case 0x00:
avrdude_message(MSG_INFO, "unspecified");
break;
case 0x01:
avrdude_message(MSG_INFO, "program break");
break;
case 0x02:
avrdude_message(MSG_INFO, "data break PDSB");
break;
case 0x03:
avrdude_message(MSG_INFO, "data break PDMSB");
break;
default:
avrdude_message(MSG_INFO, "unknown: 0x%02x", data[10]);
}
/* There are two more bytes of data which always appear to be
* 0x01, 0x00. Purpose unknown. */
}
break;
case EVT3_SLEEP:
if (len >= 8 && data[7] == 0)
avrdude_message(MSG_INFO, "sleeping");
else if (len >= 8 && data[7] == 1)
avrdude_message(MSG_INFO, "wakeup");
else
avrdude_message(MSG_INFO, "unknown SLEEP event");
break;
case EVT3_POWER:
if (len >= 8 && data[7] == 0)
avrdude_message(MSG_INFO, "power-down");
else if (len >= 8 && data[7] == 1)
avrdude_message(MSG_INFO, "power-up");
else
avrdude_message(MSG_INFO, "unknown POWER event");
break;
default:
avrdude_message(MSG_INFO, "UNKNOWN 0x%02x", data[5]);
break;
}
putc('\n', stderr);
}
int jtag3_send(PROGRAMMER * pgm, unsigned char * data, size_t len)
{
unsigned char *buf;
if (pgm->flag & PGM_FL_IS_EDBG)
return jtag3_edbg_send(pgm, data, len);
avrdude_message(MSG_DEBUG, "\n%s: jtag3_send(): sending %lu bytes\n",
progname, (unsigned long)len);
if ((buf = malloc(len + 4)) == NULL)
{
avrdude_message(MSG_INFO, "%s: jtag3_send(): out of memory",
progname);
return -1;
}
buf[0] = TOKEN;
buf[1] = 0; /* dummy */
u16_to_b2(buf + 2, PDATA(pgm)->command_sequence);
memcpy(buf + 4, data, len);
if (serial_send(&pgm->fd, buf, len + 4) != 0) {
avrdude_message(MSG_INFO, "%s: jtag3_send(): failed to send command to serial port\n",
progname);
free(buf);
return -1;
}
free(buf);
return 0;
}
static int jtag3_edbg_send(PROGRAMMER * pgm, unsigned char * data, size_t len)
{
unsigned char buf[USBDEV_MAX_XFER_3];
unsigned char status[USBDEV_MAX_XFER_3];
int rv;
if (verbose >= 4)
{
memset(buf, 0, USBDEV_MAX_XFER_3);
memset(status, 0, USBDEV_MAX_XFER_3);
}
avrdude_message(MSG_DEBUG, "\n%s: jtag3_edbg_send(): sending %lu bytes\n",
progname, (unsigned long)len);
/* 4 bytes overhead for CMD, fragment #, and length info */
int max_xfer = pgm->fd.usb.max_xfer;
int nfragments = (len + max_xfer - 1) / max_xfer;
if (nfragments > 1)
{
avrdude_message(MSG_DEBUG, "%s: jtag3_edbg_send(): fragmenting into %d packets\n",
progname, nfragments);
}
int frag;
for (frag = 0; frag < nfragments; frag++)
{
int this_len;
/* All fragments have the (CMSIS-DAP layer) CMD, the fragment
* identifier, and the length field. */
buf[0] = EDBG_VENDOR_AVR_CMD;
buf[1] = ((frag + 1) << 4) | nfragments;
if (frag == 0)
{
/* Only first fragment has TOKEN and seq#, thus four bytes
* less payload than subsequent fragments. */
this_len = len < max_xfer - 8? len: max_xfer - 8;
buf[2] = (this_len + 4) >> 8;
buf[3] = (this_len + 4) & 0xff;
buf[4] = TOKEN;
buf[5] = 0; /* dummy */
u16_to_b2(buf + 6, PDATA(pgm)->command_sequence);
memcpy(buf + 8, data, this_len);
}
else
{
this_len = len < max_xfer - 4? len: max_xfer - 4;
buf[2] = (this_len) >> 8;
buf[3] = (this_len) & 0xff;
memcpy(buf + 4, data, this_len);
}
if (serial_send(&pgm->fd, buf, max_xfer) != 0) {
2022-02-13 18:23:48 +00:00
avrdude_message(MSG_NOTICE, "%s: jtag3_edbg_send(): failed to send command to serial port\n",
progname);
return -1;
}
rv = serial_recv(&pgm->fd, status, max_xfer);
if (rv < 0) {
/* timeout in receive */
avrdude_message(MSG_NOTICE2, "%s: jtag3_edbg_send(): Timeout receiving packet\n",
progname);
return -1;
}
if (status[0] != EDBG_VENDOR_AVR_CMD ||
(frag == nfragments - 1 && status[1] != 0x01))
{
/* what to do in this case? */
2022-02-13 18:23:48 +00:00
avrdude_message(MSG_NOTICE, "%s: jtag3_edbg_send(): Unexpected response 0x%02x, 0x%02x\n",
progname, status[0], status[1]);
}
data += this_len;
len -= this_len;
}
return 0;
}
/*
* Send out all the CMSIS-DAP stuff needed to prepare the ICE.
*/
static int jtag3_edbg_prepare(PROGRAMMER * pgm)
{
unsigned char buf[USBDEV_MAX_XFER_3];
unsigned char status[USBDEV_MAX_XFER_3];
int rv;
avrdude_message(MSG_DEBUG, "\n%s: jtag3_edbg_prepare()\n",
progname);
if (verbose >= 4)
memset(buf, 0, USBDEV_MAX_XFER_3);
buf[0] = CMSISDAP_CMD_CONNECT;
buf[1] = CMSISDAP_CONN_SWD;
if (serial_send(&pgm->fd, buf, pgm->fd.usb.max_xfer) != 0) {
avrdude_message(MSG_INFO, "%s: jtag3_edbg_prepare(): failed to send command to serial port\n",
progname);
return -1;
}
rv = serial_recv(&pgm->fd, status, pgm->fd.usb.max_xfer);
if (rv != pgm->fd.usb.max_xfer) {
avrdude_message(MSG_INFO, "%s: jtag3_edbg_prepare(): failed to read from serial port (%d)\n",
progname, rv);
return -1;
}
if (status[0] != CMSISDAP_CMD_CONNECT ||
status[1] == 0)
avrdude_message(MSG_INFO, "%s: jtag3_edbg_prepare(): unexpected response 0x%02x, 0x%02x\n",
progname, status[0], status[1]);
avrdude_message(MSG_NOTICE2, "%s: jtag3_edbg_prepare(): connection status 0x%02x\n",
progname, status[1]);
buf[0] = CMSISDAP_CMD_LED;
buf[1] = CMSISDAP_LED_CONNECT;
buf[2] = 1;
if (serial_send(&pgm->fd, buf, pgm->fd.usb.max_xfer) != 0) {
avrdude_message(MSG_INFO, "%s: jtag3_edbg_prepare(): failed to send command to serial port\n",
progname);
return -1;
}
rv = serial_recv(&pgm->fd, status, pgm->fd.usb.max_xfer);
if (rv != pgm->fd.usb.max_xfer) {
avrdude_message(MSG_INFO, "%s: jtag3_edbg_prepare(): failed to read from serial port (%d)\n",
progname, rv);
return -1;
}
if (status[0] != CMSISDAP_CMD_LED ||
status[1] != 0)
avrdude_message(MSG_INFO, "%s: jtag3_edbg_prepare(): unexpected response 0x%02x, 0x%02x\n",
progname, status[0], status[1]);
return 0;
}
/*
* Send out all the CMSIS-DAP stuff when signing off.
*/
static int jtag3_edbg_signoff(PROGRAMMER * pgm)
{
unsigned char buf[USBDEV_MAX_XFER_3];
unsigned char status[USBDEV_MAX_XFER_3];
int rv;
avrdude_message(MSG_DEBUG, "\n%s: jtag3_edbg_signoff()\n",
progname);
if (verbose >= 4)
memset(buf, 0, USBDEV_MAX_XFER_3);
buf[0] = CMSISDAP_CMD_LED;
buf[1] = CMSISDAP_LED_CONNECT;
buf[2] = 0;
if (serial_send(&pgm->fd, buf, pgm->fd.usb.max_xfer) != 0) {
2022-02-13 18:23:48 +00:00
avrdude_message(MSG_NOTICE, "%s: jtag3_edbg_signoff(): failed to send command to serial port\n",
progname);
return -1;
}
rv = serial_recv(&pgm->fd, status, pgm->fd.usb.max_xfer);
if (rv != pgm->fd.usb.max_xfer) {
2022-02-13 18:23:48 +00:00
avrdude_message(MSG_NOTICE, "%s: jtag3_edbg_signoff(): failed to read from serial port (%d)\n",
progname, rv);
return -1;
}
if (status[0] != CMSISDAP_CMD_LED ||
status[1] != 0)
2022-02-13 18:23:48 +00:00
avrdude_message(MSG_NOTICE, "%s: jtag3_edbg_signoff(): unexpected response 0x%02x, 0x%02x\n",
progname, status[0], status[1]);
buf[0] = CMSISDAP_CMD_DISCONNECT;
if (serial_send(&pgm->fd, buf, pgm->fd.usb.max_xfer) != 0) {
2022-02-13 18:23:48 +00:00
avrdude_message(MSG_NOTICE, "%s: jtag3_edbg_signoff(): failed to send command to serial port\n",
progname);
return -1;
}
rv = serial_recv(&pgm->fd, status, pgm->fd.usb.max_xfer);
if (rv != pgm->fd.usb.max_xfer) {
2022-02-13 18:23:48 +00:00
avrdude_message(MSG_NOTICE, "%s: jtag3_edbg_signoff(): failed to read from serial port (%d)\n",
progname, rv);
return -1;
}
if (status[0] != CMSISDAP_CMD_DISCONNECT ||
status[1] != 0)
2022-02-13 18:23:48 +00:00
avrdude_message(MSG_NOTICE, "%s: jtag3_edbg_signoff(): unexpected response 0x%02x, 0x%02x\n",
progname, status[0], status[1]);
return 0;
}
static int jtag3_drain(PROGRAMMER * pgm, int display)
{
return serial_drain(&pgm->fd, display);
}
/*
* Receive one frame, return it in *msg. Received sequence number is
* returned in seqno. Any valid frame will be returned, regardless
* whether it matches the expected sequence number, including event
* notification frames (seqno == 0xffff).
*
* Caller must eventually free the buffer.
*/
static int jtag3_recv_frame(PROGRAMMER * pgm, unsigned char **msg) {
int rv;
unsigned char *buf = NULL;
if (pgm->flag & PGM_FL_IS_EDBG)
return jtag3_edbg_recv_frame(pgm, msg);
avrdude_message(MSG_TRACE, "%s: jtag3_recv():\n", progname);
if ((buf = malloc(pgm->fd.usb.max_xfer)) == NULL) {
avrdude_message(MSG_INFO, "%s: jtag3_recv(): out of memory\n",
progname);
return -1;
}
if (verbose >= 4)
memset(buf, 0, pgm->fd.usb.max_xfer);
rv = serial_recv(&pgm->fd, buf, pgm->fd.usb.max_xfer);
if (rv < 0) {
/* timeout in receive */
avrdude_message(MSG_NOTICE2, "%s: jtag3_recv(): Timeout receiving packet\n",
progname);
free(buf);
return -1;
}
*msg = buf;
return rv;
}
static int jtag3_edbg_recv_frame(PROGRAMMER * pgm, unsigned char **msg) {
int rv, len = 0;
unsigned char *buf = NULL;
unsigned char *request;
avrdude_message(MSG_TRACE, "%s: jtag3_edbg_recv():\n", progname);
if ((buf = malloc(USBDEV_MAX_XFER_3)) == NULL) {
2022-02-13 18:23:48 +00:00
avrdude_message(MSG_NOTICE, "%s: jtag3_edbg_recv(): out of memory\n",
progname);
return -1;
}
if ((request = malloc(pgm->fd.usb.max_xfer)) == NULL) {
2022-02-13 18:23:48 +00:00
avrdude_message(MSG_NOTICE, "%s: jtag3_edbg_recv(): out of memory\n",
progname);
free(buf);
return -1;
}
*msg = buf;
int nfrags = 0;
int thisfrag = 0;
do {
request[0] = EDBG_VENDOR_AVR_RSP;
if (serial_send(&pgm->fd, request, pgm->fd.usb.max_xfer) != 0) {
2022-02-13 18:23:48 +00:00
avrdude_message(MSG_NOTICE, "%s: jtag3_edbg_recv(): error sending CMSIS-DAP vendor command\n",
progname);
free(request);
free(*msg);
return -1;
}
rv = serial_recv(&pgm->fd, buf, pgm->fd.usb.max_xfer);
if (rv < 0) {
/* timeout in receive */
avrdude_message(MSG_NOTICE2, "%s: jtag3_edbg_recv(): Timeout receiving packet\n",
progname);
free(*msg);
free(request);
return -1;
}
if (buf[0] != EDBG_VENDOR_AVR_RSP) {
2022-02-13 18:23:48 +00:00
avrdude_message(MSG_NOTICE, "%s: jtag3_edbg_recv(): Unexpected response 0x%02x\n",
progname, buf[0]);
free(*msg);
free(request);
return -1;
}
if (buf[1] == 0) {
// Documentation says:
// "FragmentInfo 0x00 indicates that no response data is
// available, and the rest of the packet is ignored."
2022-02-13 18:23:48 +00:00
avrdude_message(MSG_NOTICE,
"%s: jtag3_edbg_recv(): "
"No response available\n",
progname);
free(*msg);
free(request);
return -1;
}
/* calculate fragment information */
if (thisfrag == 0) {
/* first fragment */
nfrags = buf[1] & 0x0F;
thisfrag = 1;
} else {
if (nfrags != (buf[1] & 0x0F)) {
2022-02-13 18:23:48 +00:00
avrdude_message(MSG_NOTICE,
"%s: jtag3_edbg_recv(): "
"Inconsistent # of fragments; had %d, now %d\n",
progname, nfrags, (buf[1] & 0x0F));
free(*msg);
free(request);
return -1;
}
}
if (thisfrag != ((buf[1] >> 4) & 0x0F)) {
2022-02-13 18:23:48 +00:00
avrdude_message(MSG_NOTICE,
"%s: jtag3_edbg_recv(): "
"Inconsistent fragment number; expect %d, got %d\n",
progname, thisfrag, ((buf[1] >> 4) & 0x0F));
free(*msg);
free(request);
return -1;
}
int thislen = (buf[2] << 8) | buf[3];
if (thislen > rv + 4) {
2022-02-13 18:23:48 +00:00
avrdude_message(MSG_NOTICE, "%s: jtag3_edbg_recv(): Unexpected length value (%d > %d)\n",
progname, thislen, rv + 4);
thislen = rv + 4;
}
if (len + thislen > USBDEV_MAX_XFER_3) {
2022-02-13 18:23:48 +00:00
avrdude_message(MSG_NOTICE, "%s: jtag3_edbg_recv(): Length exceeds max size (%d > %d)\n",
progname, len + thislen, USBDEV_MAX_XFER_3);
thislen = USBDEV_MAX_XFER_3 - len;
}
memmove(buf, buf + 4, thislen);
thisfrag++;
len += thislen;
buf += thislen;
} while (thisfrag <= nfrags);
free(request);
return len;
}
int jtag3_recv(PROGRAMMER * pgm, unsigned char **msg) {
unsigned short r_seqno;
int rv;
for (;;) {
if ((rv = jtag3_recv_frame(pgm, msg)) <= 0)
return rv;
if ((rv & USB_RECV_FLAG_EVENT) != 0) {
if (verbose >= 3)
jtag3_prevent(pgm, *msg, rv & USB_RECV_LENGTH_MASK);
free(*msg);
continue;
}
rv &= USB_RECV_LENGTH_MASK;
r_seqno = ((*msg)[2] << 8) | (*msg)[1];
avrdude_message(MSG_DEBUG, "%s: jtag3_recv(): "
"Got message seqno %d (command_sequence == %d)\n",
progname, r_seqno, PDATA(pgm)->command_sequence);
if (r_seqno == PDATA(pgm)->command_sequence) {
if (++(PDATA(pgm)->command_sequence) == 0xffff)
PDATA(pgm)->command_sequence = 0;
/*
* We move the payload to the beginning of the buffer, to make
* the job easier for the caller. We have to return the
* original pointer though, as the caller must free() it.
*/
rv -= 3;
memmove(*msg, *msg + 3, rv);
return rv;
}
avrdude_message(MSG_NOTICE2, "%s: jtag3_recv(): "
"got wrong sequence number, %u != %u\n",
progname, r_seqno, PDATA(pgm)->command_sequence);
free(*msg);
}
}
int jtag3_command(PROGRAMMER *pgm, unsigned char *cmd, unsigned int cmdlen,
unsigned char **resp, const char *descr)
{
int status;
unsigned char c;
avrdude_message(MSG_NOTICE2, "%s: Sending %s command: ",
progname, descr);
jtag3_send(pgm, cmd, cmdlen);
status = jtag3_recv(pgm, resp);
if (status <= 0) {
if (verbose >= 2)
putc('\n', stderr);
avrdude_message(MSG_NOTICE2, "%s: %s command: timeout/error communicating with programmer (status %d)\n",
progname, descr, status);
return -1;
} else if (verbose >= 3) {
putc('\n', stderr);
jtag3_prmsg(pgm, *resp, status);
} else {
avrdude_message(MSG_NOTICE2, "0x%02x (%d bytes msg)\n", (*resp)[1], status);
}
c = (*resp)[1];
if ((c & RSP3_STATUS_MASK) != RSP3_OK) {
if ((c == RSP3_FAILED) && ((*resp)[3] == RSP3_FAIL_OCD_LOCKED)) {
avrdude_message(MSG_INFO,
"%s: Device is locked! Chip erase required to unlock.\n",
progname);
} else {
2022-02-13 18:23:48 +00:00
avrdude_message(MSG_NOTICE, "%s: bad response to %s command: 0x%02x\n",
progname, descr, c);
}
status = (*resp)[3];
free(*resp);
resp = 0;
return -status;
}
return status;
}
int jtag3_getsync(PROGRAMMER * pgm, int mode) {
unsigned char buf[3], *resp;
avrdude_message(MSG_DEBUG, "%s: jtag3_getsync()\n", progname);
/* XplainedMini boards do not need this, and early revisions had a
* firmware bug where they complained about it. */
if ((pgm->flag & PGM_FL_IS_EDBG) &&
!matches(ldata(lfirst(pgm->id)), "xplainedmini")) {
if (jtag3_edbg_prepare(pgm) < 0) {
return -1;
}
}
/* Get the sign-on information. */
buf[0] = SCOPE_GENERAL;
buf[1] = CMD3_SIGN_ON;
buf[2] = 0;
if (jtag3_command(pgm, buf, 3, &resp, "sign-on") < 0)
return -1;
free(resp);
return 0;
}
/*
* issue the 'chip erase' command to the AVR device
*/
static int jtag3_chip_erase(PROGRAMMER * pgm, AVRPART * p)
{
unsigned char buf[8], *resp;
buf[0] = SCOPE_AVR;
buf[1] = CMD3_ERASE_MEMORY;
buf[2] = 0;
buf[3] = XMEGA_ERASE_CHIP;
buf[4] = buf[5] = buf[6] = buf[7] = 0; /* page address */
if (jtag3_command(pgm, buf, 8, &resp, "chip erase") < 0)
return -1;
free(resp);
return 0;
}
/*
* UPDI 'unlock' -> 'enter progmode' with chip erase key
*/
static int jtag3_unlock_erase_key(PROGRAMMER * pgm, AVRPART * p)
{
unsigned char buf[8], *resp;
buf[0] = 1; /* Enable */
if (jtag3_setparm(pgm, SCOPE_AVR, SET_GET_CTXT_OPTIONS, PARM3_OPT_CHIP_ERASE_TO_ENTER, buf, 1) < 0)
return -1;
buf[0] = SCOPE_AVR;
buf[1] = CMD3_ENTER_PROGMODE;
buf[2] = 0;
if (jtag3_command(pgm, buf, 3, &resp, "enter progmode") < 0)
return -1;
PDATA(pgm)->prog_enabled = 1;
buf[0] = 0; /* Disable */
if (jtag3_setparm(pgm, SCOPE_AVR, SET_GET_CTXT_OPTIONS, PARM3_OPT_CHIP_ERASE_TO_ENTER, buf, 1) < 0)
return -1;
free(resp);
return 0;
}
/*
* There is no chip erase functionality in debugWire mode.
*/
static int jtag3_chip_erase_dw(PROGRAMMER * pgm, AVRPART * p)
{
avrdude_message(MSG_INFO, "%s: Chip erase not supported in debugWire mode\n",
progname);
return 0;
}
static int jtag3_program_enable_dummy(PROGRAMMER * pgm, AVRPART * p)
{
return 0;
}
static int jtag3_program_enable(PROGRAMMER * pgm)
{
unsigned char buf[3], *resp;
int status;
if (PDATA(pgm)->prog_enabled)
return 0;
buf[0] = SCOPE_AVR;
buf[1] = CMD3_ENTER_PROGMODE;
buf[2] = 0;
if ((status = jtag3_command(pgm, buf, 3, &resp, "enter progmode")) >= 0) {
free(resp);
PDATA(pgm)->prog_enabled = 1;
return 0;
}
return status;
}
static int jtag3_program_disable(PROGRAMMER * pgm)
{
unsigned char buf[3], *resp;
if (!PDATA(pgm)->prog_enabled)
return 0;
buf[0] = SCOPE_AVR;
buf[1] = CMD3_LEAVE_PROGMODE;
buf[2] = 0;
if (jtag3_command(pgm, buf, 3, &resp, "leave progmode") < 0)
return -1;
free(resp);
PDATA(pgm)->prog_enabled = 0;
return 0;
}
static int jtag3_set_sck_xmega_pdi(PROGRAMMER *pgm, unsigned char *clk)
{
return jtag3_setparm(pgm, SCOPE_AVR, 1, PARM3_CLK_XMEGA_PDI, clk, 2);
}
static int jtag3_set_sck_xmega_jtag(PROGRAMMER *pgm, unsigned char *clk)
{
return jtag3_setparm(pgm, SCOPE_AVR, 1, PARM3_CLK_XMEGA_JTAG, clk, 2);
}
static int jtag3_set_sck_mega_jtag(PROGRAMMER *pgm, unsigned char *clk)
{
return jtag3_setparm(pgm, SCOPE_AVR, 1, PARM3_CLK_MEGA_PROG, clk, 2);
}
/*
* initialize the AVR device and prepare it to accept commands
*/
static int jtag3_initialize(PROGRAMMER * pgm, AVRPART * p)
{
unsigned char conn = 0, parm[4];
const char *ifname;
unsigned char cmd[4], *resp;
int status;
/*
* At least, as of firmware 2.12, the JTAGICE3 doesn't handle
* splitting packets correctly. On a large transfer, the first
* split packets are correct, but remaining packets contain just
* garbage.
*
* We move the check here so in case future firmware versions fix
* this, the check below can be made dependended on the actual
* firmware level. Retrieving the firmware version can always be
* accomplished with USB 1.1 (64 byte max) packets.
*
* Allow to override the check by -F (so users could try on newer
* firmware), but warn loudly.
*/
if (jtag3_getparm(pgm, SCOPE_GENERAL, 0, PARM3_FW_MAJOR, parm, 2) < 0)
return -1;
if (pgm->fd.usb.max_xfer < USBDEV_MAX_XFER_3 && (pgm->flag & PGM_FL_IS_EDBG) == 0) {
avrdude_message(MSG_INFO, "%s: the JTAGICE3's firmware %d.%d is broken on USB 1.1 connections, sorry\n",
progname, parm[0], parm[1]);
if (ovsigck) {
avrdude_message(MSG_INFO, "%s: forced to continue by option -F; THIS PUTS THE DEVICE'S DATA INTEGRITY AT RISK!\n",
progname);
} else {
return -1;
}
}
if (pgm->flag & PGM_FL_IS_DW) {
ifname = "debugWire";
if (p->flags & AVRPART_HAS_DW)
conn = PARM3_CONN_DW;
} else if (pgm->flag & PGM_FL_IS_PDI) {
ifname = "PDI";
if (p->flags & AVRPART_HAS_PDI)
conn = PARM3_CONN_PDI;
} else if (pgm->flag & PGM_FL_IS_UPDI) {
ifname = "UPDI";
if (p->flags & AVRPART_HAS_UPDI)
conn = PARM3_CONN_UPDI;
} else {
ifname = "JTAG";
if (p->flags & AVRPART_HAS_JTAG)
conn = PARM3_CONN_JTAG;
}
if (conn == 0) {
avrdude_message(MSG_INFO, "%s: jtag3_initialize(): part %s has no %s interface\n",
progname, p->desc, ifname);
return -1;
}
if (p->flags & AVRPART_HAS_PDI)
parm[0] = PARM3_ARCH_XMEGA;
else if (p->flags & AVRPART_HAS_UPDI)
parm[0] = PARM3_ARCH_UPDI;
else if (p->flags & AVRPART_HAS_DW)
parm[0] = PARM3_ARCH_TINY;
else
parm[0] = PARM3_ARCH_MEGA;
if (jtag3_setparm(pgm, SCOPE_AVR, 0, PARM3_ARCH, parm, 1) < 0)
return -1;
parm[0] = PARM3_SESS_PROGRAMMING;
if (jtag3_setparm(pgm, SCOPE_AVR, 0, PARM3_SESS_PURPOSE, parm, 1) < 0)
return -1;
parm[0] = conn;
if (jtag3_setparm(pgm, SCOPE_AVR, 1, PARM3_CONNECTION, parm, 1) < 0)
return -1;
if (conn == PARM3_CONN_PDI || conn == PARM3_CONN_UPDI)
PDATA(pgm)->set_sck = jtag3_set_sck_xmega_pdi;
else if (conn == PARM3_CONN_JTAG) {
if (p->flags & AVRPART_HAS_PDI)
PDATA(pgm)->set_sck = jtag3_set_sck_xmega_jtag;
else
PDATA(pgm)->set_sck = jtag3_set_sck_mega_jtag;
}
if (pgm->bitclock != 0.0 && PDATA(pgm)->set_sck != NULL)
{
unsigned int clock = 1E-3 / pgm->bitclock; /* kHz */
avrdude_message(MSG_NOTICE2, "%s: jtag3_initialize(): "
"trying to set JTAG clock to %u kHz\n",
progname, clock);
parm[0] = clock & 0xff;
parm[1] = (clock >> 8) & 0xff;
if (PDATA(pgm)->set_sck(pgm, parm) < 0)
return -1;
}
jtag3_print_parms1(pgm, progbuf);
if (conn == PARM3_CONN_JTAG)
{
avrdude_message(MSG_NOTICE2, "%s: jtag3_initialize(): "
"trying to set JTAG daisy-chain info to %d,%d,%d,%d\n",
progname,
PDATA(pgm)->jtagchain[0], PDATA(pgm)->jtagchain[1],
PDATA(pgm)->jtagchain[2], PDATA(pgm)->jtagchain[3]);
if (jtag3_setparm(pgm, SCOPE_AVR, 1, PARM3_JTAGCHAIN, PDATA(pgm)->jtagchain, 4) < 0)
return -1;
}
/* set device descriptor data */
if ((p->flags & AVRPART_HAS_PDI))
{
struct xmega_device_desc xd;
LNODEID ln;
AVRMEM * m;
u16_to_b2(xd.nvm_base_addr, p->nvm_base);
u16_to_b2(xd.mcu_base_addr, p->mcu_base);
for (ln = lfirst(p->mem); ln; ln = lnext(ln)) {
m = ldata(ln);
if (strcmp(m->desc, "flash") == 0) {
if (m->readsize != 0 && m->readsize < m->page_size)
PDATA(pgm)->flash_pagesize = m->readsize;
else
PDATA(pgm)->flash_pagesize = m->page_size;
u16_to_b2(xd.flash_page_size, m->page_size);
} else if (strcmp(m->desc, "eeprom") == 0) {
PDATA(pgm)->eeprom_pagesize = m->page_size;
xd.eeprom_page_size = m->page_size;
u16_to_b2(xd.eeprom_size, m->size);
u32_to_b4(xd.nvm_eeprom_offset, m->offset);
} else if (strcmp(m->desc, "application") == 0) {
u32_to_b4(xd.app_size, m->size);
u32_to_b4(xd.nvm_app_offset, m->offset);
} else if (strcmp(m->desc, "boot") == 0) {
u16_to_b2(xd.boot_size, m->size);
u32_to_b4(xd.nvm_boot_offset, m->offset);
} else if (strcmp(m->desc, "fuse1") == 0) {
u32_to_b4(xd.nvm_fuse_offset, m->offset & ~7);
} else if (matches(m->desc, "lock")) {
u32_to_b4(xd.nvm_lock_offset, m->offset);
2022-02-28 18:46:47 +00:00
} else if (strcmp(m->desc, "usersig") == 0 ||
strcmp(m->desc, "userrow") == 0) {
u32_to_b4(xd.nvm_user_sig_offset, m->offset);
} else if (strcmp(m->desc, "prodsig") == 0) {
u32_to_b4(xd.nvm_prod_sig_offset, m->offset);
} else if (strcmp(m->desc, "data") == 0) {
u32_to_b4(xd.nvm_data_offset, m->offset);
}
}
if (jtag3_setparm(pgm, SCOPE_AVR, 2, PARM3_DEVICEDESC, (unsigned char *)&xd, sizeof xd) < 0)
return -1;
}
else if ((p->flags & AVRPART_HAS_UPDI))
{
struct updi_device_desc xd;
LNODEID ln;
AVRMEM *m;
u16_to_b2(xd.nvm_base_addr, p->nvm_base);
u16_to_b2(xd.ocd_base_addr, p->ocd_base);
for (ln = lfirst(p->mem); ln; ln = lnext(ln))
{
m = ldata(ln);
if (strcmp(m->desc, "flash") == 0)
{
u16_to_b2(xd.prog_base, m->offset&0xFFFF);
xd.prog_base_msb = m->offset>>16;
if (m->readsize != 0 && m->readsize < m->page_size)
PDATA(pgm)->flash_pagesize = m->readsize;
else
PDATA(pgm)->flash_pagesize = m->page_size;
xd.flash_page_size = m->page_size & 0xFF;
xd.flash_page_size_msb = (m->page_size)>>8;
u32_to_b4(xd.flash_bytes, m->size);
if (m->offset > 0xFFFF)
xd.address_mode = UPDI_ADDRESS_MODE_24BIT;
else
xd.address_mode = UPDI_ADDRESS_MODE_16BIT;
}
else if (strcmp(m->desc, "eeprom") == 0)
{
PDATA(pgm)->eeprom_pagesize = m->page_size;
xd.eeprom_page_size = m->page_size;
u16_to_b2(xd.eeprom_bytes, m->size);
u16_to_b2(xd.eeprom_base, m->offset);
}
2022-02-28 18:46:47 +00:00
else if (strcmp(m->desc, "usersig") == 0 ||
strcmp(m->desc, "userrow") == 0)
{
u16_to_b2(xd.user_sig_bytes, m->size);
u16_to_b2(xd.user_sig_base, m->offset);
}
else if (strcmp(m->desc, "signature") == 0)
{
u16_to_b2(xd.signature_base, m->offset);
xd.device_id[0] = p->signature[1];
xd.device_id[1] = p->signature[2];
}
else if (strcmp(m->desc, "fuses") == 0)
{
xd.fuses_bytes = m->size;
u16_to_b2(xd.fuses_base, m->offset);
}
else if (strcmp(m->desc, "lock") == 0)
{
u16_to_b2(xd.lockbits_base, m->offset);
}
}
// Generate 12V UPDI pulse if user asks for it and hardware supports it
if (p->flags & AVRPART_HAS_UPDI &&
PDATA(pgm)->use_hvupdi == true &&
p->hvupdi_variant == HV_UPDI_VARIANT_0) {
parm[0] = PARM3_UPDI_HV_SIMPLE_PULSE;
if (jtag3_setparm(pgm, SCOPE_AVR, 3, PARM3_OPT_12V_UPDI_ENABLE, parm, 1) < 0)
return -1;
}
u16_to_b2(xd.default_min_div1_voltage, DEFAULT_MINIMUM_CHARACTERISED_DIV1_VOLTAGE_MV);
u16_to_b2(xd.default_min_div2_voltage, DEFAULT_MINIMUM_CHARACTERISED_DIV2_VOLTAGE_MV);
u16_to_b2(xd.default_min_div4_voltage, DEFAULT_MINIMUM_CHARACTERISED_DIV4_VOLTAGE_MV);
u16_to_b2(xd.default_min_div8_voltage, DEFAULT_MINIMUM_CHARACTERISED_DIV8_VOLTAGE_MV);
u16_to_b2(xd.pdi_pad_fmax, MAX_FREQUENCY_SHARED_UPDI_PIN);
xd.syscfg_offset = FUSES_SYSCFG0_OFFSET;
xd.syscfg_write_mask_and = 0xFF;
xd.syscfg_write_mask_or = 0x00;
xd.syscfg_erase_mask_and = 0xFF;
xd.syscfg_erase_mask_or = 0x00;
avrdude_message(MSG_NOTICE2, "UPDI SET: \n\t"
"xd->prog_base_msb=%x\n\t"
"xd->prog_base=%x %x\n\t"
"xd->flash_page_size_msb=%x\n\t"
"xd->flash_page_size=%x\n\t"
"xd->eeprom_page_size=%x\n\t"
"xd->nvmctrl=%x %x\n\t"
"xd->ocd=%x %x\n\t"
"xd->address_mode=%x\n",
xd.prog_base_msb,
xd.prog_base[0], xd.prog_base[1],
xd.flash_page_size_msb,
xd.flash_page_size,
xd.eeprom_page_size,
xd.nvm_base_addr[0], xd.nvm_base_addr[1],
xd.ocd_base_addr[0], xd.ocd_base_addr[1],
xd.address_mode);
if (jtag3_setparm(pgm, SCOPE_AVR, 2, PARM3_DEVICEDESC, (unsigned char *)&xd, sizeof xd) < 0)
return -1;
}
else
{
struct mega_device_desc md;
LNODEID ln;
AVRMEM * m;
unsigned int flashsize = 0;
memset(&md, 0, sizeof md);
for (ln = lfirst(p->mem); ln; ln = lnext(ln)) {
m = ldata(ln);
if (strcmp(m->desc, "flash") == 0) {
if (m->readsize != 0 && m->readsize < m->page_size)
PDATA(pgm)->flash_pagesize = m->readsize;
else
PDATA(pgm)->flash_pagesize = m->page_size;
u16_to_b2(md.flash_page_size, m->page_size);
u32_to_b4(md.flash_size, (flashsize = m->size));
// do we need it? just a wild guess
u32_to_b4(md.boot_address, (m->size - m->page_size * 4) / 2);
} else if (strcmp(m->desc, "eeprom") == 0) {
PDATA(pgm)->eeprom_pagesize = m->page_size;
md.eeprom_page_size = m->page_size;
u16_to_b2(md.eeprom_size, m->size);
}
}
//md.sram_offset[2] = p->sram; // do we need it?
if (p->ocdrev == -1) {
int ocdrev;
/* lacking a proper definition, guess the OCD revision */
if (p->flags & AVRPART_HAS_DW)
ocdrev = 1; /* exception: ATtiny13, 2313, 4313 */
else if (flashsize > 128 * 1024)
ocdrev = 4;
else
ocdrev = 3; /* many exceptions from that, actually */
avrdude_message(MSG_INFO, "%s: part definition for %s lacks \"ocdrev\"; guessing %d\n",
progname, p->desc, ocdrev);
md.ocd_revision = ocdrev;
} else {
md.ocd_revision = p->ocdrev;
}
md.always_one = 1;
md.allow_full_page_bitstream = (p->flags & AVRPART_ALLOWFULLPAGEBITSTREAM) != 0;
md.idr_address = p->idr;
if (p->eecr == 0)
p->eecr = 0x3f; /* matches most "modern" mega/tiny AVRs */
md.eearh_address = p->eecr - 0x20 + 3;
md.eearl_address = p->eecr - 0x20 + 2;
md.eecr_address = p->eecr - 0x20;
md.eedr_address = p->eecr - 0x20 + 1;
md.spmcr_address = p->spmcr;
//md.osccal_address = p->osccal; // do we need it at all?
if (jtag3_setparm(pgm, SCOPE_AVR, 2, PARM3_DEVICEDESC, (unsigned char *)&md, sizeof md) < 0)
return -1;
}
int use_ext_reset;
for (use_ext_reset = 0; use_ext_reset <= 1; use_ext_reset++) {
cmd[0] = SCOPE_AVR;
cmd[1] = CMD3_SIGN_ON;
cmd[2] = 0;
cmd[3] = use_ext_reset; /* external reset */
if ((status = jtag3_command(pgm, cmd, 4, &resp, "AVR sign-on")) >= 0)
break;
2022-02-13 18:23:48 +00:00
avrdude_message(MSG_NOTICE, "%s: retrying with external reset applied\n",
progname);
}
if (use_ext_reset > 1) {
2022-02-13 18:23:48 +00:00
if(strcmp(pgm->type, "JTAGICE3") == 0 && p->flags & AVRPART_HAS_JTAG)
avrdude_message(MSG_INFO, "%s: JTAGEN fuse disabled?\n", progname);
return -1;
}
/*
* Depending on the target connection, there are three different
* possible replies of the ICE. For a JTAG connection, the reply
* format is RSP3_DATA, followed by 4 bytes of the JTAG ID read from
* the device (followed by a trailing 0).
* For a UPDI connection the reply format is RSP3_DATA, followed by
* 4 bytes of the SIB Family_ID read from the device (followed by a
* trailing 0).
* For all other connections
* (except ISP which is handled completely differently, but that
* doesn't apply here anyway), the response is just RSP_OK.
*/
if (resp[1] == RSP3_DATA && status >= 7) {
if (p->flags & AVRPART_HAS_UPDI) {
/* Partial Family_ID has been returned */
avrdude_message(MSG_NOTICE, "%s: Partial Family_ID returned: \"%c%c%c%c\"\n",
progname, resp[3], resp[4], resp[5], resp[6]);
}
else
/* JTAG ID has been returned */
avrdude_message(MSG_NOTICE, "%s: JTAG ID returned: 0x%02x 0x%02x 0x%02x 0x%02x\n",
progname, resp[3], resp[4], resp[5], resp[6]);
}
free(resp);
PDATA(pgm)->boot_start = ULONG_MAX;
if ((p->flags & AVRPART_HAS_PDI)) {
/*
* Find out where the border between application and boot area
* is.
*/
AVRMEM *bootmem = avr_locate_mem(p, "boot");
AVRMEM *flashmem = avr_locate_mem(p, "flash");
if (bootmem == NULL || flashmem == NULL) {
avrdude_message(MSG_INFO, "%s: jtagmk3_initialize(): Cannot locate \"flash\" and \"boot\" memories in description\n",
progname);
} else {
PDATA(pgm)->boot_start = bootmem->offset - flashmem->offset;
}
}
free(PDATA(pgm)->flash_pagecache);
free(PDATA(pgm)->eeprom_pagecache);
if ((PDATA(pgm)->flash_pagecache = malloc(PDATA(pgm)->flash_pagesize)) == NULL) {
avrdude_message(MSG_INFO, "%s: jtag3_initialize(): Out of memory\n",
progname);
return -1;
}
if ((PDATA(pgm)->eeprom_pagecache = malloc(PDATA(pgm)->eeprom_pagesize)) == NULL) {
avrdude_message(MSG_INFO, "%s: jtag3_initialize(): Out of memory\n",
progname);
free(PDATA(pgm)->flash_pagecache);
return -1;
}
PDATA(pgm)->flash_pageaddr = PDATA(pgm)->eeprom_pageaddr = (unsigned long)-1L;
return 0;
}
static void jtag3_disable(PROGRAMMER * pgm)
{
free(PDATA(pgm)->flash_pagecache);
PDATA(pgm)->flash_pagecache = NULL;
free(PDATA(pgm)->eeprom_pagecache);
PDATA(pgm)->eeprom_pagecache = NULL;
/*
* jtag3_program_disable() doesn't do anything if the
* device is currently not in programming mode, so just
* call it unconditionally here.
*/
(void)jtag3_program_disable(pgm);
}
static void jtag3_enable(PROGRAMMER * pgm)
{
return;
}
static int jtag3_parseextparms(PROGRAMMER * pgm, LISTID extparms)
{
LNODEID ln;
const char *extended_param;
int rv = 0;
for (ln = lfirst(extparms); ln; ln = lnext(ln)) {
extended_param = ldata(ln);
if (matches(extended_param, "jtagchain=")) {
unsigned int ub, ua, bb, ba;
if (sscanf(extended_param, "jtagchain=%u,%u,%u,%u", &ub, &ua, &bb, &ba)
!= 4) {
avrdude_message(MSG_INFO, "%s: jtag3_parseextparms(): invalid JTAG chain '%s'\n",
progname, extended_param);
rv = -1;
continue;
}
avrdude_message(MSG_NOTICE2, "%s: jtag3_parseextparms(): JTAG chain parsed as:\n"
"%s %u units before, %u units after, %u bits before, %u bits after\n",
progname,
progbuf, ub, ua, bb, ba);
PDATA(pgm)->jtagchain[0] = ub;
PDATA(pgm)->jtagchain[1] = ua;
PDATA(pgm)->jtagchain[2] = bb;
PDATA(pgm)->jtagchain[3] = ba;
continue;
}
else if ((matches(extended_param, "hvupdi") || matches(extended_param, "hvupdi=1")) &&
(matches(ldata(lfirst(pgm->id)), "pickit4_updi") || matches(ldata(lfirst(pgm->id)), "powerdebugger_updi"))) {
PDATA(pgm)->use_hvupdi = true;
continue;
}
avrdude_message(MSG_INFO, "%s: jtag3_parseextparms(): invalid extended parameter '%s'\n",
progname, extended_param);
rv = -1;
}
return rv;
}
int jtag3_open_common(PROGRAMMER * pgm, char * port)
{
union pinfo pinfo;
LNODEID usbpid;
int rv = -1;
#if !defined(HAVE_LIBUSB) && !defined(HAVE_LIBHIDAPI)
avrdude_message(MSG_INFO, "avrdude was compiled without USB or HIDAPI support.\n");
return -1;
#endif
if (!matches(port, "usb")) {
avrdude_message(MSG_INFO, "%s: jtag3_open_common(): JTAGICE3/EDBG port names must start with \"usb\"\n",
progname);
return -1;
}
if (pgm->usbvid)
pinfo.usbinfo.vid = pgm->usbvid;
else
pinfo.usbinfo.vid = USB_VENDOR_ATMEL;
/* If the config entry did not specify a USB PID, insert the default one. */
if (lfirst(pgm->usbpid) == NULL)
ladd(pgm->usbpid, (void *)USB_DEVICE_JTAGICE3);
#if defined(HAVE_LIBHIDAPI)
/*
* Try HIDAPI first. LibUSB is more generic, but might then cause
* troubles for HID-class devices in some OSes (like Windows).
*/
serdev = &usbhid_serdev;
for (usbpid = lfirst(pgm->usbpid); rv < 0 && usbpid != NULL; usbpid = lnext(usbpid)) {
pinfo.usbinfo.flags = PINFO_FL_SILENT;
pinfo.usbinfo.pid = *(int *)(ldata(usbpid));
pgm->fd.usb.max_xfer = USBDEV_MAX_XFER_3;
pgm->fd.usb.rep = USBDEV_BULK_EP_READ_3;
pgm->fd.usb.wep = USBDEV_BULK_EP_WRITE_3;
pgm->fd.usb.eep = 0;
strcpy(pgm->port, port);
rv = serial_open(port, pinfo, &pgm->fd);
}
if (rv < 0) {
#endif /* HAVE_LIBHIDAPI */
#if defined(HAVE_LIBUSB)
serdev = &usb_serdev_frame;
for (usbpid = lfirst(pgm->usbpid); rv < 0 && usbpid != NULL; usbpid = lnext(usbpid)) {
pinfo.usbinfo.flags = PINFO_FL_SILENT;
pinfo.usbinfo.pid = *(int *)(ldata(usbpid));
pgm->fd.usb.max_xfer = USBDEV_MAX_XFER_3;
pgm->fd.usb.rep = USBDEV_BULK_EP_READ_3;
pgm->fd.usb.wep = USBDEV_BULK_EP_WRITE_3;
pgm->fd.usb.eep = USBDEV_EVT_EP_READ_3;
strcpy(pgm->port, port);
rv = serial_open(port, pinfo, &pgm->fd);
}
#endif /* HAVE_LIBUSB */
#if defined(HAVE_LIBHIDAPI)
}
#endif
if (rv < 0) {
avrdude_message(MSG_INFO, "%s: jtag3_open_common(): Did not find any device matching VID 0x%04x and PID list: ",
progname, (unsigned)pinfo.usbinfo.vid);
int notfirst = 0;
for (usbpid = lfirst(pgm->usbpid); usbpid != NULL; usbpid = lnext(usbpid)) {
if (notfirst)
avrdude_message(MSG_INFO, ", ");
avrdude_message(MSG_INFO, "0x%04x", (unsigned int)(*(int *)(ldata(usbpid))));
notfirst = 1;
}
fputc('\n', stderr);
return -1;
}
if (pgm->fd.usb.eep == 0)
{
/* The event EP has been deleted by usb_open(), so we are
running on a CMSIS-DAP device, using EDBG protocol */
pgm->flag |= PGM_FL_IS_EDBG;
avrdude_message(MSG_NOTICE, "%s: Found CMSIS-DAP compliant device, using EDBG protocol\n",
progname);
}
/*
* drain any extraneous input
*/
jtag3_drain(pgm, 0);
return 0;
}
static int jtag3_open(PROGRAMMER * pgm, char * port)
{
avrdude_message(MSG_NOTICE2, "%s: jtag3_open()\n", progname);
if (jtag3_open_common(pgm, port) < 0)
return -1;
if (jtag3_getsync(pgm, PARM3_CONN_JTAG) < 0)
return -1;
return 0;
}
static int jtag3_open_dw(PROGRAMMER * pgm, char * port)
{
avrdude_message(MSG_NOTICE2, "%s: jtag3_open_dw()\n", progname);
if (jtag3_open_common(pgm, port) < 0)
return -1;
if (jtag3_getsync(pgm, PARM3_CONN_DW) < 0)
return -1;
return 0;
}
static int jtag3_open_pdi(PROGRAMMER * pgm, char * port)
{
avrdude_message(MSG_NOTICE2, "%s: jtag3_open_pdi()\n", progname);
if (jtag3_open_common(pgm, port) < 0)
return -1;
if (jtag3_getsync(pgm, PARM3_CONN_PDI) < 0)
return -1;
return 0;
}
static int jtag3_open_updi(PROGRAMMER * pgm, char * port)
{
avrdude_message(MSG_NOTICE2, "%s: jtag3_open_updi()\n", progname);
if (jtag3_open_common(pgm, port) < 0)
return -1;
if (jtag3_getsync(pgm, PARM3_CONN_UPDI) < 0)
return -1;
return 0;
}
void jtag3_close(PROGRAMMER * pgm)
{
unsigned char buf[4], *resp;
avrdude_message(MSG_NOTICE2, "%s: jtag3_close()\n", progname);
buf[0] = SCOPE_AVR;
buf[1] = CMD3_SIGN_OFF;
buf[2] = buf[3] = 0;
if (jtag3_command(pgm, buf, 3, &resp, "AVR sign-off") >= 0)
free(resp);
buf[0] = SCOPE_GENERAL;
buf[1] = CMD3_SIGN_OFF;
if (jtag3_command(pgm, buf, 4, &resp, "sign-off") >= 0)
free(resp);
/* XplainedMini boards do not need this, and early revisions had a
* firmware bug where they complained about it. */
if ((pgm->flag & PGM_FL_IS_EDBG) &&
!matches(ldata(lfirst(pgm->id)), "xplainedmini")) {
jtag3_edbg_signoff(pgm);
}
serial_close(&pgm->fd);
pgm->fd.ifd = -1;
}
static int jtag3_page_erase(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned int addr)
{
unsigned char cmd[8], *resp;
avrdude_message(MSG_NOTICE2, "%s: jtag3_page_erase(.., %s, 0x%x)\n",
progname, m->desc, addr);
if (!(p->flags & AVRPART_HAS_PDI)) {
avrdude_message(MSG_INFO, "%s: jtag3_page_erase: not an Xmega device\n",
progname);
return -1;
}
if (jtag3_program_enable(pgm) < 0)
return -1;
cmd[0] = SCOPE_AVR;
cmd[1] = CMD3_ERASE_MEMORY;
cmd[2] = 0;
if (strcmp(m->desc, "flash") == 0) {
if (jtag3_memtype(pgm, p, addr) == MTYPE_FLASH)
cmd[3] = XMEGA_ERASE_APP_PAGE;
else
cmd[3] = XMEGA_ERASE_BOOT_PAGE;
} else if (strcmp(m->desc, "eeprom") == 0) {
cmd[3] = XMEGA_ERASE_EEPROM_PAGE;
2022-02-28 18:46:47 +00:00
} else if (strcmp(m->desc, "usersig") == 0 ||
strcmp(m->desc, "userrow") == 0) {
cmd[3] = XMEGA_ERASE_USERSIG;
2022-02-28 18:46:47 +00:00
} else if (strcmp(m->desc, "boot") == 0) {
cmd[3] = XMEGA_ERASE_BOOT_PAGE;
} else {
cmd[3] = XMEGA_ERASE_APP_PAGE;
}
u32_to_b4(cmd + 4, addr + m->offset);
if (jtag3_command(pgm, cmd, 8, &resp, "page erase") < 0)
return -1;
free(resp);
return 0;
}
static int jtag3_paged_write(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
unsigned int block_size;
unsigned int maxaddr = addr + n_bytes;
unsigned char *cmd;
unsigned char *resp;
int status, dynamic_memtype = 0;
long otimeout = serial_recv_timeout;
avrdude_message(MSG_NOTICE2, "%s: jtag3_paged_write(.., %s, %d, 0x%lx, %d)\n",
progname, m->desc, page_size, addr, n_bytes);
block_size = jtag3_memaddr(pgm, p, m, addr);
if(block_size != addr)
avrdude_message(MSG_NOTICE2, " mapped to address: 0x%lx\n", block_size);
block_size = 0;
if (!(pgm->flag & PGM_FL_IS_DW) && jtag3_program_enable(pgm) < 0)
return -1;
if (page_size == 0) page_size = 256;
if ((cmd = malloc(page_size + 13)) == NULL) {
avrdude_message(MSG_INFO, "%s: jtag3_paged_write(): Out of memory\n",
progname);
return -1;
}
cmd[0] = SCOPE_AVR;
cmd[1] = CMD3_WRITE_MEMORY;
cmd[2] = 0;
if (strcmp(m->desc, "flash") == 0) {
PDATA(pgm)->flash_pageaddr = (unsigned long)-1L;
cmd[3] = jtag3_memtype(pgm, p, addr);
if (p->flags & AVRPART_HAS_PDI)
/* dynamically decide between flash/boot memtype */
dynamic_memtype = 1;
} else if (strcmp(m->desc, "eeprom") == 0) {
if (pgm->flag & PGM_FL_IS_DW) {
/*
* jtag3_paged_write() to EEPROM attempted while in
* DW mode. Use jtag3_write_byte() instead.
*/
for (; addr < maxaddr; addr++) {
status = jtag3_write_byte(pgm, p, m, addr, m->buf[addr]);
if (status < 0) {
free(cmd);
return -1;
}
}
free(cmd);
return n_bytes;
}
cmd[3] = ( p->flags & AVRPART_HAS_PDI ) ? MTYPE_EEPROM_XMEGA : MTYPE_EEPROM_PAGE;
PDATA(pgm)->eeprom_pageaddr = (unsigned long)-1L;
2022-02-28 18:46:47 +00:00
} else if (strcmp(m->desc, "usersig") == 0 ||
strcmp(m->desc, "userrow") == 0) {
cmd[3] = MTYPE_USERSIG;
2022-02-28 18:46:47 +00:00
} else if (strcmp(m->desc, "boot") == 0) {
cmd[3] = MTYPE_BOOT_FLASH;
} else if ( p->flags & AVRPART_HAS_PDI || p->flags & AVRPART_HAS_UPDI ) {
cmd[3] = MTYPE_FLASH;
} else {
cmd[3] = MTYPE_SPM;
}
serial_recv_timeout = 100;
for (; addr < maxaddr; addr += page_size) {
if ((maxaddr - addr) < page_size)
block_size = maxaddr - addr;
else
block_size = page_size;
avrdude_message(MSG_DEBUG, "%s: jtag3_paged_write(): "
"block_size at addr %d is %d\n",
progname, addr, block_size);
if (dynamic_memtype)
cmd[3] = jtag3_memtype(pgm, p, addr);
u32_to_b4(cmd + 8, page_size);
u32_to_b4(cmd + 4, jtag3_memaddr(pgm, p, m, addr));
cmd[12] = 0;
/*
* The JTAG ICE will refuse to write anything but a full page, at
* least for the flash ROM. If a partial page has been requested,
* set the remainder to 0xff. (Maybe we should rather read back
* the existing contents instead before? Doesn't matter much, as
* bits cannot be written to 1 anyway.)
*/
memset(cmd + 13, 0xff, page_size);
memcpy(cmd + 13, m->buf + addr, block_size);
if ((status = jtag3_command(pgm, cmd, page_size + 13,
&resp, "write memory")) < 0) {
free(cmd);
serial_recv_timeout = otimeout;
return -1;
}
free(resp);
}
free(cmd);
serial_recv_timeout = otimeout;
return n_bytes;
}
static int jtag3_paged_load(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
unsigned int block_size;
unsigned int maxaddr = addr + n_bytes;
unsigned char cmd[12];
unsigned char *resp;
int status, dynamic_memtype = 0;
long otimeout = serial_recv_timeout;
avrdude_message(MSG_NOTICE2, "%s: jtag3_paged_load(.., %s, %d, 0x%lx, %d)\n",
progname, m->desc, page_size, addr, n_bytes);
block_size = jtag3_memaddr(pgm, p, m, addr);
if(block_size != addr)
avrdude_message(MSG_NOTICE2, " mapped to address: 0x%lx\n", block_size);
block_size = 0;
if (!(pgm->flag & PGM_FL_IS_DW) && jtag3_program_enable(pgm) < 0)
return -1;
page_size = m->readsize;
cmd[0] = SCOPE_AVR;
cmd[1] = CMD3_READ_MEMORY;
cmd[2] = 0;
if (strcmp(m->desc, "flash") == 0) {
cmd[3] = jtag3_memtype(pgm, p, addr);
if (p->flags & AVRPART_HAS_PDI)
/* dynamically decide between flash/boot memtype */
dynamic_memtype = 1;
} else if (strcmp(m->desc, "eeprom") == 0) {
cmd[3] = ( p->flags & AVRPART_HAS_PDI || p->flags & AVRPART_HAS_UPDI ) ? MTYPE_EEPROM : MTYPE_EEPROM_PAGE;
if (pgm->flag & PGM_FL_IS_DW)
return -1;
2022-02-28 18:46:47 +00:00
} else if (strcmp(m->desc, "prodsig") == 0) {
cmd[3] = MTYPE_PRODSIG;
2022-02-28 18:46:47 +00:00
} else if (strcmp(m->desc, "usersig") == 0 ||
strcmp(m->desc, "userrow") == 0) {
cmd[3] = MTYPE_USERSIG;
2022-02-28 18:46:47 +00:00
} else if (strcmp(m->desc, "boot") == 0) {
cmd[3] = MTYPE_BOOT_FLASH;
} else if ( p->flags & AVRPART_HAS_PDI ) {
cmd[3] = MTYPE_FLASH;
} else if ( p->flags & AVRPART_HAS_UPDI ) {
cmd[3] = MTYPE_SRAM;
} else {
cmd[3] = MTYPE_SPM;
}
serial_recv_timeout = 100;
for (; addr < maxaddr; addr += page_size) {
if ((maxaddr - addr) < page_size)
block_size = maxaddr - addr;
else
block_size = page_size;
avrdude_message(MSG_DEBUG, "%s: jtag3_paged_load(): "
"block_size at addr %d is %d\n",
progname, addr, block_size);
if (dynamic_memtype)
cmd[3] = jtag3_memtype(pgm, p, addr);
u32_to_b4(cmd + 8, block_size);
u32_to_b4(cmd + 4, jtag3_memaddr(pgm, p, m, addr));
if ((status = jtag3_command(pgm, cmd, 12, &resp, "read memory")) < 0)
return -1;
if (resp[1] != RSP3_DATA ||
status < block_size + 4) {
avrdude_message(MSG_INFO, "%s: wrong/short reply to read memory command\n",
progname);
serial_recv_timeout = otimeout;
free(resp);
return -1;
}
memcpy(m->buf + addr, resp + 3, status - 4);
free(resp);
}
serial_recv_timeout = otimeout;
return n_bytes;
}
static int jtag3_read_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char * value)
{
unsigned char cmd[12];
unsigned char *resp, *cache_ptr = NULL;
int status, unsupp = 0;
unsigned long paddr = 0UL, *paddr_ptr = NULL;
unsigned int pagesize = 0;
avrdude_message(MSG_NOTICE2, "%s: jtag3_read_byte(.., %s, 0x%lx, ...)\n",
progname, mem->desc, addr);
paddr = jtag3_memaddr(pgm, p, mem, addr);
if(paddr != addr)
avrdude_message(MSG_NOTICE2, " mapped to address: 0x%lx\n", paddr);
paddr = 0;
if (!(pgm->flag & PGM_FL_IS_DW))
if ((status = jtag3_program_enable(pgm)) < 0)
return status;
cmd[0] = SCOPE_AVR;
cmd[1] = CMD3_READ_MEMORY;
cmd[2] = 0;
cmd[3] = ( p->flags & AVRPART_HAS_PDI || p->flags & AVRPART_HAS_UPDI ) ? MTYPE_FLASH : MTYPE_FLASH_PAGE;
if (strcmp(mem->desc, "flash") == 0 ||
strcmp(mem->desc, "application") == 0 ||
strcmp(mem->desc, "apptable") == 0 ||
strcmp(mem->desc, "boot") == 0) {
addr += mem->offset & (512 * 1024 - 1); /* max 512 KiB flash */
pagesize = PDATA(pgm)->flash_pagesize;
paddr = addr & ~(pagesize - 1);
paddr_ptr = &PDATA(pgm)->flash_pageaddr;
cache_ptr = PDATA(pgm)->flash_pagecache;
} else if (strcmp(mem->desc, "eeprom") == 0) {
if ( (pgm->flag & PGM_FL_IS_DW) || ( p->flags & AVRPART_HAS_PDI ) || ( p->flags & AVRPART_HAS_UPDI ) ) {
cmd[3] = MTYPE_EEPROM;
} else {
cmd[3] = MTYPE_EEPROM_PAGE;
}
pagesize = mem->page_size;
paddr = addr & ~(pagesize - 1);
paddr_ptr = &PDATA(pgm)->eeprom_pageaddr;
cache_ptr = PDATA(pgm)->eeprom_pagecache;
} else if (strcmp(mem->desc, "lfuse") == 0) {
cmd[3] = MTYPE_FUSE_BITS;
addr = 0;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "hfuse") == 0) {
cmd[3] = MTYPE_FUSE_BITS;
addr = 1;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "efuse") == 0) {
cmd[3] = MTYPE_FUSE_BITS;
addr = 2;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (matches(mem->desc, "lock")) {
cmd[3] = MTYPE_LOCK_BITS;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (matches(mem->desc, "fuse")) {
cmd[3] = MTYPE_FUSE_BITS;
if (!(p->flags & AVRPART_HAS_UPDI))
addr = mem->offset & 7;
2022-02-28 18:46:47 +00:00
} else if (strcmp(mem->desc, "usersig") == 0 ||
strcmp(mem->desc, "userrow") == 0) {
cmd[3] = MTYPE_USERSIG;
} else if (strcmp(mem->desc, "prodsig") == 0) {
cmd[3] = MTYPE_PRODSIG;
} else if (strcmp(mem->desc, "sernum") == 0) {
cmd[3] = MTYPE_SIGN_JTAG;
} else if (strcmp(mem->desc, "osccal16") == 0) {
cmd[3] = MTYPE_SIGN_JTAG;
} else if (strcmp(mem->desc, "osccal20") == 0) {
cmd[3] = MTYPE_SIGN_JTAG;
} else if (strcmp(mem->desc, "tempsense") == 0) {
cmd[3] = MTYPE_SIGN_JTAG;
} else if (strcmp(mem->desc, "osc16err") == 0) {
cmd[3] = MTYPE_SIGN_JTAG;
} else if (strcmp(mem->desc, "osc20err") == 0) {
cmd[3] = MTYPE_SIGN_JTAG;
} else if (strcmp(mem->desc, "calibration") == 0) {
cmd[3] = MTYPE_OSCCAL_BYTE;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "signature") == 0) {
static unsigned char signature_cache[2];
cmd[3] = MTYPE_SIGN_JTAG;
/*
* dW can read out the signature on JTAGICE3, but only allows
* for a full three-byte read. We cache them in a local
* variable to avoid multiple reads. This optimization does not
* harm for other connection types either.
*/
u32_to_b4(cmd + 8, 3);
u32_to_b4(cmd + 4, jtag3_memaddr(pgm, p, mem, addr));
if (addr == 0) {
if ((status = jtag3_command(pgm, cmd, 12, &resp, "read memory")) < 0)
return status;
signature_cache[0] = resp[4];
signature_cache[1] = resp[5];
*value = resp[3];
free(resp);
return 0;
} else if (addr <= 2) {
*value = signature_cache[addr - 1];
return 0;
} else {
/* should not happen */
avrdude_message(MSG_INFO, "address out of range for signature memory: %lu\n", addr);
return -1;
}
}
/*
* If the respective memory area is not supported under debugWire,
* leave here.
*/
if (unsupp) {
*value = 42;
return -1;
}
/*
* To improve the read speed, we used paged reads for flash and
* EEPROM, and cache the results in a page cache.
*
* Page cache validation is based on "{flash,eeprom}_pageaddr"
* (holding the base address of the most recent cache fill
* operation). This variable is set to (unsigned long)-1L when the
* cache needs to be invalidated.
*/
if (pagesize && paddr == *paddr_ptr) {
*value = cache_ptr[addr & (pagesize - 1)];
return 0;
}
if (pagesize) {
u32_to_b4(cmd + 8, pagesize);
u32_to_b4(cmd + 4, jtag3_memaddr(pgm, p, mem, paddr));
} else {
u32_to_b4(cmd + 8, 1);
u32_to_b4(cmd + 4, jtag3_memaddr(pgm, p, mem, addr));
}
if ((status = jtag3_command(pgm, cmd, 12, &resp, "read memory")) < 0)
return status;
if (resp[1] != RSP3_DATA ||
status < (pagesize? pagesize: 1) + 4) {
avrdude_message(MSG_INFO, "%s: wrong/short reply to read memory command\n",
progname);
free(resp);
return -1;
}
if (pagesize) {
*paddr_ptr = paddr;
memcpy(cache_ptr, resp + 3, pagesize);
*value = cache_ptr[addr & (pagesize - 1)];
} else
*value = resp[3];
free(resp);
return 0;
}
static int jtag3_write_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char data)
{
unsigned char cmd[14];
unsigned char *resp;
unsigned char *cache_ptr = 0;
int status, unsupp = 0;
unsigned int pagesize = 0;
unsigned long mapped_addr;
avrdude_message(MSG_NOTICE2, "%s: jtag3_write_byte(.., %s, 0x%lx, ...)\n",
progname, mem->desc, addr);
mapped_addr = jtag3_memaddr(pgm, p, mem, addr);
if(mapped_addr != addr)
avrdude_message(MSG_NOTICE2, " mapped to address: 0x%lx\n", mapped_addr);
cmd[0] = SCOPE_AVR;
cmd[1] = CMD3_WRITE_MEMORY;
cmd[2] = 0;
cmd[3] = ( p->flags & AVRPART_HAS_PDI || p->flags & AVRPART_HAS_UPDI ) ? MTYPE_FLASH : MTYPE_SPM;
if (strcmp(mem->desc, "flash") == 0) {
cache_ptr = PDATA(pgm)->flash_pagecache;
pagesize = PDATA(pgm)->flash_pagesize;
PDATA(pgm)->flash_pageaddr = (unsigned long)-1L;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "eeprom") == 0) {
if (pgm->flag & PGM_FL_IS_DW) {
cmd[3] = MTYPE_EEPROM;
} else {
cache_ptr = PDATA(pgm)->eeprom_pagecache;
pagesize = PDATA(pgm)->eeprom_pagesize;
}
PDATA(pgm)->eeprom_pageaddr = (unsigned long)-1L;
} else if (strcmp(mem->desc, "lfuse") == 0) {
cmd[3] = MTYPE_FUSE_BITS;
addr = 0;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "hfuse") == 0) {
cmd[3] = MTYPE_FUSE_BITS;
addr = 1;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "efuse") == 0) {
cmd[3] = MTYPE_FUSE_BITS;
addr = 2;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (matches(mem->desc, "fuse")) {
cmd[3] = MTYPE_FUSE_BITS;
if (!(p->flags & AVRPART_HAS_UPDI))
addr = mem->offset & 7;
2022-02-28 18:46:47 +00:00
} else if (strcmp(mem->desc, "usersig") == 0 ||
strcmp(mem->desc, "userrow") == 0) {
cmd[3] = MTYPE_USERSIG;
} else if (strcmp(mem->desc, "prodsig") == 0) {
cmd[3] = MTYPE_PRODSIG;
} else if (matches(mem->desc, "lock")) {
cmd[3] = MTYPE_LOCK_BITS;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "calibration") == 0) {
cmd[3] = MTYPE_OSCCAL_BYTE;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
} else if (strcmp(mem->desc, "signature") == 0) {
cmd[3] = MTYPE_SIGN_JTAG;
if (pgm->flag & PGM_FL_IS_DW)
unsupp = 1;
}
if (unsupp)
return -1;
if (pagesize != 0) {
/* flash or EEPROM write: use paged algorithm */
unsigned char dummy;
int i;
/* step #1: ensure the page cache is up to date */
if (jtag3_read_byte(pgm, p, mem, addr, &dummy) < 0)
return -1;
/* step #2: update our value in page cache, and copy
* cache to mem->buf */
cache_ptr[addr & (pagesize - 1)] = data;
addr &= ~(pagesize - 1); /* page base address */
memcpy(mem->buf + addr, cache_ptr, pagesize);
/* step #3: write back */
i = jtag3_paged_write(pgm, p, mem, pagesize, addr, pagesize);
if (i < 0)
return -1;
else
return 0;
}
/* non-paged writes go here */
if (!(pgm->flag & PGM_FL_IS_DW) && jtag3_program_enable(pgm) < 0)
return -1;
u32_to_b4(cmd + 8, 1);
u32_to_b4(cmd + 4, jtag3_memaddr(pgm, p, mem, addr));
cmd[12] = 0;
cmd[13] = data;
if ((status = jtag3_command(pgm, cmd, 14, &resp, "write memory")) < 0)
return status;
free(resp);
return 0;
}
/*
* Set the JTAG clock. The actual frequency is quite a bit of
* guesswork, based on the values claimed by AVR Studio. Inside the
* JTAG ICE, the value is the delay count of a delay loop between the
* JTAG clock edges. A count of 0 bypasses the delay loop.
*
* As the STK500 expresses it as a period length (and we actualy do
* program a period length as well), we rather call it by that name.
*/
static int jtag3_set_sck_period(PROGRAMMER * pgm, double v)
{
unsigned char parm[2];
unsigned int clock = 1E-3 / v; /* kHz */
parm[0] = clock & 0xff;
parm[1] = (clock >> 8) & 0xff;
if (PDATA(pgm)->set_sck == NULL) {
avrdude_message(MSG_INFO, "%s: No backend to set the SCK period for\n",
progname);
return -1;
}
return (PDATA(pgm)->set_sck(pgm, parm) < 0)? -1: 0;
}
/*
* Read (an) emulator parameter(s).
*/
int jtag3_getparm(PROGRAMMER * pgm, unsigned char scope,
unsigned char section, unsigned char parm,
unsigned char *value, unsigned char length)
{
int status;
unsigned char buf[6], *resp, c;
char descr[60];
avrdude_message(MSG_NOTICE2, "%s: jtag3_getparm()\n", progname);
buf[0] = scope;
buf[1] = CMD3_GET_PARAMETER;
buf[2] = 0;
buf[3] = section;
buf[4] = parm;
buf[5] = length;
sprintf(descr, "get parameter (scope 0x%02x, section %d, parm %d)",
scope, section, parm);
if ((status = jtag3_command(pgm, buf, 6, &resp, descr)) < 0)
return -1;
c = resp[1];
if (c != RSP3_DATA || status < 3) {
2022-02-13 18:23:48 +00:00
avrdude_message(MSG_NOTICE, "%s: jtag3_getparm(): "
"bad response to %s\n",
progname, descr);
free(resp);
return -1;
}
status -= 3;
memcpy(value, resp + 3, (length < status? length: status));
free(resp);
return 0;
}
/*
* Write an emulator parameter.
*/
int jtag3_setparm(PROGRAMMER * pgm, unsigned char scope,
unsigned char section, unsigned char parm,
unsigned char *value, unsigned char length)
{
int status;
unsigned char *buf, *resp;
char descr[60];
avrdude_message(MSG_NOTICE2, "%s: jtag3_setparm()\n", progname);
sprintf(descr, "set parameter (scope 0x%02x, section %d, parm %d)",
scope, section, parm);
if ((buf = malloc(6 + length)) == NULL)
{
avrdude_message(MSG_INFO, "%s: jtag3_setparm(): Out of memory\n",
progname);
return -1;
}
buf[0] = scope;
buf[1] = CMD3_SET_PARAMETER;
buf[2] = 0;
buf[3] = section;
buf[4] = parm;
buf[5] = length;
memcpy(buf + 6, value, length);
status = jtag3_command(pgm, buf, length + 6, &resp, descr);
free(buf);
if (status > 0)
free(resp);
return status;
}
int jtag3_read_sib(PROGRAMMER * pgm, AVRPART * p, char * sib)
{
int status;
unsigned char cmd[12];
unsigned char *resp = NULL;
cmd[0] = SCOPE_AVR;
cmd[1] = CMD3_READ_MEMORY;
cmd[2] = 0;
cmd[3] = MTYPE_SIB;
u32_to_b4(cmd + 4, 0);
u32_to_b4(cmd + 8, AVR_SIBLEN);
if ((status = jtag3_command(pgm, cmd, 12, &resp, "read SIB")) < 0)
return status;
memcpy(sib, resp+3, AVR_SIBLEN);
sib[AVR_SIBLEN] = 0; // Zero terminate string
avrdude_message(MSG_DEBUG, "%s: jtag3_read_sib(): Received SIB: \"%s\"\n", progname, sib);
free(resp);
return 0;
}
static int jtag3_set_vtarget(PROGRAMMER * pgm, double v)
{
unsigned uaref, utarg;
unsigned char buf[2];
utarg = (unsigned)(v * 1000);
if (jtag3_getparm(pgm, SCOPE_GENERAL, 1, PARM3_VTARGET, buf, 2) < 0) {
avrdude_message(MSG_INFO, "%s: jtag3_set_vtarget(): cannot obtain V[target]\n",
progname);
}
uaref = b2_to_u16(buf);
u16_to_b2(buf, utarg);
avrdude_message(MSG_INFO, "%s: jtag3_set_vtarget(): changing V[target] from %.1f to %.1f\n",
progname, uaref / 1000.0, v);
if (jtag3_setparm(pgm, SCOPE_GENERAL, 1, PARM3_VADJUST, buf, sizeof(buf)) < 0) {
avrdude_message(MSG_INFO, "%s: jtag3_set_vtarget(): cannot confirm new V[target] value\n",
progname);
return -1;
}
return 0;
}
static void jtag3_display(PROGRAMMER * pgm, const char * p)
{
unsigned char parms[5];
unsigned char cmd[4], *resp, c;
int status;
/*
* Ask for:
* PARM3_HW_VER (1 byte)
* PARM3_FW_MAJOR (1 byte)
* PARM3_FW_MINOR (1 byte)
* PARM3_FW_RELEASE (2 bytes)
*/
if (jtag3_getparm(pgm, SCOPE_GENERAL, 0, PARM3_HW_VER, parms, 5) < 0)
return;
cmd[0] = SCOPE_INFO;
cmd[1] = CMD3_GET_INFO;
cmd[2] = 0;
cmd[3] = CMD3_INFO_SERIAL;
if ((status = jtag3_command(pgm, cmd, 4, &resp, "get info (serial number)")) < 0)
return;
c = resp[1];
if (c != RSP3_INFO) {
avrdude_message(MSG_INFO, "%s: jtag3_display(): response is not RSP3_INFO\n",
progname);
free(resp);
return;
}
memmove(resp, resp + 3, status - 3);
resp[status - 3] = 0;
avrdude_message(MSG_INFO, "%sICE HW version : %d\n", p, parms[0]);
avrdude_message(MSG_INFO, "%sICE FW version : %d.%02d (rel. %d)\n", p,
parms[1], parms[2],
(parms[3] | (parms[4] << 8)));
avrdude_message(MSG_INFO, "%sSerial number : %s", p, resp);
free(resp);
}
static void jtag3_print_parms1(PROGRAMMER * pgm, const char * p)
{
unsigned char buf[2];
if (jtag3_getparm(pgm, SCOPE_GENERAL, 1, PARM3_VTARGET, buf, 2) < 0)
return;
2022-02-13 18:23:48 +00:00
avrdude_message(MSG_INFO, "%sVtarget %s: %.2f V\n", p,
verbose ? "" : " ", b2_to_u16(buf) / 1000.0);
if (jtag3_getparm(pgm, SCOPE_AVR, 1, PARM3_CLK_MEGA_PROG, buf, 2) < 0)
return;
if (b2_to_u16(buf) > 0) {
avrdude_message(MSG_INFO, "%sJTAG clock megaAVR/program : %u kHz\n", p,
b2_to_u16(buf));
}
if (jtag3_getparm(pgm, SCOPE_AVR, 1, PARM3_CLK_MEGA_DEBUG, buf, 2) < 0)
return;
if (b2_to_u16(buf) > 0) {
avrdude_message(MSG_INFO, "%sJTAG clock megaAVR/debug : %u kHz\n", p,
b2_to_u16(buf));
}
if (jtag3_getparm(pgm, SCOPE_AVR, 1, PARM3_CLK_XMEGA_JTAG, buf, 2) < 0)
return;
if (b2_to_u16(buf) > 0) {
avrdude_message(MSG_INFO, "%sJTAG clock Xmega : %u kHz\n", p,
b2_to_u16(buf));
}
if (jtag3_getparm(pgm, SCOPE_AVR, 1, PARM3_CLK_XMEGA_PDI, buf, 2) < 0)
return;
if (b2_to_u16(buf) > 0) {
avrdude_message(MSG_INFO, "%sPDI/UPDI clock Xmega/megaAVR : %u kHz\n\n", p,
b2_to_u16(buf));
}
}
static void jtag3_print_parms(PROGRAMMER * pgm)
{
jtag3_print_parms1(pgm, "");
}
static unsigned char jtag3_memtype(PROGRAMMER * pgm, AVRPART * p, unsigned long addr)
{
if ( p->flags & AVRPART_HAS_PDI ) {
if (addr >= PDATA(pgm)->boot_start)
return MTYPE_BOOT_FLASH;
else
return MTYPE_FLASH;
} else {
return MTYPE_FLASH_PAGE;
}
}
static unsigned int jtag3_memaddr(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m, unsigned long addr)
{
if ((p->flags & AVRPART_HAS_PDI) != 0) {
if (addr >= PDATA(pgm)->boot_start)
/*
* all memories but "flash" are smaller than boot_start anyway, so
* no need for an extra check we are operating on "flash"
*/
return addr - PDATA(pgm)->boot_start;
else
/* normal flash, or anything else */
return addr;
}
/*
* Non-Xmega device.
*/
if (p->flags & AVRPART_HAS_UPDI) {
if (strcmp(m->desc, "flash") == 0) {
return addr;
}
else if (m->size == 1) {
addr = m->offset;
}
else if (m->size > 1) {
addr += m->offset;
}
}
return addr;
}
const char jtag3_desc[] = "Atmel JTAGICE3";
void jtag3_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "JTAGICE3");
/*
* mandatory functions
*/
pgm->initialize = jtag3_initialize;
pgm->display = jtag3_display;
pgm->enable = jtag3_enable;
pgm->disable = jtag3_disable;
pgm->program_enable = jtag3_program_enable_dummy;
pgm->chip_erase = jtag3_chip_erase;
pgm->open = jtag3_open;
pgm->close = jtag3_close;
pgm->read_byte = jtag3_read_byte;
pgm->write_byte = jtag3_write_byte;
/*
* optional functions
*/
pgm->paged_write = jtag3_paged_write;
pgm->paged_load = jtag3_paged_load;
pgm->page_erase = jtag3_page_erase;
pgm->print_parms = jtag3_print_parms;
pgm->set_sck_period = jtag3_set_sck_period;
pgm->parseextparams = jtag3_parseextparms;
pgm->setup = jtag3_setup;
pgm->teardown = jtag3_teardown;
pgm->page_size = 256;
pgm->flag = PGM_FL_IS_JTAG;
}
const char jtag3_dw_desc[] = "Atmel JTAGICE3 in debugWire mode";
void jtag3_dw_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "JTAGICE3_DW");
/*
* mandatory functions
*/
pgm->initialize = jtag3_initialize;
pgm->display = jtag3_display;
pgm->enable = jtag3_enable;
pgm->disable = jtag3_disable;
pgm->program_enable = jtag3_program_enable_dummy;
pgm->chip_erase = jtag3_chip_erase_dw;
pgm->open = jtag3_open_dw;
pgm->close = jtag3_close;
pgm->read_byte = jtag3_read_byte;
pgm->write_byte = jtag3_write_byte;
/*
* optional functions
*/
pgm->paged_write = jtag3_paged_write;
pgm->paged_load = jtag3_paged_load;
pgm->print_parms = jtag3_print_parms;
pgm->setup = jtag3_setup;
pgm->teardown = jtag3_teardown;
pgm->page_size = 256;
pgm->flag = PGM_FL_IS_DW;
}
const char jtag3_pdi_desc[] = "Atmel JTAGICE3 in PDI mode";
void jtag3_pdi_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "JTAGICE3_PDI");
/*
* mandatory functions
*/
pgm->initialize = jtag3_initialize;
pgm->display = jtag3_display;
pgm->enable = jtag3_enable;
pgm->disable = jtag3_disable;
pgm->program_enable = jtag3_program_enable_dummy;
pgm->chip_erase = jtag3_chip_erase;
pgm->open = jtag3_open_pdi;
pgm->close = jtag3_close;
pgm->read_byte = jtag3_read_byte;
pgm->write_byte = jtag3_write_byte;
/*
* optional functions
*/
pgm->paged_write = jtag3_paged_write;
pgm->paged_load = jtag3_paged_load;
pgm->page_erase = jtag3_page_erase;
pgm->print_parms = jtag3_print_parms;
pgm->set_sck_period = jtag3_set_sck_period;
pgm->setup = jtag3_setup;
pgm->teardown = jtag3_teardown;
pgm->page_size = 256;
pgm->flag = PGM_FL_IS_PDI;
}
const char jtag3_updi_desc[] = "Atmel JTAGICE3 in UPDI mode";
void jtag3_updi_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "JTAGICE3_UPDI");
/*
* mandatory functions
*/
pgm->initialize = jtag3_initialize;
pgm->parseextparams = jtag3_parseextparms;
pgm->display = jtag3_display;
pgm->enable = jtag3_enable;
pgm->disable = jtag3_disable;
pgm->program_enable = jtag3_program_enable_dummy;
pgm->chip_erase = jtag3_chip_erase;
pgm->open = jtag3_open_updi;
pgm->close = jtag3_close;
pgm->read_byte = jtag3_read_byte;
pgm->write_byte = jtag3_write_byte;
/*
* optional functions
*/
pgm->paged_write = jtag3_paged_write;
pgm->paged_load = jtag3_paged_load;
pgm->page_erase = jtag3_page_erase;
pgm->print_parms = jtag3_print_parms;
pgm->set_sck_period = jtag3_set_sck_period;
pgm->setup = jtag3_setup;
pgm->teardown = jtag3_teardown;
pgm->page_size = 256;
pgm->flag = PGM_FL_IS_UPDI;
pgm->unlock = jtag3_unlock_erase_key;
pgm->read_sib = jtag3_read_sib;
/*
* enable target voltage adjustment for PKOB/nEDBG boards
*/
if (matches(ldata(lfirst(pgm->id)), "pkobn_updi")) {
pgm->set_vtarget = jtag3_set_vtarget;
}
}