/****************************************************************************** * * Copyright(c) 2007 - 2017 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * *****************************************************************************/ #define _RTL8188E_PHYCFG_C_ #include #include /*---------------------------Define Local Constant---------------------------*/ /* Channel switch:The size of command tables for switch channel*/ #define MAX_PRECMD_CNT 16 #define MAX_RFDEPENDCMD_CNT 16 #define MAX_POSTCMD_CNT 16 #define MAX_DOZE_WAITING_TIMES_9x 64 /*---------------------------Define Local Constant---------------------------*/ /*------------------------Define global variable-----------------------------*/ /*------------------------Define local variable------------------------------*/ /*--------------------Define export function prototype-----------------------*/ /* Please refer to header file *--------------------Define export function prototype-----------------------*/ /*----------------------------Function Body----------------------------------*/ /* * 1. BB register R/W API * */ #if (SIC_ENABLE == 1) static BOOLEAN sic_IsSICReady( IN PADAPTER Adapter ) { BOOLEAN bRet = _FALSE; u32 retryCnt = 0; u8 sic_cmd = 0xff; while (1) { if (retryCnt++ >= SIC_MAX_POLL_CNT) { /* RTPRINT(FPHY, (PHY_SICR|PHY_SICW), ("[SIC], sic_IsSICReady() return FALSE\n")); */ return _FALSE; } /* if(RT_SDIO_CANNOT_IO(Adapter)) */ /* return _FALSE; */ sic_cmd = rtw_read8(Adapter, SIC_CMD_REG); /* sic_cmd = PlatformEFIORead1Byte(Adapter, SIC_CMD_REG); */ #if (SIC_HW_SUPPORT == 1) sic_cmd &= 0xf0; /* [7:4] */ #endif /* RTPRINT(FPHY, (PHY_SICR|PHY_SICW), ("[SIC], sic_IsSICReady(), readback 0x%x=0x%x\n", SIC_CMD_REG, sic_cmd)); */ if (sic_cmd == SIC_CMD_READY) return _TRUE; else { rtw_msleep_os(1); /* delay_ms(1); */ } } return bRet; } /* u32 sic_CalculateBitShift( u32 BitMask ) { u32 i; for(i=0; i<=31; i++) { if ( ((BitMask>>i) & 0x1 ) == 1) break; } return i; } */ static u32 sic_Read4Byte( PVOID Adapter, u32 offset ) { u32 u4ret = 0xffffffff; #if RTL8188E_SUPPORT == 1 u8 retry = 0; #endif /* RTPRINT(FPHY, PHY_SICR, ("[SIC], sic_Read4Byte(): read offset(%#x)\n", offset)); */ if (sic_IsSICReady(Adapter)) { #if (SIC_HW_SUPPORT == 1) rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_PREREAD); /* PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_PREREAD); */ /* RTPRINT(FPHY, PHY_SICR, ("write cmdreg 0x%x = 0x%x\n", SIC_CMD_REG, SIC_CMD_PREREAD)); */ #endif rtw_write8(Adapter, SIC_ADDR_REG, (u8)(offset & 0xff)); /* PlatformEFIOWrite1Byte(Adapter, SIC_ADDR_REG, (u1Byte)(offset&0xff)); */ /* RTPRINT(FPHY, PHY_SICR, ("write 0x%x = 0x%x\n", SIC_ADDR_REG, (u1Byte)(offset&0xff))); */ rtw_write8(Adapter, SIC_ADDR_REG + 1, (u8)((offset & 0xff00) >> 8)); /* PlatformEFIOWrite1Byte(Adapter, SIC_ADDR_REG+1, (u1Byte)((offset&0xff00)>>8)); */ /* RTPRINT(FPHY, PHY_SICR, ("write 0x%x = 0x%x\n", SIC_ADDR_REG+1, (u1Byte)((offset&0xff00)>>8))); */ rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_READ); /* PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_READ); */ /* RTPRINT(FPHY, PHY_SICR, ("write cmdreg 0x%x = 0x%x\n", SIC_CMD_REG, SIC_CMD_READ)); */ #if RTL8188E_SUPPORT == 1 retry = 4; while (retry--) { rtw_udelay_os(50); /* PlatformStallExecution(50); */ } #else rtw_udelay_os(200); /* PlatformStallExecution(200); */ #endif if (sic_IsSICReady(Adapter)) { u4ret = rtw_read32(Adapter, SIC_DATA_REG); /* u4ret = PlatformEFIORead4Byte(Adapter, SIC_DATA_REG); */ /* RTPRINT(FPHY, PHY_SICR, ("read 0x%x = 0x%x\n", SIC_DATA_REG, u4ret)); */ /* DbgPrint("<===Read 0x%x = 0x%x\n", offset, u4ret); */ } } return u4ret; } static VOID sic_Write4Byte( PVOID Adapter, u32 offset, u32 data ) { #if RTL8188E_SUPPORT == 1 u8 retry = 6; #endif /* DbgPrint("=>Write 0x%x = 0x%x\n", offset, data); */ /* RTPRINT(FPHY, PHY_SICW, ("[SIC], sic_Write4Byte(): write offset(%#x)=0x%x\n", offset, data)); */ if (sic_IsSICReady(Adapter)) { #if (SIC_HW_SUPPORT == 1) rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_PREWRITE); /* PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_PREWRITE); */ /* RTPRINT(FPHY, PHY_SICW, ("write data 0x%x = 0x%x\n", SIC_CMD_REG, SIC_CMD_PREWRITE)); */ #endif rtw_write8(Adapter, SIC_ADDR_REG, (u8)(offset & 0xff)); /* PlatformEFIOWrite1Byte(Adapter, SIC_ADDR_REG, (u1Byte)(offset&0xff)); */ /* RTPRINT(FPHY, PHY_SICW, ("write 0x%x=0x%x\n", SIC_ADDR_REG, (u1Byte)(offset&0xff))); */ rtw_write8(Adapter, SIC_ADDR_REG + 1, (u8)((offset & 0xff00) >> 8)); /* PlatformEFIOWrite1Byte(Adapter, SIC_ADDR_REG+1, (u1Byte)((offset&0xff00)>>8)); */ /* RTPRINT(FPHY, PHY_SICW, ("write 0x%x=0x%x\n", (SIC_ADDR_REG+1), (u1Byte)((offset&0xff00)>>8))); */ rtw_write32(Adapter, SIC_DATA_REG, (u32)data); /* PlatformEFIOWrite4Byte(Adapter, SIC_DATA_REG, (u4Byte)data); */ /* RTPRINT(FPHY, PHY_SICW, ("write data 0x%x = 0x%x\n", SIC_DATA_REG, data)); */ rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_WRITE); /* PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_WRITE); */ /* RTPRINT(FPHY, PHY_SICW, ("write data 0x%x = 0x%x\n", SIC_CMD_REG, SIC_CMD_WRITE)); */ #if RTL8188E_SUPPORT == 1 while (retry--) { rtw_udelay_os(50); /* PlatformStallExecution(50); */ } #else rtw_udelay_os(150); /* PlatformStallExecution(150); */ #endif } } /* ************************************************************ * extern function * ************************************************************ */ static VOID SIC_SetBBReg( IN PADAPTER Adapter, IN u32 RegAddr, IN u32 BitMask, IN u32 Data ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u32 OriginalValue, BitShift; u16 BBWaitCounter = 0; /* RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_SetBBReg() start\n")); */ #if 0 while (PlatformAtomicExchange(&pHalData->bChangeBBInProgress, _TRUE) == _TRUE) { BBWaitCounter++; delay_ms(10); /* 1 ms */ if ((BBWaitCounter > 100) || RT_CANNOT_IO(Adapter)) { /* Wait too long, return FALSE to avoid to be stuck here. */ RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_SetBBReg(), Fail to set BB offset(%#x)!!, WaitCnt(%d)\n", RegAddr, BBWaitCounter)); return; } } #endif /* */ /* Critical section start */ /* */ /* RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_SetBBReg(), mask=0x%x, addr[0x%x]=0x%x\n", BitMask, RegAddr, Data)); */ if (BitMask != bMaskDWord) { /* if not "double word" write */ OriginalValue = sic_Read4Byte(Adapter, RegAddr); /* BitShift = sic_CalculateBitShift(BitMask); */ BitShift = PHY_CalculateBitShift(BitMask); Data = (((OriginalValue)&(~BitMask)) | (Data << BitShift)); } sic_Write4Byte(Adapter, RegAddr, Data); /* PlatformAtomicExchange(&pHalData->bChangeBBInProgress, _FALSE); */ /* RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_SetBBReg() end\n")); */ } static u32 SIC_QueryBBReg( IN PADAPTER Adapter, IN u32 RegAddr, IN u32 BitMask ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u32 ReturnValue = 0, OriginalValue, BitShift; u16 BBWaitCounter = 0; /* RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_QueryBBReg() start\n")); */ #if 0 while (PlatformAtomicExchange(&pHalData->bChangeBBInProgress, _TRUE) == _TRUE) { BBWaitCounter++; delay_ms(10); /* 10 ms */ if ((BBWaitCounter > 100) || RT_CANNOT_IO(Adapter)) { /* Wait too long, return FALSE to avoid to be stuck here. */ RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_QueryBBReg(), Fail to query BB offset(%#x)!!, WaitCnt(%d)\n", RegAddr, BBWaitCounter)); return ReturnValue; } } #endif OriginalValue = sic_Read4Byte(Adapter, RegAddr); /* BitShift = sic_CalculateBitShift(BitMask); */ BitShift = PHY_CalculateBitShift(BitMask); ReturnValue = (OriginalValue & BitMask) >> BitShift; /* RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_QueryBBReg(), 0x%x=0x%x\n", RegAddr, OriginalValue)); */ /* RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_QueryBBReg() end\n")); */ /* PlatformAtomicExchange(&pHalData->bChangeBBInProgress, _FALSE); */ return ReturnValue; } VOID SIC_Init( IN PADAPTER Adapter ) { /* Here we need to write 0x1b8~0x1bf = 0 after fw is downloaded */ /* because for 8723E at beginning 0x1b8=0x1e, that will cause */ /* sic always not be ready */ #if (SIC_HW_SUPPORT == 1) /* RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_Init(), write 0x%x = 0x%x\n", */ /* SIC_INIT_REG, SIC_INIT_VAL)); */ rtw_write8(Adapter, SIC_INIT_REG, SIC_INIT_VAL); /* PlatformEFIOWrite1Byte(Adapter, SIC_INIT_REG, SIC_INIT_VAL); */ /* RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_Init(), write 0x%x = 0x%x\n", */ /* SIC_CMD_REG, SIC_CMD_INIT)); */ rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_INIT); /* PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_INIT); */ #else /* RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_Init(), write 0x1b8~0x1bf = 0x0\n")); */ rtw_write32(Adapter, SIC_CMD_REG, 0); /* PlatformEFIOWrite4Byte(Adapter, SIC_CMD_REG, 0); */ rtw_write32(Adapter, SIC_CMD_REG + 4, 0); /* PlatformEFIOWrite4Byte(Adapter, SIC_CMD_REG+4, 0); */ #endif } static BOOLEAN SIC_LedOff( IN PADAPTER Adapter ) { /* When SIC is enabled, led pin will be used as debug pin, */ /* so don't execute led function when SIC is enabled. */ return _TRUE; } #endif /** * Function: PHY_QueryBBReg * * OverView: Read "sepcific bits" from BB register * * Input: * PADAPTER Adapter, * u4Byte RegAddr, //The target address to be readback * u4Byte BitMask //The target bit position in the target address * //to be readback * Output: None * Return: u4Byte Data //The readback register value * Note: This function is equal to "GetRegSetting" in PHY programming guide */ u32 PHY_QueryBBReg8188E( IN PADAPTER Adapter, IN u32 RegAddr, IN u32 BitMask ) { u32 ReturnValue = 0, OriginalValue, BitShift; u16 BBWaitCounter = 0; #if (DISABLE_BB_RF == 1) return 0; #endif #if (SIC_ENABLE == 1) return SIC_QueryBBReg(Adapter, RegAddr, BitMask); #endif OriginalValue = rtw_read32(Adapter, RegAddr); BitShift = PHY_CalculateBitShift(BitMask); ReturnValue = (OriginalValue & BitMask) >> BitShift; /* RTPRINT(FPHY, PHY_BBR, ("BBR MASK=0x%lx Addr[0x%lx]=0x%lx\n", BitMask, RegAddr, OriginalValue)); */ return ReturnValue; } /** * Function: PHY_SetBBReg * * OverView: Write "Specific bits" to BB register (page 8~) * * Input: * PADAPTER Adapter, * u4Byte RegAddr, //The target address to be modified * u4Byte BitMask //The target bit position in the target address * //to be modified * u4Byte Data //The new register value in the target bit position * //of the target address * * Output: None * Return: None * Note: This function is equal to "PutRegSetting" in PHY programming guide */ VOID PHY_SetBBReg8188E( IN PADAPTER Adapter, IN u32 RegAddr, IN u32 BitMask, IN u32 Data ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); /* u16 BBWaitCounter = 0; */ u32 OriginalValue, BitShift; #if (DISABLE_BB_RF == 1) return; #endif #if (SIC_ENABLE == 1) SIC_SetBBReg(Adapter, RegAddr, BitMask, Data); return; #endif if (BitMask != bMaskDWord) { /* if not "double word" write */ OriginalValue = rtw_read32(Adapter, RegAddr); BitShift = PHY_CalculateBitShift(BitMask); Data = ((OriginalValue & (~BitMask)) | ((Data << BitShift) & BitMask)); } rtw_write32(Adapter, RegAddr, Data); /* RTPRINT(FPHY, PHY_BBW, ("BBW MASK=0x%lx Addr[0x%lx]=0x%lx\n", BitMask, RegAddr, Data)); */ } /* * 2. RF register R/W API * ** * Function: phy_RFSerialRead * * OverView: Read regster from RF chips * * Input: * PADAPTER Adapter, enum rf_path eRFPath, //Radio path of A/B/C/D * u4Byte Offset, //The target address to be read * * Output: None * Return: u4Byte reback value * Note: Threre are three types of serial operations: * 1. Software serial write * 2. Hardware LSSI-Low Speed Serial Interface * 3. Hardware HSSI-High speed * serial write. Driver need to implement (1) and (2). * This function is equal to the combination of RF_ReadReg() and RFLSSIRead() */ static u32 phy_RFSerialRead( IN PADAPTER Adapter, IN enum rf_path eRFPath, IN u32 Offset ) { u32 retValue = 0; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); BB_REGISTER_DEFINITION_T *pPhyReg = &pHalData->PHYRegDef[eRFPath]; u32 NewOffset; u32 tmplong, tmplong2; u8 RfPiEnable = 0; _enter_critical_mutex(&(adapter_to_dvobj(Adapter)->rf_read_reg_mutex) , NULL); #if 0 if (pHalData->RFChipID == RF_8225 && Offset > 0x24) /* 36 valid regs */ return retValue; if (pHalData->RFChipID == RF_8256 && Offset > 0x2D) /* 45 valid regs */ return retValue; #endif /* */ /* Make sure RF register offset is correct */ /* */ Offset &= 0xff; /* */ /* Switch page for 8256 RF IC */ /* */ NewOffset = Offset; /* 2009/06/17 MH We can not execute IO for power save or other accident mode. */ /* if(RT_CANNOT_IO(Adapter)) */ /* { */ /* RTPRINT(FPHY, PHY_RFR, ("phy_RFSerialRead return all one\n")); */ /* return 0xFFFFFFFF; */ /* } */ /* For 92S LSSI Read RFLSSIRead */ /* For RF A/B write 0x824/82c(does not work in the future) */ /* We must use 0x824 for RF A and B to execute read trigger */ tmplong = phy_query_bb_reg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord); if (eRFPath == RF_PATH_A) tmplong2 = tmplong; else tmplong2 = phy_query_bb_reg(Adapter, pPhyReg->rfHSSIPara2, bMaskDWord); tmplong2 = (tmplong2 & (~bLSSIReadAddress)) | (NewOffset << 23) | bLSSIReadEdge; /* T65 RF */ phy_set_bb_reg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord, tmplong & (~bLSSIReadEdge)); rtw_udelay_os(10);/* PlatformStallExecution(10); */ phy_set_bb_reg(Adapter, pPhyReg->rfHSSIPara2, bMaskDWord, tmplong2); rtw_udelay_os(100);/* PlatformStallExecution(100); */ /* phy_set_bb_reg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord, tmplong|bLSSIReadEdge); */ rtw_udelay_os(10);/* PlatformStallExecution(10); */ if (eRFPath == RF_PATH_A) RfPiEnable = (u8)phy_query_bb_reg(Adapter, rFPGA0_XA_HSSIParameter1, BIT8); else if (eRFPath == RF_PATH_B) RfPiEnable = (u8)phy_query_bb_reg(Adapter, rFPGA0_XB_HSSIParameter1, BIT8); if (RfPiEnable) { /* Read from BBreg8b8, 12 bits for 8190, 20bits for T65 RF */ retValue = phy_query_bb_reg(Adapter, pPhyReg->rfLSSIReadBackPi, bLSSIReadBackData); /* RTW_INFO("Readback from RF-PI : 0x%x\n", retValue); */ } else { /* Read from BBreg8a0, 12 bits for 8190, 20 bits for T65 RF */ retValue = phy_query_bb_reg(Adapter, pPhyReg->rfLSSIReadBack, bLSSIReadBackData); /* RTW_INFO("Readback from RF-SI : 0x%x\n", retValue); */ } /* RTW_INFO("RFR-%d Addr[0x%x]=0x%x\n", eRFPath, pPhyReg->rfLSSIReadBack, retValue); */ _exit_critical_mutex(&(adapter_to_dvobj(Adapter)->rf_read_reg_mutex) , NULL); return retValue; } /** * Function: phy_RFSerialWrite * * OverView: Write data to RF register (page 8~) * * Input: * PADAPTER Adapter, enum rf_path eRFPath, //Radio path of A/B/C/D * u4Byte Offset, //The target address to be read * u4Byte Data //The new register Data in the target bit position * //of the target to be read * * Output: None * Return: None * Note: Threre are three types of serial operations: * 1. Software serial write * 2. Hardware LSSI-Low Speed Serial Interface * 3. Hardware HSSI-High speed * serial write. Driver need to implement (1) and (2). * This function is equal to the combination of RF_ReadReg() and RFLSSIRead() * * Note: For RF8256 only * The total count of RTL8256(Zebra4) register is around 36 bit it only employs * 4-bit RF address. RTL8256 uses "register mode control bit" (Reg00[12], Reg00[10]) * to access register address bigger than 0xf. See "Appendix-4 in PHY Configuration * programming guide" for more details. * Thus, we define a sub-finction for RTL8526 register address conversion * =========================================================== * Register Mode RegCTL[1] RegCTL[0] Note * (Reg00[12]) (Reg00[10]) * =========================================================== * Reg_Mode0 0 x Reg 0 ~15(0x0 ~ 0xf) * ------------------------------------------------------------------ * Reg_Mode1 1 0 Reg 16 ~30(0x1 ~ 0xf) * ------------------------------------------------------------------ * Reg_Mode2 1 1 Reg 31 ~ 45(0x1 ~ 0xf) * ------------------------------------------------------------------ * * 2008/09/02 MH Add 92S RF definition * * * */ static VOID phy_RFSerialWrite( IN PADAPTER Adapter, IN enum rf_path eRFPath, IN u32 Offset, IN u32 Data ) { u32 DataAndAddr = 0; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); BB_REGISTER_DEFINITION_T *pPhyReg = &pHalData->PHYRegDef[eRFPath]; u32 NewOffset; #if 0 /* We should check valid regs for RF_6052 case. */ if (pHalData->RFChipID == RF_8225 && Offset > 0x24) /* 36 valid regs */ return; if (pHalData->RFChipID == RF_8256 && Offset > 0x2D) /* 45 valid regs */ return; #endif /* 2009/06/17 MH We can not execute IO for power save or other accident mode. */ /* if(RT_CANNOT_IO(Adapter)) */ /* { */ /* RTPRINT(FPHY, PHY_RFW, ("phy_RFSerialWrite stop\n")); */ /* return; */ /* } */ Offset &= 0xff; /* */ /* Shadow Update */ /* */ /* PHY_RFShadowWrite(Adapter, eRFPath, Offset, Data); */ /* */ /* Switch page for 8256 RF IC */ /* */ NewOffset = Offset; /* */ /* Put write addr in [5:0] and write data in [31:16] */ /* */ /* DataAndAddr = (Data<<16) | (NewOffset&0x3f); */ DataAndAddr = ((NewOffset << 20) | (Data & 0x000fffff)) & 0x0fffffff; /* T65 RF */ /* */ /* Write Operation */ /* */ phy_set_bb_reg(Adapter, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr); /* RTPRINT(FPHY, PHY_RFW, ("RFW-%d Addr[0x%lx]=0x%lx\n", eRFPath, pPhyReg->rf3wireOffset, DataAndAddr)); */ } /** * Function: PHY_QueryRFReg * * OverView: Query "Specific bits" to RF register (page 8~) * * Input: * PADAPTER Adapter, enum rf_path eRFPath, //Radio path of A/B/C/D * u4Byte RegAddr, //The target address to be read * u4Byte BitMask //The target bit position in the target address * //to be read * * Output: None * Return: u4Byte Readback value * Note: This function is equal to "GetRFRegSetting" in PHY programming guide */ u32 PHY_QueryRFReg8188E( IN PADAPTER Adapter, IN enum rf_path eRFPath, IN u32 RegAddr, IN u32 BitMask ) { u32 Original_Value, Readback_Value, BitShift; /* HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); */ /* u8 RFWaitCounter = 0; */ /* _irqL irqL; */ #if (DISABLE_BB_RF == 1) return 0; #endif #ifdef CONFIG_USB_HCI /* PlatformAcquireMutex(&pHalData->mxRFOperate); */ #else /* _enter_critical(&pHalData->rf_lock, &irqL); */ #endif Original_Value = phy_RFSerialRead(Adapter, eRFPath, RegAddr); BitShift = PHY_CalculateBitShift(BitMask); Readback_Value = (Original_Value & BitMask) >> BitShift; #ifdef CONFIG_USB_HCI /* PlatformReleaseMutex(&pHalData->mxRFOperate); */ #else /* _exit_critical(&pHalData->rf_lock, &irqL); */ #endif /* RTPRINT(FPHY, PHY_RFR, ("RFR-%d MASK=0x%lx Addr[0x%lx]=0x%lx\n", eRFPath, BitMask, RegAddr, Original_Value));//BitMask(%#lx),BitMask, */ return Readback_Value; } /** * Function: PHY_SetRFReg * * OverView: Write "Specific bits" to RF register (page 8~) * * Input: * PADAPTER Adapter, enum rf_path eRFPath, //Radio path of A/B/C/D * u4Byte RegAddr, //The target address to be modified * u4Byte BitMask //The target bit position in the target address * //to be modified * u4Byte Data //The new register Data in the target bit position * //of the target address * * Output: None * Return: None * Note: This function is equal to "PutRFRegSetting" in PHY programming guide */ VOID PHY_SetRFReg8188E( IN PADAPTER Adapter, IN enum rf_path eRFPath, IN u32 RegAddr, IN u32 BitMask, IN u32 Data ) { /* HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); */ /* u1Byte RFWaitCounter = 0; */ u32 Original_Value, BitShift; /* _irqL irqL; */ #if (DISABLE_BB_RF == 1) return; #endif /* RTPRINT(FINIT, INIT_RF, ("phy_set_rf_reg(): RegAddr(%#lx), BitMask(%#lx), Data(%#lx), eRFPath(%#x)\n", */ /* RegAddr, BitMask, Data, eRFPath)); */ #ifdef CONFIG_USB_HCI /* PlatformAcquireMutex(&pHalData->mxRFOperate); */ #else /* _enter_critical(&pHalData->rf_lock, &irqL); */ #endif /* RF data is 12 bits only */ if (BitMask != bRFRegOffsetMask) { Original_Value = phy_RFSerialRead(Adapter, eRFPath, RegAddr); BitShift = PHY_CalculateBitShift(BitMask); Data = ((Original_Value & (~BitMask)) | (Data << BitShift)); } phy_RFSerialWrite(Adapter, eRFPath, RegAddr, Data); #ifdef CONFIG_USB_HCI /* PlatformReleaseMutex(&pHalData->mxRFOperate); */ #else /* _exit_critical(&pHalData->rf_lock, &irqL); */ #endif /* phy_query_rf_reg(Adapter,eRFPath,RegAddr,BitMask); */ } /* * 3. Initial MAC/BB/RF config by reading MAC/BB/RF txt. * */ /*----------------------------------------------------------------------------- * Function: PHY_MACConfig8192C * * Overview: Condig MAC by header file or parameter file. * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 08/12/2008 MHC Create Version 0. * *---------------------------------------------------------------------------*/ s32 PHY_MACConfig8188E(PADAPTER Adapter) { int rtStatus = _SUCCESS; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u16 val = 0; /* */ /* Config MAC */ /* */ #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE rtStatus = phy_ConfigMACWithParaFile(Adapter, PHY_FILE_MAC_REG); if (rtStatus == _FAIL) #endif { #ifdef CONFIG_EMBEDDED_FWIMG if (HAL_STATUS_FAILURE == odm_config_mac_with_header_file(&pHalData->odmpriv)) rtStatus = _FAIL; else rtStatus = _SUCCESS; #endif/* CONFIG_EMBEDDED_FWIMG */ } /* 2010.07.13 AMPDU aggregation number B */ val |= MAX_AGGR_NUM; val = val << 8; val |= MAX_AGGR_NUM; rtw_write16(Adapter, REG_MAX_AGGR_NUM, val); /* rtw_write8(Adapter, REG_MAX_AGGR_NUM, 0x0B); */ return rtStatus; } /*----------------------------------------------------------------------------- * Function: phy_InitBBRFRegisterDefinition * * OverView: Initialize Register definition offset for Radio Path A/B/C/D * * Input: * PADAPTER Adapter, * * Output: None * Return: None * Note: The initialization value is constant and it should never be changes -----------------------------------------------------------------------------*/ static VOID phy_InitBBRFRegisterDefinition( IN PADAPTER Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); /* RF Interface Sowrtware Control */ pHalData->PHYRegDef[RF_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW; /* 16 LSBs if read 32-bit from 0x870 */ pHalData->PHYRegDef[RF_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW; /* 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872) */ pHalData->PHYRegDef[RF_PATH_C].rfintfs = rFPGA0_XCD_RFInterfaceSW;/* 16 LSBs if read 32-bit from 0x874 */ pHalData->PHYRegDef[RF_PATH_D].rfintfs = rFPGA0_XCD_RFInterfaceSW;/* 16 MSBs if read 32-bit from 0x874 (16-bit for 0x876) */ /* RF Interface Output (and Enable) */ pHalData->PHYRegDef[RF_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE; /* 16 LSBs if read 32-bit from 0x860 */ pHalData->PHYRegDef[RF_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE; /* 16 LSBs if read 32-bit from 0x864 */ /* RF Interface (Output and) Enable */ pHalData->PHYRegDef[RF_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE; /* 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862) */ pHalData->PHYRegDef[RF_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE; /* 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866) */ /* Addr of LSSI. Wirte RF register by driver */ pHalData->PHYRegDef[RF_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter; /* LSSI Parameter */ pHalData->PHYRegDef[RF_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter; /* Tranceiver A~D HSSI Parameter-2 */ pHalData->PHYRegDef[RF_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2; /* wire control parameter2 */ pHalData->PHYRegDef[RF_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2; /* wire control parameter2 */ /* Tranceiver LSSI Readback SI mode */ pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack; pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack; pHalData->PHYRegDef[RF_PATH_C].rfLSSIReadBack = rFPGA0_XC_LSSIReadBack; pHalData->PHYRegDef[RF_PATH_D].rfLSSIReadBack = rFPGA0_XD_LSSIReadBack; /* Tranceiver LSSI Readback PI mode */ pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBackPi = TransceiverA_HSPI_Readback; pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBackPi = TransceiverB_HSPI_Readback; /* pHalData->PHYRegDef[RF_PATH_C].rfLSSIReadBackPi = rFPGA0_XC_LSSIReadBack; */ /* pHalData->PHYRegDef[RF_PATH_D].rfLSSIReadBackPi = rFPGA0_XD_LSSIReadBack; */ } static VOID phy_BB8192C_Config_1T( IN PADAPTER Adapter ) { #if 0 /* for path - A */ phy_set_bb_reg(Adapter, rFPGA0_TxInfo, 0x3, 0x1); phy_set_bb_reg(Adapter, rFPGA1_TxInfo, 0x0303, 0x0101); phy_set_bb_reg(Adapter, 0xe74, 0x0c000000, 0x1); phy_set_bb_reg(Adapter, 0xe78, 0x0c000000, 0x1); phy_set_bb_reg(Adapter, 0xe7c, 0x0c000000, 0x1); phy_set_bb_reg(Adapter, 0xe80, 0x0c000000, 0x1); phy_set_bb_reg(Adapter, 0xe88, 0x0c000000, 0x1); #endif /* for path - B */ phy_set_bb_reg(Adapter, rFPGA0_TxInfo, 0x3, 0x2); phy_set_bb_reg(Adapter, rFPGA1_TxInfo, 0x300033, 0x200022); /* 20100519 Joseph: Add for 1T2R config. Suggested by Kevin, Jenyu and Yunan. */ phy_set_bb_reg(Adapter, rCCK0_AFESetting, bMaskByte3, 0x45); phy_set_bb_reg(Adapter, rOFDM0_TRxPathEnable, bMaskByte0, 0x23); phy_set_bb_reg(Adapter, rOFDM0_AGCParameter1, 0x30, 0x1); /* B path first AGC */ phy_set_bb_reg(Adapter, 0xe74, 0x0c000000, 0x2); phy_set_bb_reg(Adapter, 0xe78, 0x0c000000, 0x2); phy_set_bb_reg(Adapter, 0xe7c, 0x0c000000, 0x2); phy_set_bb_reg(Adapter, 0xe80, 0x0c000000, 0x2); phy_set_bb_reg(Adapter, 0xe88, 0x0c000000, 0x2); } /* Joseph test: new initialize order!! * Test only!! This part need to be re-organized. * Now it is just for 8256. */ static int phy_BB8190_Config_HardCode( IN PADAPTER Adapter ) { /* RT_ASSERT(FALSE, ("This function is not implement yet!!\n")); */ return _SUCCESS; } static int phy_BB8188E_Config_ParaFile( IN PADAPTER Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); int rtStatus = _SUCCESS; /* */ /* 1. Read PHY_REG.TXT BB INIT!! */ /* */ #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE if (phy_ConfigBBWithParaFile(Adapter, PHY_FILE_PHY_REG, CONFIG_BB_PHY_REG) == _FAIL) #endif { #ifdef CONFIG_EMBEDDED_FWIMG if (HAL_STATUS_FAILURE == odm_config_bb_with_header_file(&pHalData->odmpriv, CONFIG_BB_PHY_REG)) rtStatus = _FAIL; #endif } if (rtStatus != _SUCCESS) { goto phy_BB8190_Config_ParaFile_Fail; } #if (MP_DRIVER == 1) /* */ /* 1.1 Read PHY_REG_MP.TXT BB INIT!! */ /* */ if (Adapter->registrypriv.mp_mode == 1) { /* 3 Read PHY_REG.TXT BB INIT!! */ #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE if (phy_ConfigBBWithMpParaFile(Adapter, PHY_FILE_PHY_REG_MP) == _FAIL) #endif { #ifdef CONFIG_EMBEDDED_FWIMG if (HAL_STATUS_SUCCESS != odm_config_bb_with_header_file(&pHalData->odmpriv, CONFIG_BB_PHY_REG_MP)) rtStatus = _FAIL; #endif } if (rtStatus != _SUCCESS) { RTW_INFO("phy_BB8188E_Config_ParaFile():Write BB Reg MP Fail!!"); goto phy_BB8190_Config_ParaFile_Fail; } } #endif /* #if (MP_DRIVER == 1) */ /* */ /* 3. BB AGC table Initialization */ /* */ #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE if (phy_ConfigBBWithParaFile(Adapter, PHY_FILE_AGC_TAB, CONFIG_BB_AGC_TAB) == _FAIL) #endif { #ifdef CONFIG_EMBEDDED_FWIMG if (HAL_STATUS_FAILURE == odm_config_bb_with_header_file(&pHalData->odmpriv, CONFIG_BB_AGC_TAB)) rtStatus = _FAIL; #endif } if (rtStatus != _SUCCESS) { goto phy_BB8190_Config_ParaFile_Fail; } phy_BB8190_Config_ParaFile_Fail: return rtStatus; } int PHY_BBConfig8188E( IN PADAPTER Adapter ) { int rtStatus = _SUCCESS; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u32 RegVal; u8 TmpU1B = 0; u8 value8; phy_InitBBRFRegisterDefinition(Adapter); /* Enable BB and RF */ RegVal = rtw_read16(Adapter, REG_SYS_FUNC_EN); rtw_write16(Adapter, REG_SYS_FUNC_EN, (u16)(RegVal | BIT13 | BIT0 | BIT1)); /* 20090923 Joseph: Advised by Steven and Jenyu. Power sequence before init RF. */ /* rtw_write8(Adapter, REG_AFE_PLL_CTRL, 0x83); */ /* rtw_write8(Adapter, REG_AFE_PLL_CTRL+1, 0xdb); */ rtw_write8(Adapter, REG_RF_CTRL, RF_EN | RF_RSTB | RF_SDMRSTB); #ifdef CONFIG_USB_HCI rtw_write8(Adapter, REG_SYS_FUNC_EN, FEN_USBA | FEN_USBD | FEN_BB_GLB_RSTn | FEN_BBRSTB); #elif defined CONFIG_PCI_HCI rtw_write8(Adapter, REG_SYS_FUNC_EN, FEN_PPLL | FEN_PCIEA | FEN_DIO_PCIE | FEN_BB_GLB_RSTn | FEN_BBRSTB); #endif #if 0 #ifdef CONFIG_USB_HCI /* To Fix MAC loopback mode fail. Suggested by SD4 Johnny. 2010.03.23. */ rtw_write8(Adapter, REG_LDOHCI12_CTRL, 0x0f); rtw_write8(Adapter, 0x15, 0xe9); #endif rtw_write8(Adapter, REG_AFE_XTAL_CTRL + 1, 0x80); #endif #ifdef CONFIG_USB_HCI /* rtw_write8(Adapter, 0x15, 0xe9); */ #endif #ifdef CONFIG_PCI_HCI #ifdef CONFIG_RTW_LED /* Force use left antenna by default for 88C. */ if (adapter_to_led(Adapter)->LedStrategy != SW_LED_MODE10) { RegVal = rtw_read32(Adapter, REG_LEDCFG0); rtw_write32(Adapter, REG_LEDCFG0, RegVal | BIT23); } #endif #endif /* */ /* Config BB and AGC */ /* */ rtStatus = phy_BB8188E_Config_ParaFile(Adapter); hal_set_crystal_cap(Adapter, pHalData->crystal_cap); return rtStatus; } int PHY_RFConfig8188E( IN PADAPTER Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); int rtStatus = _SUCCESS; /* */ /* RF config */ /* */ rtStatus = PHY_RF6052_Config8188E(Adapter); #if 0 switch (pHalData->rf_chip) { case RF_6052: rtStatus = PHY_RF6052_Config(Adapter); break; case RF_8225: rtStatus = PHY_RF8225_Config(Adapter); break; case RF_8256: rtStatus = PHY_RF8256_Config(Adapter); break; case RF_8258: break; case RF_PSEUDO_11N: rtStatus = PHY_RF8225_Config(Adapter); break; default: /* for MacOs Warning: "RF_TYPE_MIN" not handled in switch */ break; } #endif return rtStatus; } /*----------------------------------------------------------------------------- * Function: PHY_ConfigRFWithParaFile() * * Overview: This function read RF parameters from general file format, and do RF 3-wire * * Input: PADAPTER Adapter * ps1Byte pFileName * u8 eRFPath * * Output: NONE * * Return: RT_STATUS_SUCCESS: configuration file exist * * Note: Delay may be required for RF configuration *---------------------------------------------------------------------------*/ int rtl8188e_PHY_ConfigRFWithParaFile( IN PADAPTER Adapter, IN u8 *pFileName, IN enum rf_path eRFPath ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); int rtStatus = _SUCCESS; return rtStatus; } /* **************************************** * The following is for High Power PA * **************************************** */ #define HighPowerRadioAArrayLen 22 /* This is for High power PA */ u32 Rtl8192S_HighPower_RadioA_Array[HighPowerRadioAArrayLen] = { 0x013, 0x00029ea4, 0x013, 0x00025e74, 0x013, 0x00020ea4, 0x013, 0x0001ced0, 0x013, 0x00019f40, 0x013, 0x00014e70, 0x013, 0x000106a0, 0x013, 0x0000c670, 0x013, 0x000082a0, 0x013, 0x00004270, 0x013, 0x00000240, }; /* **************************************** *----------------------------------------------------------------------------- * Function: GetTxPowerLevel8190() * * Overview: This function is export to "common" moudule * * Input: PADAPTER Adapter * psByte Power Level * * Output: NONE * * Return: NONE * *---------------------------------------------------------------------------*/ VOID PHY_GetTxPowerLevel8188E( IN PADAPTER Adapter, OUT s32 *powerlevel ) { #if 0 HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); PMGNT_INFO pMgntInfo = &(Adapter->MgntInfo); s4Byte TxPwrDbm = 13; if (pMgntInfo->ClientConfigPwrInDbm != UNSPECIFIED_PWR_DBM) *powerlevel = pMgntInfo->ClientConfigPwrInDbm; else *powerlevel = TxPwrDbm; #endif } /*----------------------------------------------------------------------------- * Function: SetTxPowerLevel8190() * * Overview: This function is export to "HalCommon" moudule * We must consider RF path later!!!!!!! * * Input: PADAPTER Adapter * u1Byte channel * * Output: NONE * * Return: NONE * 2008/11/04 MHC We remove EEPROM_93C56. * We need to move CCX relative code to independet file. * 2009/01/21 MHC Support new EEPROM format from SD3 requirement. * *---------------------------------------------------------------------------*/ VOID PHY_SetTxPowerLevel8188E( IN PADAPTER Adapter, IN u8 Channel ) { /* RTW_INFO("==>PHY_SetTxPowerLevel8188E()\n"); */ phy_set_tx_power_level_by_path(Adapter, Channel, RF_PATH_A); /* RTW_INFO("<==PHY_SetTxPowerLevel8188E()\n"); */ } VOID PHY_SetTxPowerIndex_8188E( IN PADAPTER Adapter, IN u32 PowerIndex, IN enum rf_path RFPath, IN u8 Rate ) { if (RFPath == RF_PATH_A) { switch (Rate) { case MGN_1M: phy_set_bb_reg(Adapter, rTxAGC_A_CCK1_Mcs32, bMaskByte1, PowerIndex); break; case MGN_2M: phy_set_bb_reg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte1, PowerIndex); break; case MGN_5_5M: phy_set_bb_reg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte2, PowerIndex); break; case MGN_11M: phy_set_bb_reg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte3, PowerIndex); break; case MGN_6M: phy_set_bb_reg(Adapter, rTxAGC_A_Rate18_06, bMaskByte0, PowerIndex); break; case MGN_9M: phy_set_bb_reg(Adapter, rTxAGC_A_Rate18_06, bMaskByte1, PowerIndex); break; case MGN_12M: phy_set_bb_reg(Adapter, rTxAGC_A_Rate18_06, bMaskByte2, PowerIndex); break; case MGN_18M: phy_set_bb_reg(Adapter, rTxAGC_A_Rate18_06, bMaskByte3, PowerIndex); break; case MGN_24M: phy_set_bb_reg(Adapter, rTxAGC_A_Rate54_24, bMaskByte0, PowerIndex); break; case MGN_36M: phy_set_bb_reg(Adapter, rTxAGC_A_Rate54_24, bMaskByte1, PowerIndex); break; case MGN_48M: phy_set_bb_reg(Adapter, rTxAGC_A_Rate54_24, bMaskByte2, PowerIndex); break; case MGN_54M: phy_set_bb_reg(Adapter, rTxAGC_A_Rate54_24, bMaskByte3, PowerIndex); break; case MGN_MCS0: phy_set_bb_reg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte0, PowerIndex); break; case MGN_MCS1: phy_set_bb_reg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte1, PowerIndex); break; case MGN_MCS2: phy_set_bb_reg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte2, PowerIndex); break; case MGN_MCS3: phy_set_bb_reg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte3, PowerIndex); break; case MGN_MCS4: phy_set_bb_reg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte0, PowerIndex); break; case MGN_MCS5: phy_set_bb_reg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte1, PowerIndex); break; case MGN_MCS6: phy_set_bb_reg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte2, PowerIndex); break; case MGN_MCS7: phy_set_bb_reg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte3, PowerIndex); break; case MGN_MCS8: phy_set_bb_reg(Adapter, rTxAGC_A_Mcs11_Mcs08, bMaskByte0, PowerIndex); break; case MGN_MCS9: phy_set_bb_reg(Adapter, rTxAGC_A_Mcs11_Mcs08, bMaskByte1, PowerIndex); break; case MGN_MCS10: phy_set_bb_reg(Adapter, rTxAGC_A_Mcs11_Mcs08, bMaskByte2, PowerIndex); break; case MGN_MCS11: phy_set_bb_reg(Adapter, rTxAGC_A_Mcs11_Mcs08, bMaskByte3, PowerIndex); break; case MGN_MCS12: phy_set_bb_reg(Adapter, rTxAGC_A_Mcs15_Mcs12, bMaskByte0, PowerIndex); break; case MGN_MCS13: phy_set_bb_reg(Adapter, rTxAGC_A_Mcs15_Mcs12, bMaskByte1, PowerIndex); break; case MGN_MCS14: phy_set_bb_reg(Adapter, rTxAGC_A_Mcs15_Mcs12, bMaskByte2, PowerIndex); break; case MGN_MCS15: phy_set_bb_reg(Adapter, rTxAGC_A_Mcs15_Mcs12, bMaskByte3, PowerIndex); break; default: RTW_INFO("Invalid Rate!!\n"); break; } } else if (RFPath == RF_PATH_B) { switch (Rate) { case MGN_1M: phy_set_bb_reg(Adapter, rTxAGC_B_CCK1_55_Mcs32, bMaskByte1, PowerIndex); break; case MGN_2M: phy_set_bb_reg(Adapter, rTxAGC_B_CCK1_55_Mcs32, bMaskByte2, PowerIndex); break; case MGN_5_5M: phy_set_bb_reg(Adapter, rTxAGC_B_CCK1_55_Mcs32, bMaskByte3, PowerIndex); break; case MGN_11M: phy_set_bb_reg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte0, PowerIndex); break; case MGN_6M: phy_set_bb_reg(Adapter, rTxAGC_B_Rate18_06, bMaskByte0, PowerIndex); break; case MGN_9M: phy_set_bb_reg(Adapter, rTxAGC_B_Rate18_06, bMaskByte1, PowerIndex); break; case MGN_12M: phy_set_bb_reg(Adapter, rTxAGC_B_Rate18_06, bMaskByte2, PowerIndex); break; case MGN_18M: phy_set_bb_reg(Adapter, rTxAGC_B_Rate18_06, bMaskByte3, PowerIndex); break; case MGN_24M: phy_set_bb_reg(Adapter, rTxAGC_B_Rate54_24, bMaskByte0, PowerIndex); break; case MGN_36M: phy_set_bb_reg(Adapter, rTxAGC_B_Rate54_24, bMaskByte1, PowerIndex); break; case MGN_48M: phy_set_bb_reg(Adapter, rTxAGC_B_Rate54_24, bMaskByte2, PowerIndex); break; case MGN_54M: phy_set_bb_reg(Adapter, rTxAGC_B_Rate54_24, bMaskByte3, PowerIndex); break; case MGN_MCS0: phy_set_bb_reg(Adapter, rTxAGC_B_Mcs03_Mcs00, bMaskByte0, PowerIndex); break; case MGN_MCS1: phy_set_bb_reg(Adapter, rTxAGC_B_Mcs03_Mcs00, bMaskByte1, PowerIndex); break; case MGN_MCS2: phy_set_bb_reg(Adapter, rTxAGC_B_Mcs03_Mcs00, bMaskByte2, PowerIndex); break; case MGN_MCS3: phy_set_bb_reg(Adapter, rTxAGC_B_Mcs03_Mcs00, bMaskByte3, PowerIndex); break; case MGN_MCS4: phy_set_bb_reg(Adapter, rTxAGC_B_Mcs07_Mcs04, bMaskByte0, PowerIndex); break; case MGN_MCS5: phy_set_bb_reg(Adapter, rTxAGC_B_Mcs07_Mcs04, bMaskByte1, PowerIndex); break; case MGN_MCS6: phy_set_bb_reg(Adapter, rTxAGC_B_Mcs07_Mcs04, bMaskByte2, PowerIndex); break; case MGN_MCS7: phy_set_bb_reg(Adapter, rTxAGC_B_Mcs07_Mcs04, bMaskByte3, PowerIndex); break; case MGN_MCS8: phy_set_bb_reg(Adapter, rTxAGC_B_Mcs11_Mcs08, bMaskByte0, PowerIndex); break; case MGN_MCS9: phy_set_bb_reg(Adapter, rTxAGC_B_Mcs11_Mcs08, bMaskByte1, PowerIndex); break; case MGN_MCS10: phy_set_bb_reg(Adapter, rTxAGC_B_Mcs11_Mcs08, bMaskByte2, PowerIndex); break; case MGN_MCS11: phy_set_bb_reg(Adapter, rTxAGC_B_Mcs11_Mcs08, bMaskByte3, PowerIndex); break; case MGN_MCS12: phy_set_bb_reg(Adapter, rTxAGC_B_Mcs15_Mcs12, bMaskByte0, PowerIndex); break; case MGN_MCS13: phy_set_bb_reg(Adapter, rTxAGC_B_Mcs15_Mcs12, bMaskByte1, PowerIndex); break; case MGN_MCS14: phy_set_bb_reg(Adapter, rTxAGC_B_Mcs15_Mcs12, bMaskByte2, PowerIndex); break; case MGN_MCS15: phy_set_bb_reg(Adapter, rTxAGC_B_Mcs15_Mcs12, bMaskByte3, PowerIndex); break; default: RTW_INFO("Invalid Rate!!\n"); break; } } else RTW_INFO("Invalid RFPath!!\n"); } s8 tx_power_extra_bias( IN enum rf_path RFPath, IN u8 Rate, IN enum channel_width BandWidth, IN u8 Channel ) { s8 bias = 0; if (Rate == MGN_2M) bias = -9; return bias; } u8 PHY_GetTxPowerIndex_8188E( IN PADAPTER pAdapter, IN enum rf_path RFPath, IN u8 Rate, IN u8 BandWidth, IN u8 Channel, struct txpwr_idx_comp *tic ) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter); s16 power_idx; u8 base_idx = 0; s8 by_rate_diff = 0, limit = 0, tpt_offset = 0, extra_bias = 0; BOOLEAN bIn24G = _FALSE; base_idx = PHY_GetTxPowerIndexBase(pAdapter, RFPath, Rate, RF_1TX, BandWidth, Channel, &bIn24G); by_rate_diff = PHY_GetTxPowerByRate(pAdapter, BAND_ON_2_4G, RFPath, Rate); limit = PHY_GetTxPowerLimit(pAdapter, NULL, (u8)(!bIn24G), pHalData->current_channel_bw, RFPath, Rate, RF_1TX, pHalData->current_channel); tpt_offset = PHY_GetTxPowerTrackingOffset(pAdapter, RFPath, Rate); if (pAdapter->registrypriv.mp_mode != 1) extra_bias = tx_power_extra_bias(RFPath, Rate, BandWidth, Channel); if (tic) { tic->ntx_idx = RF_1TX; tic->base = base_idx; tic->by_rate = by_rate_diff; tic->limit = limit; tic->tpt = tpt_offset; tic->ebias = extra_bias; } by_rate_diff = by_rate_diff > limit ? limit : by_rate_diff; power_idx = base_idx + by_rate_diff + tpt_offset + extra_bias; if (power_idx < 0) power_idx = 0; else if (power_idx > MAX_POWER_INDEX) power_idx = MAX_POWER_INDEX; return power_idx; } /* * Description: * Update transmit power level of all channel supported. * * TODO: * A mode. * By Bruce, 2008-02-04. * */ BOOLEAN PHY_UpdateTxPowerDbm8188E( IN PADAPTER Adapter, IN int powerInDbm ) { return _TRUE; } VOID PHY_ScanOperationBackup8188E( IN PADAPTER Adapter, IN u8 Operation ) { #if 0 IO_TYPE IoType; if (!rtw_is_drv_stopped(padapter)) { switch (Operation) { case SCAN_OPT_BACKUP: IoType = IO_CMD_PAUSE_DM_BY_SCAN; rtw_hal_set_hwreg(Adapter, HW_VAR_IO_CMD, (pu1Byte)&IoType); break; case SCAN_OPT_RESTORE: IoType = IO_CMD_RESUME_DM_BY_SCAN; rtw_hal_set_hwreg(Adapter, HW_VAR_IO_CMD, (pu1Byte)&IoType); break; default: break; } } #endif } void phy_SpurCalibration_8188E( IN PADAPTER Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct dm_struct *p_dm_odm = &(pHalData->odmpriv); /* DbgPrint("===> phy_SpurCalibration_8188E current_channel_bw = %d, current_channel = %d\n", pHalData->current_channel_bw, pHalData->current_channel);*/ if (pHalData->current_channel_bw == CHANNEL_WIDTH_20 && (pHalData->current_channel == 13 || pHalData->current_channel == 14)) { phy_set_bb_reg(Adapter, rOFDM0_RxDSP, BIT(9), 0x1);/* enable notch filter */ phy_set_bb_reg(Adapter, rOFDM1_IntfDet, BIT(8) | BIT(7) | BIT(6), 0x2); /* intf_TH */ phy_set_bb_reg(Adapter, rOFDM0_RxDSP, BIT(28) | BIT(27) | BIT(26) | BIT(25) | BIT(24), 0x1f); p_dm_odm->is_receiver_blocking_en = false; } else if (pHalData->current_channel_bw == CHANNEL_WIDTH_40 && pHalData->current_channel == 11) { phy_set_bb_reg(Adapter, rOFDM0_RxDSP, BIT(9), 0x1);/* enable notch filter */ phy_set_bb_reg(Adapter, rOFDM1_IntfDet, BIT(8) | BIT(7) | BIT(6), 0x2); /* intf_TH */ phy_set_bb_reg(Adapter, rOFDM0_RxDSP, BIT(28) | BIT(27) | BIT(26) | BIT(25) | BIT(24), 0x1f); p_dm_odm->is_receiver_blocking_en = false; } else { if (Adapter->registrypriv.notch_filter == 0) phy_set_bb_reg(Adapter, rOFDM0_RxDSP, BIT(9), 0x0);/* disable notch filter */ } } /*----------------------------------------------------------------------------- * Function: PHY_SetBWModeCallback8192C() * * Overview: Timer callback function for SetSetBWMode * * Input: PRT_TIMER pTimer * * Output: NONE * * Return: NONE * * Note: (1) We do not take j mode into consideration now * (2) Will two workitem of "switch channel" and "switch channel bandwidth" run * concurrently? *---------------------------------------------------------------------------*/ static VOID _PHY_SetBWMode88E( IN PADAPTER Adapter ) { /* PADAPTER Adapter = (PADAPTER)pTimer->Adapter; */ HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 regBwOpMode; u8 regRRSR_RSC; /* return; */ /* Added it for 20/40 mhz switch time evaluation by guangan 070531 */ /* u4Byte NowL, NowH; */ /* u8Byte BeginTime, EndTime; */ if (pHalData->rf_chip == RF_PSEUDO_11N) { /* pHalData->SetBWModeInProgress= _FALSE; */ return; } /* There is no 40MHz mode in RF_8225. */ if (pHalData->rf_chip == RF_8225) return; if (rtw_is_drv_stopped(Adapter)) return; /* Added it for 20/40 mhz switch time evaluation by guangan 070531 */ /* NowL = PlatformEFIORead4Byte(Adapter, TSFR); */ /* NowH = PlatformEFIORead4Byte(Adapter, TSFR+4); */ /* BeginTime = ((u8Byte)NowH << 32) + NowL; */ /* 3 */ /* 3 */ /* <1>Set MAC register */ /* 3 */ /* Adapter->hal_func.SetBWModeHandler(); */ regBwOpMode = rtw_read8(Adapter, REG_BWOPMODE); regRRSR_RSC = rtw_read8(Adapter, REG_RRSR + 2); /* regBwOpMode = rtw_hal_get_hwreg(Adapter,HW_VAR_BWMODE,(pu1Byte)®BwOpMode); */ switch (pHalData->current_channel_bw) { case CHANNEL_WIDTH_20: regBwOpMode |= BW_OPMODE_20MHZ; /* 2007/02/07 Mark by Emily becasue we have not verify whether this register works */ rtw_write8(Adapter, REG_BWOPMODE, regBwOpMode); break; case CHANNEL_WIDTH_40: regBwOpMode &= ~BW_OPMODE_20MHZ; /* 2007/02/07 Mark by Emily becasue we have not verify whether this register works */ rtw_write8(Adapter, REG_BWOPMODE, regBwOpMode); regRRSR_RSC = (regRRSR_RSC & 0x90) | (pHalData->nCur40MhzPrimeSC << 5); rtw_write8(Adapter, REG_RRSR + 2, regRRSR_RSC); break; default: break; } /* 3 */ /* 3 */ /* <2>Set PHY related register */ /* 3 */ switch (pHalData->current_channel_bw) { /* 20 MHz channel*/ case CHANNEL_WIDTH_20: phy_set_bb_reg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x0); phy_set_bb_reg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x0); /* phy_set_bb_reg(Adapter, rFPGA0_AnalogParameter2, BIT10, 1); */ break; /* 40 MHz channel*/ case CHANNEL_WIDTH_40: phy_set_bb_reg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x1); phy_set_bb_reg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x1); /* Set Control channel to upper or lower. These settings are required only for 40MHz */ phy_set_bb_reg(Adapter, rCCK0_System, bCCKSideBand, (pHalData->nCur40MhzPrimeSC >> 1)); phy_set_bb_reg(Adapter, rOFDM1_LSTF, 0xC00, pHalData->nCur40MhzPrimeSC); /* phy_set_bb_reg(Adapter, rFPGA0_AnalogParameter2, BIT10, 0); */ phy_set_bb_reg(Adapter, 0x818, (BIT26 | BIT27), (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1); break; default: break; } /* Skip over setting of J-mode in BB register here. Default value is "None J mode". Emily 20070315 */ /* Added it for 20/40 mhz switch time evaluation by guangan 070531 */ /* NowL = PlatformEFIORead4Byte(Adapter, TSFR); */ /* NowH = PlatformEFIORead4Byte(Adapter, TSFR+4); */ /* EndTime = ((u8Byte)NowH << 32) + NowL; */ /* 3<3>Set RF related register */ switch (pHalData->rf_chip) { case RF_8225: /* PHY_SetRF8225Bandwidth(Adapter, pHalData->current_channel_bw); */ break; case RF_8256: /* Please implement this function in Hal8190PciPhy8256.c */ /* PHY_SetRF8256Bandwidth(Adapter, pHalData->current_channel_bw); */ break; case RF_8258: /* Please implement this function in Hal8190PciPhy8258.c */ /* PHY_SetRF8258Bandwidth(); */ break; case RF_PSEUDO_11N: /* Do Nothing */ break; case RF_6052: rtl8188e_PHY_RF6052SetBandwidth(Adapter, pHalData->current_channel_bw); break; default: /* RT_ASSERT(FALSE, ("Unknown RFChipID: %d\n", pHalData->RFChipID)); */ break; } /* pHalData->SetBWModeInProgress= FALSE; */ } #if 0 /* ----------------------------------------------------------------------------- * * Function: SetBWMode8190Pci() * * * * Overview: This function is export to "HalCommon" moudule * * * * Input: PADAPTER Adapter * * CHANNEL_WIDTH Bandwidth 20M or 40M * * * * Output: NONE * * * * Return: NONE * * * * Note: We do not take j mode into consideration now * *--------------------------------------------------------------------------- */ #endif VOID PHY_SetBWMode8188E( IN PADAPTER Adapter, IN enum channel_width Bandwidth, /* 20M or 40M */ IN unsigned char Offset /* Upper, Lower, or Don't care */ ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); enum channel_width tmpBW = pHalData->current_channel_bw; /* Modified it for 20/40 mhz switch by guangan 070531 */ /* PMGNT_INFO pMgntInfo=&Adapter->MgntInfo; */ /* return; */ /* if(pHalData->SwChnlInProgress) * if(pMgntInfo->bScanInProgress) * { * return; * } */ /* if(pHalData->SetBWModeInProgress) * { * */ /* Modified it for 20/40 mhz switch by guangan 070531 * PlatformCancelTimer(Adapter, &pHalData->SetBWModeTimer); * */ /* return; * } */ /* if(pHalData->SetBWModeInProgress) */ /* return; */ /* pHalData->SetBWModeInProgress= TRUE; */ pHalData->current_channel_bw = Bandwidth; #if 0 if (Offset == EXTCHNL_OFFSET_LOWER) pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_UPPER; else if (Offset == EXTCHNL_OFFSET_UPPER) pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_LOWER; else pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_DONT_CARE; #else pHalData->nCur40MhzPrimeSC = Offset; #endif if (!RTW_CANNOT_RUN(Adapter)) { #if 0 /* PlatformSetTimer(Adapter, &(pHalData->SetBWModeTimer), 0); */ #else _PHY_SetBWMode88E(Adapter); #endif #if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI) if (IS_VENDOR_8188E_I_CUT_SERIES(Adapter)) phy_SpurCalibration_8188E(Adapter); #endif } else { /* pHalData->SetBWModeInProgress= FALSE; */ pHalData->current_channel_bw = tmpBW; } } static void _PHY_SwChnl8188E(PADAPTER Adapter, u8 channel) { enum rf_path eRFPath; u32 param1, param2; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); if (Adapter->bNotifyChannelChange) RTW_INFO("[%s] ch = %d\n", __FUNCTION__, channel); /* s1. pre common command - CmdID_SetTxPowerLevel */ PHY_SetTxPowerLevel8188E(Adapter, channel); /* s2. RF dependent command - CmdID_RF_WriteReg, param1=RF_CHNLBW, param2=channel */ param1 = RF_CHNLBW; param2 = channel; for (eRFPath = RF_PATH_A; eRFPath < pHalData->NumTotalRFPath; eRFPath++) { pHalData->RfRegChnlVal[eRFPath] = ((pHalData->RfRegChnlVal[eRFPath] & 0xfffffc00) | param2); phy_set_rf_reg(Adapter, eRFPath, param1, bRFRegOffsetMask, pHalData->RfRegChnlVal[eRFPath]); } /* s3. post common command - CmdID_End, None */ } VOID PHY_SwChnl8188E(/* Call after initialization */ IN PADAPTER Adapter, IN u8 channel ) { /* PADAPTER Adapter = ADJUST_TO_ADAPTIVE_ADAPTER(pAdapter, _TRUE); */ HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 tmpchannel = pHalData->current_channel; BOOLEAN bResult = _TRUE; if (pHalData->rf_chip == RF_PSEUDO_11N) { /* pHalData->SwChnlInProgress=FALSE; */ return; /* return immediately if it is peudo-phy */ } /* if(pHalData->SwChnlInProgress) */ /* return; */ /* if(pHalData->SetBWModeInProgress) */ /* return; */ while (pHalData->odmpriv.rf_calibrate_info.is_lck_in_progress) rtw_msleep_os(50); /* -------------------------------------------- */ switch (pHalData->CurrentWirelessMode) { case WIRELESS_MODE_A: case WIRELESS_MODE_N_5G: /* RT_ASSERT((channel>14), ("WIRELESS_MODE_A but channel<=14")); */ break; case WIRELESS_MODE_B: /* RT_ASSERT((channel<=14), ("WIRELESS_MODE_B but channel>14")); */ break; case WIRELESS_MODE_G: case WIRELESS_MODE_N_24G: /* RT_ASSERT((channel<=14), ("WIRELESS_MODE_G but channel>14")); */ break; default: /* RT_ASSERT(FALSE, ("Invalid WirelessMode(%#x)!!\n", pHalData->CurrentWirelessMode)); */ break; } /* -------------------------------------------- */ /* pHalData->SwChnlInProgress = TRUE; */ if (channel == 0) channel = 1; pHalData->current_channel = channel; /* pHalData->SwChnlStage=0; */ /* pHalData->SwChnlStep=0; */ if (!RTW_CANNOT_RUN(Adapter)) { #if 0 /* PlatformSetTimer(Adapter, &(pHalData->SwChnlTimer), 0); */ #else _PHY_SwChnl8188E(Adapter, channel); #endif #if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI) if (IS_VENDOR_8188E_I_CUT_SERIES(Adapter)) phy_SpurCalibration_8188E(Adapter); #endif if (!bResult) { /* if(IS_HARDWARE_TYPE_8192SU(Adapter)) */ /* { */ /* pHalData->SwChnlInProgress = FALSE; */ pHalData->current_channel = tmpchannel; /* } */ } } else { /* if(IS_HARDWARE_TYPE_8192SU(Adapter)) */ /* { */ /* pHalData->SwChnlInProgress = FALSE; */ pHalData->current_channel = tmpchannel; /* } */ } } VOID PHY_SetSwChnlBWMode8188E( IN PADAPTER Adapter, IN u8 channel, IN enum channel_width Bandwidth, IN u8 Offset40, IN u8 Offset80 ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); /* RTW_INFO("%s()===>\n",__FUNCTION__); */ PHY_SwChnl8188E(Adapter, channel); PHY_SetBWMode8188E(Adapter, Bandwidth, Offset40); if (pHalData->bNeedIQK == _TRUE) { if (pHalData->neediqk_24g == _TRUE) { halrf_iqk_trigger(&pHalData->odmpriv, _FALSE); pHalData->bIQKInitialized = _TRUE; pHalData->neediqk_24g = _FALSE; } pHalData->bNeedIQK = _FALSE; } /* RTW_INFO("<==%s()\n",__FUNCTION__); */ } static VOID _PHY_SetRFPathSwitch( IN PADAPTER pAdapter, IN BOOLEAN bMain, IN BOOLEAN is2T ) { u8 u1bTmp; if (!rtw_is_hw_init_completed(pAdapter)) { u1bTmp = rtw_read8(pAdapter, REG_LEDCFG2) | BIT7; rtw_write8(pAdapter, REG_LEDCFG2, u1bTmp); /* phy_set_bb_reg(pAdapter, REG_LEDCFG0, BIT23, 0x01); */ phy_set_bb_reg(pAdapter, rFPGA0_XAB_RFParameter, BIT13, 0x01); } if (is2T) { if (bMain) phy_set_bb_reg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT5 | BIT6, 0x1); /* 92C_Path_A */ else phy_set_bb_reg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT5 | BIT6, 0x2); /* BT */ } else { if (bMain) phy_set_bb_reg(pAdapter, rFPGA0_XA_RFInterfaceOE, 0x300, 0x2); /* Main */ else phy_set_bb_reg(pAdapter, rFPGA0_XA_RFInterfaceOE, 0x300, 0x1); /* Aux */ } } /* return value TRUE => Main; FALSE => Aux */ static BOOLEAN _PHY_QueryRFPathSwitch( IN PADAPTER pAdapter, IN BOOLEAN is2T ) { /* if(is2T) * return _TRUE; */ if (!rtw_is_hw_init_completed(pAdapter)) { phy_set_bb_reg(pAdapter, REG_LEDCFG0, BIT23, 0x01); phy_set_bb_reg(pAdapter, rFPGA0_XAB_RFParameter, BIT13, 0x01); } if (is2T) { if (phy_query_bb_reg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT5 | BIT6) == 0x01) return _TRUE; else return _FALSE; } else { if (phy_query_bb_reg(pAdapter, rFPGA0_XA_RFInterfaceOE, 0x300) == 0x02) return _TRUE; else return _FALSE; } } static VOID _PHY_DumpRFReg(IN PADAPTER pAdapter) { u32 rfRegValue, rfRegOffset; /* RTPRINT(FINIT, INIT_RF, ("PHY_DumpRFReg()====>\n")); */ for (rfRegOffset = 0x00; rfRegOffset <= 0x30; rfRegOffset++) { rfRegValue = phy_query_rf_reg(pAdapter, RF_PATH_A, rfRegOffset, bMaskDWord); /* RTPRINT(FINIT, INIT_RF, (" 0x%02x = 0x%08x\n",rfRegOffset,rfRegValue)); */ } /* RTPRINT(FINIT, INIT_RF, ("<===== PHY_DumpRFReg()\n")); */ } /* * Move from phycfg.c to gen.c to be code independent later * * -------------------------Move to other DIR later---------------------------- */ #ifdef CONFIG_USB_HCI /* * Description: * To dump all Tx FIFO LLT related link-list table. * Added by Roger, 2009.03.10. * */ VOID DumpBBDbgPort_92CU( IN PADAPTER Adapter ) { phy_set_bb_reg(Adapter, 0x0908, 0xffff, 0x0000); phy_set_bb_reg(Adapter, 0x0908, 0xffff, 0x0803); phy_set_bb_reg(Adapter, 0x0908, 0xffff, 0x0a06); phy_set_bb_reg(Adapter, 0x0908, 0xffff, 0x0007); phy_set_bb_reg(Adapter, 0x0908, 0xffff, 0x0100); phy_set_bb_reg(Adapter, 0x0a28, 0x00ff0000, 0x000f0000); phy_set_bb_reg(Adapter, 0x0908, 0xffff, 0x0100); phy_set_bb_reg(Adapter, 0x0a28, 0x00ff0000, 0x00150000); } #endif VOID PHY_SetRFEReg_8188E( IN PADAPTER Adapter ) { u8 u1tmp = 0; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); if ((pHalData->ExternalPA_2G == 0) && (pHalData->ExternalLNA_2G == 0)) return; switch (pHalData->rfe_type) { /* 88EU rfe_type should always be 0 */ case 0: default: phy_set_bb_reg(Adapter, 0x40, BIT2|BIT3, 0x3); /*0x3 << 2*/ phy_set_bb_reg(Adapter, 0xEE8, BIT28, 0x1); phy_set_bb_reg(Adapter, 0x87C, BIT0, 0x0); break; } }