/****************************************************************************** * * Copyright(c) 2007 - 2017 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * *****************************************************************************/ #define _HAL_INIT_C_ #include #include #ifdef CONFIG_SFW_SUPPORTED #include "hal8188e_s_fw.h" #endif #include "hal8188e_t_fw.h" #if defined(CONFIG_IOL) static void iol_mode_enable(PADAPTER padapter, u8 enable) { u8 reg_0xf0 = 0; if (enable) { /* Enable initial offload */ reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG); /* RTW_INFO("%s reg_0xf0:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0xf0, reg_0xf0|SW_OFFLOAD_EN); */ rtw_write8(padapter, REG_SYS_CFG, reg_0xf0 | SW_OFFLOAD_EN); if (GET_HAL_DATA(padapter)->bFWReady == _FALSE) { printk("bFWReady == _FALSE call reset 8051...\n"); _8051Reset88E(padapter); } } else { /* disable initial offload */ reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG); /* RTW_INFO("%s reg_0xf0:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0xf0, reg_0xf0& ~SW_OFFLOAD_EN); */ rtw_write8(padapter, REG_SYS_CFG, reg_0xf0 & ~SW_OFFLOAD_EN); } } static s32 iol_execute(PADAPTER padapter, u8 control) { s32 status = _FAIL; u8 reg_0x88 = 0, reg_1c7 = 0; systime start = 0; u32 passing_time = 0; systime t1, t2; control = control & 0x0f; reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0); /* RTW_INFO("%s reg_0x88:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0x88, reg_0x88|control); */ rtw_write8(padapter, REG_HMEBOX_E0, reg_0x88 | control); t1 = start = rtw_get_current_time(); while ( /* (reg_1c7 = rtw_read8(padapter, 0x1c7) >1) && */ (reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0)) & control && (passing_time = rtw_get_passing_time_ms(start)) < 1000 ) { /* RTW_INFO("%s polling reg_0x88:0x%02x,reg_0x1c7:0x%02x\n", __FUNCTION__, reg_0x88,rtw_read8(padapter, 0x1c7) ); */ /* rtw_udelay_os(100); */ } reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0); status = (reg_0x88 & control) ? _FAIL : _SUCCESS; if (reg_0x88 & control << 4) status = _FAIL; t2 = rtw_get_current_time(); /* printk("==> step iol_execute : %5u reg-0x1c0= 0x%02x\n",rtw_get_time_interval_ms(t1,t2),rtw_read8(padapter, 0x1c0)); */ /* RTW_INFO("%s in %u ms, reg_0x88:0x%02x\n", __FUNCTION__, passing_time, reg_0x88); */ return status; } static s32 iol_InitLLTTable( PADAPTER padapter, u8 txpktbuf_bndy ) { s32 rst = _SUCCESS; iol_mode_enable(padapter, 1); /* RTW_INFO("%s txpktbuf_bndy:%u\n", __FUNCTION__, txpktbuf_bndy); */ rtw_write8(padapter, REG_TDECTRL + 1, txpktbuf_bndy); rst = iol_execute(padapter, CMD_INIT_LLT); iol_mode_enable(padapter, 0); return rst; } static VOID efuse_phymap_to_logical(u8 *phymap, u16 _offset, u16 _size_byte, u8 *pbuf) { u8 *efuseTbl = NULL; u8 rtemp8; u16 eFuse_Addr = 0; u8 offset, wren; u16 i, j; u16 **eFuseWord = NULL; u16 efuse_utilized = 0; u8 efuse_usage = 0; u8 u1temp = 0; efuseTbl = (u8 *)rtw_zmalloc(EFUSE_MAP_LEN_88E); if (efuseTbl == NULL) { RTW_INFO("%s: alloc efuseTbl fail!\n", __FUNCTION__); goto exit; } eFuseWord = (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, 2); if (eFuseWord == NULL) { RTW_INFO("%s: alloc eFuseWord fail!\n", __FUNCTION__); goto exit; } /* 0. Refresh efuse init map as all oxFF. */ for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) eFuseWord[i][j] = 0xFFFF; /* */ /* 1. Read the first byte to check if efuse is empty!!! */ /* */ /* */ rtemp8 = *(phymap + eFuse_Addr); if (rtemp8 != 0xFF) { efuse_utilized++; /* printk("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8); */ eFuse_Addr++; } else { RTW_INFO("EFUSE is empty efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, rtemp8); goto exit; } /* */ /* 2. Read real efuse content. Filter PG header and every section data. */ /* */ while ((rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) { /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr-1, *rtemp8)); */ /* Check PG header for section num. */ if ((rtemp8 & 0x1F) == 0x0F) { /* extended header */ u1temp = ((rtemp8 & 0xE0) >> 5); /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x *rtemp&0xE0 0x%x\n", u1temp, *rtemp8 & 0xE0)); */ /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x\n", u1temp)); */ rtemp8 = *(phymap + eFuse_Addr); /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8)); */ if ((rtemp8 & 0x0F) == 0x0F) { eFuse_Addr++; rtemp8 = *(phymap + eFuse_Addr); if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) eFuse_Addr++; continue; } else { offset = ((rtemp8 & 0xF0) >> 1) | u1temp; wren = (rtemp8 & 0x0F); eFuse_Addr++; } } else { offset = ((rtemp8 >> 4) & 0x0f); wren = (rtemp8 & 0x0f); } if (offset < EFUSE_MAX_SECTION_88E) { /* Get word enable value from PG header */ /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Offset-%d Worden=%x\n", offset, wren)); */ for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { /* Check word enable condition in the section */ if (!(wren & 0x01)) { /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d\n", eFuse_Addr)); */ rtemp8 = *(phymap + eFuse_Addr); eFuse_Addr++; /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8)); */ efuse_utilized++; eFuseWord[offset][i] = (rtemp8 & 0xff); if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E) break; /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d", eFuse_Addr)); */ rtemp8 = *(phymap + eFuse_Addr); eFuse_Addr++; /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8)); */ efuse_utilized++; eFuseWord[offset][i] |= (((u2Byte)rtemp8 << 8) & 0xff00); if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E) break; } wren >>= 1; } } /* Read next PG header */ rtemp8 = *(phymap + eFuse_Addr); /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d rtemp 0x%x\n", eFuse_Addr, *rtemp8)); */ if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) { efuse_utilized++; eFuse_Addr++; } } /* */ /* 3. Collect 16 sections and 4 word unit into Efuse map. */ /* */ for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) { for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) { efuseTbl[(i * 8) + (j * 2)] = (eFuseWord[i][j] & 0xff); efuseTbl[(i * 8) + ((j * 2) + 1)] = ((eFuseWord[i][j] >> 8) & 0xff); } } /* */ /* 4. Copy from Efuse map to output pointer memory!!! */ /* */ for (i = 0; i < _size_byte; i++) pbuf[i] = efuseTbl[_offset + i]; /* */ /* 5. Calculate Efuse utilization. */ /* */ efuse_usage = (u1Byte)((efuse_utilized * 100) / EFUSE_REAL_CONTENT_LEN_88E); /* rtw_hal_set_hwreg(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_utilized); */ exit: if (efuseTbl) rtw_mfree(efuseTbl, EFUSE_MAP_LEN_88E); if (eFuseWord) rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16)); } void efuse_read_phymap_from_txpktbuf( ADAPTER *adapter, int bcnhead, /* beacon head, where FW store len(2-byte) and efuse physical map. */ u8 *content, /* buffer to store efuse physical map */ u16 *size /* for efuse content: the max byte to read. will update to byte read */ ) { u16 dbg_addr = 0; systime start = 0; u32 passing_time = 0; u8 reg_0x143 = 0; u8 reg_0x106 = 0; u32 lo32 = 0, hi32 = 0; u16 len = 0, count = 0; int i = 0; u16 limit = *size; u8 *pos = content; if (bcnhead < 0) /* if not valid */ bcnhead = rtw_read8(adapter, REG_TDECTRL + 1); RTW_INFO("%s bcnhead:%d\n", __FUNCTION__, bcnhead); /* reg_0x106 = rtw_read8(adapter, REG_PKT_BUFF_ACCESS_CTRL); */ /* RTW_INFO("%s reg_0x106:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0x106, 0x69); */ rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT); /* RTW_INFO("%s reg_0x106:0x%02x\n", __FUNCTION__, rtw_read8(adapter, 0x106)); */ dbg_addr = bcnhead * 128 / 8; /* 8-bytes addressing */ while (1) { /* RTW_INFO("%s dbg_addr:0x%x\n", __FUNCTION__, dbg_addr+i); */ rtw_write16(adapter, REG_PKTBUF_DBG_ADDR, dbg_addr + i); /* RTW_INFO("%s write reg_0x143:0x00\n", __FUNCTION__); */ rtw_write8(adapter, REG_TXPKTBUF_DBG, 0); start = rtw_get_current_time(); while (!(reg_0x143 = rtw_read8(adapter, REG_TXPKTBUF_DBG)) /* dbg */ /* while(rtw_read8(adapter, REG_TXPKTBUF_DBG) & BIT0 */ && (passing_time = rtw_get_passing_time_ms(start)) < 1000 ) { RTW_INFO("%s polling reg_0x143:0x%02x, reg_0x106:0x%02x\n", __FUNCTION__, reg_0x143, rtw_read8(adapter, 0x106)); rtw_usleep_os(100); } lo32 = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_L); hi32 = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_H); #if 0 RTW_INFO("%s lo32:0x%08x, %02x %02x %02x %02x\n", __FUNCTION__, lo32 , rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L) , rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L + 1) , rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L + 2) , rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L + 3) ); RTW_INFO("%s hi32:0x%08x, %02x %02x %02x %02x\n", __FUNCTION__, hi32 , rtw_read8(adapter, REG_PKTBUF_DBG_DATA_H) , rtw_read8(adapter, REG_PKTBUF_DBG_DATA_H + 1) , rtw_read8(adapter, REG_PKTBUF_DBG_DATA_H + 2) , rtw_read8(adapter, REG_PKTBUF_DBG_DATA_H + 3) ); #endif if (i == 0) { #if 1 /* for debug */ u8 lenc[2]; u16 lenbak, aaabak; u16 aaa; lenc[0] = rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L); lenc[1] = rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L + 1); aaabak = le16_to_cpup((u16 *)lenc); lenbak = le16_to_cpu(*((u16 *)lenc)); aaa = le16_to_cpup((u16 *)&lo32); #endif len = le16_to_cpu(*((u16 *)&lo32)); limit = (len - 2 < limit) ? len - 2 : limit; RTW_INFO("%s len:%u, lenbak:%u, aaa:%u, aaabak:%u\n", __FUNCTION__, len, lenbak, aaa, aaabak); _rtw_memcpy(pos, ((u8 *)&lo32) + 2, (limit >= count + 2) ? 2 : limit - count); count += (limit >= count + 2) ? 2 : limit - count; pos = content + count; } else { _rtw_memcpy(pos, ((u8 *)&lo32), (limit >= count + 4) ? 4 : limit - count); count += (limit >= count + 4) ? 4 : limit - count; pos = content + count; } if (limit > count && len - 2 > count) { _rtw_memcpy(pos, (u8 *)&hi32, (limit >= count + 4) ? 4 : limit - count); count += (limit >= count + 4) ? 4 : limit - count; pos = content + count; } if (limit <= count || len - 2 <= count) break; i++; } rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, DISABLE_TRXPKT_BUF_ACCESS); RTW_INFO("%s read count:%u\n", __FUNCTION__, count); *size = count; } static s32 iol_read_efuse( PADAPTER padapter, u8 txpktbuf_bndy, u16 offset, u16 size_byte, u8 *logical_map ) { s32 status = _FAIL; u8 reg_0x106 = 0; u8 physical_map[512]; u16 size = 512; int i; rtw_write8(padapter, REG_TDECTRL + 1, txpktbuf_bndy); _rtw_memset(physical_map, 0xFF, 512); /* /reg_0x106 = rtw_read8(padapter, REG_PKT_BUFF_ACCESS_CTRL); */ /* RTW_INFO("%s reg_0x106:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0x106, 0x69); */ rtw_write8(padapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT); /* RTW_INFO("%s reg_0x106:0x%02x\n", __FUNCTION__, rtw_read8(padapter, 0x106)); */ status = iol_execute(padapter, CMD_READ_EFUSE_MAP); if (status == _SUCCESS) efuse_read_phymap_from_txpktbuf(padapter, txpktbuf_bndy, physical_map, &size); #if 0 RTW_PRINT("%s physical map\n", __FUNCTION__); for (i = 0; i < size; i++) { if (i % 16 == 0) RTW_PRINT("%02x", physical_map[i]); else _RTW_PRINT("%02x", physical_map[i]); if (i % 16 == 7) _RTW_PRINT(" "); else if (i % 16 == 15) _RTW_PRINT("\n"); else _RTW_PRINT(" "); } _RTW_PRINT("\n"); #endif efuse_phymap_to_logical(physical_map, offset, size_byte, logical_map); return status; } s32 rtl8188e_iol_efuse_patch(PADAPTER padapter) { s32 result = _SUCCESS; printk("==> %s\n", __FUNCTION__); if (rtw_IOL_applied(padapter)) { iol_mode_enable(padapter, 1); result = iol_execute(padapter, CMD_READ_EFUSE_MAP); if (result == _SUCCESS) result = iol_execute(padapter, CMD_EFUSE_PATCH); iol_mode_enable(padapter, 0); } return result; } static s32 iol_ioconfig( PADAPTER padapter, u8 iocfg_bndy ) { s32 rst = _SUCCESS; /* RTW_INFO("%s iocfg_bndy:%u\n", __FUNCTION__, iocfg_bndy); */ rtw_write8(padapter, REG_TDECTRL + 1, iocfg_bndy); rst = iol_execute(padapter, CMD_IOCONFIG); return rst; } int rtl8188e_IOL_exec_cmds_sync(ADAPTER *adapter, struct xmit_frame *xmit_frame, u32 max_wating_ms, u32 bndy_cnt) { systime start_time = rtw_get_current_time(); u32 passing_time_ms; u8 polling_ret, i; int ret = _FAIL; systime t1, t2; /* printk("===> %s ,bndy_cnt = %d\n",__FUNCTION__,bndy_cnt); */ if (rtw_IOL_append_END_cmd(xmit_frame) != _SUCCESS) goto exit; #ifdef CONFIG_USB_HCI { struct pkt_attrib *pattrib = &xmit_frame->attrib; if (rtw_usb_bulk_size_boundary(adapter, TXDESC_SIZE + pattrib->last_txcmdsz)) { if (rtw_IOL_append_END_cmd(xmit_frame) != _SUCCESS) goto exit; } } #endif /* CONFIG_USB_HCI */ /* rtw_IOL_cmd_buf_dump(adapter,xmit_frame->attrib.pktlen+TXDESC_OFFSET,xmit_frame->buf_addr); */ /* rtw_hal_mgnt_xmit(adapter, xmit_frame); */ /* rtw_dump_xframe_sync(adapter, xmit_frame); */ dump_mgntframe_and_wait(adapter, xmit_frame, max_wating_ms); t1 = rtw_get_current_time(); iol_mode_enable(adapter, 1); for (i = 0; i < bndy_cnt; i++) { u8 page_no = 0; page_no = i * 2 ; /* printk(" i = %d, page_no = %d\n",i,page_no); */ ret = iol_ioconfig(adapter, page_no); if (ret != _SUCCESS) break; } iol_mode_enable(adapter, 0); t2 = rtw_get_current_time(); /* printk("==> %s : %5u\n",__FUNCTION__,rtw_get_time_interval_ms(t1,t2)); */ exit: /* restore BCN_HEAD */ rtw_write8(adapter, REG_TDECTRL + 1, 0); return ret; } void rtw_IOL_cmd_tx_pkt_buf_dump(ADAPTER *Adapter, int data_len) { u32 fifo_data, reg_140; u32 addr, rstatus, loop = 0; u16 data_cnts = (data_len / 8) + 1; u8 *pbuf = rtw_zvmalloc(data_len + 10); printk("###### %s ######\n", __FUNCTION__); rtw_write8(Adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT); if (pbuf) { for (addr = 0; addr < data_cnts; addr++) { /* printk("==> addr:0x%02x\n",addr); */ rtw_write32(Adapter, 0x140, addr); rtw_usleep_os(2); loop = 0; do { rstatus = (reg_140 = rtw_read32(Adapter, REG_PKTBUF_DBG_CTRL) & BIT24); /* printk("rstatus = %02x, reg_140:0x%08x\n",rstatus,reg_140); */ if (rstatus) { fifo_data = rtw_read32(Adapter, REG_PKTBUF_DBG_DATA_L); /* printk("fifo_data_144:0x%08x\n",fifo_data); */ _rtw_memcpy(pbuf + (addr * 8), &fifo_data , 4); fifo_data = rtw_read32(Adapter, REG_PKTBUF_DBG_DATA_H); /* printk("fifo_data_148:0x%08x\n",fifo_data); */ _rtw_memcpy(pbuf + (addr * 8 + 4), &fifo_data, 4); } rtw_usleep_os(2); } while (!rstatus && (loop++ < 10)); } rtw_IOL_cmd_buf_dump(Adapter, data_len, pbuf); rtw_vmfree(pbuf, data_len + 10); } printk("###### %s ######\n", __FUNCTION__); } #endif /* defined(CONFIG_IOL) */ static VOID _FWDownloadEnable_8188E( IN PADAPTER padapter, IN BOOLEAN enable ) { u8 tmp; if (enable) { /* MCU firmware download enable. */ tmp = rtw_read8(padapter, REG_MCUFWDL); rtw_write8(padapter, REG_MCUFWDL, tmp | 0x01); /* 8051 reset */ tmp = rtw_read8(padapter, REG_MCUFWDL + 2); rtw_write8(padapter, REG_MCUFWDL + 2, tmp & 0xf7); } else { /* MCU firmware download disable. */ tmp = rtw_read8(padapter, REG_MCUFWDL); rtw_write8(padapter, REG_MCUFWDL, tmp & 0xfe); /* Reserved for fw extension. */ rtw_write8(padapter, REG_MCUFWDL + 1, 0x00); } } #define MAX_REG_BOLCK_SIZE 196 static int _BlockWrite( IN PADAPTER padapter, IN PVOID buffer, IN u32 buffSize ) { int ret = _SUCCESS; u32 blockSize_p1 = 4; /* (Default) Phase #1 : PCI muse use 4-byte write to download FW */ u32 blockSize_p2 = 8; /* Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */ u32 blockSize_p3 = 1; /* Phase #3 : Use 1-byte, the remnant of FW image. */ u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0; u32 remainSize_p1 = 0, remainSize_p2 = 0; u8 *bufferPtr = (u8 *)buffer; u32 i = 0, offset = 0; #ifdef CONFIG_PCI_HCI u8 remainFW[4] = {0, 0, 0, 0}; u8 *p = NULL; #endif #ifdef CONFIG_USB_HCI blockSize_p1 = MAX_REG_BOLCK_SIZE; #endif /* 3 Phase #1 */ blockCount_p1 = buffSize / blockSize_p1; remainSize_p1 = buffSize % blockSize_p1; for (i = 0; i < blockCount_p1; i++) { #ifdef CONFIG_USB_HCI ret = rtw_writeN(padapter, (FW_8188E_START_ADDRESS + i * blockSize_p1), blockSize_p1, (bufferPtr + i * blockSize_p1)); #else ret = rtw_write32(padapter, (FW_8188E_START_ADDRESS + i * blockSize_p1), le32_to_cpu(*((u32 *)(bufferPtr + i * blockSize_p1)))); #endif if (ret == _FAIL) goto exit; } #ifdef CONFIG_PCI_HCI p = (u8 *)((u32 *)(bufferPtr + blockCount_p1 * blockSize_p1)); if (remainSize_p1) { switch (remainSize_p1) { case 0: break; case 3: remainFW[2] = *(p + 2); case 2: remainFW[1] = *(p + 1); case 1: remainFW[0] = *(p); ret = rtw_write32(padapter, (FW_8188E_START_ADDRESS + blockCount_p1 * blockSize_p1), le32_to_cpu(*(u32 *)remainFW)); } return ret; } #endif /* 3 Phase #2 */ if (remainSize_p1) { offset = blockCount_p1 * blockSize_p1; blockCount_p2 = remainSize_p1 / blockSize_p2; remainSize_p2 = remainSize_p1 % blockSize_p2; #ifdef CONFIG_USB_HCI for (i = 0; i < blockCount_p2; i++) { ret = rtw_writeN(padapter, (FW_8188E_START_ADDRESS + offset + i * blockSize_p2), blockSize_p2, (bufferPtr + offset + i * blockSize_p2)); if (ret == _FAIL) goto exit; } #endif } /* 3 Phase #3 */ if (remainSize_p2) { offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2); blockCount_p3 = remainSize_p2 / blockSize_p3; for (i = 0 ; i < blockCount_p3 ; i++) { ret = rtw_write8(padapter, (FW_8188E_START_ADDRESS + offset + i), *(bufferPtr + offset + i)); if (ret == _FAIL) goto exit; } } exit: return ret; } static int _PageWrite( IN PADAPTER padapter, IN u32 page, IN PVOID buffer, IN u32 size ) { u8 value8; u8 u8Page = (u8)(page & 0x07) ; value8 = (rtw_read8(padapter, REG_MCUFWDL + 2) & 0xF8) | u8Page ; rtw_write8(padapter, REG_MCUFWDL + 2, value8); return _BlockWrite(padapter, buffer, size); } static VOID _FillDummy( u8 *pFwBuf, u32 *pFwLen ) { u32 FwLen = *pFwLen; u8 remain = (u8)(FwLen % 4); remain = (remain == 0) ? 0 : (4 - remain); while (remain > 0) { pFwBuf[FwLen] = 0; FwLen++; remain--; } *pFwLen = FwLen; } static int _WriteFW( IN PADAPTER padapter, IN PVOID buffer, IN u32 size ) { /* Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */ int ret = _SUCCESS; u32 pageNums, remainSize ; u32 page, offset; u8 *bufferPtr = (u8 *)buffer; #ifdef CONFIG_PCI_HCI /* 20100120 Joseph: Add for 88CE normal chip. */ /* Fill in zero to make firmware image to dword alignment. * _FillDummy(bufferPtr, &size); */ #endif pageNums = size / MAX_DLFW_PAGE_SIZE ; /* RT_ASSERT((pageNums <= 4), ("Page numbers should not greater then 4\n")); */ remainSize = size % MAX_DLFW_PAGE_SIZE; for (page = 0; page < pageNums; page++) { offset = page * MAX_DLFW_PAGE_SIZE; ret = _PageWrite(padapter, page, bufferPtr + offset, MAX_DLFW_PAGE_SIZE); if (ret == _FAIL) goto exit; } if (remainSize) { offset = pageNums * MAX_DLFW_PAGE_SIZE; page = pageNums; ret = _PageWrite(padapter, page, bufferPtr + offset, remainSize); if (ret == _FAIL) goto exit; } exit: return ret; } void _MCUIO_Reset88E(PADAPTER padapter, u8 bReset) { u8 u1bTmp; if (bReset == _TRUE) { u1bTmp = rtw_read8(padapter, REG_RSV_CTRL); rtw_write8(padapter, REG_RSV_CTRL, (u1bTmp & (~BIT1))); /* Reset MCU IO Wrapper- sugggest by SD1-Gimmy */ u1bTmp = rtw_read8(padapter, REG_RSV_CTRL + 1); rtw_write8(padapter, REG_RSV_CTRL + 1, (u1bTmp & (~BIT3))); } else { u1bTmp = rtw_read8(padapter, REG_RSV_CTRL); rtw_write8(padapter, REG_RSV_CTRL, (u1bTmp & (~BIT1))); /* Enable MCU IO Wrapper */ u1bTmp = rtw_read8(padapter, REG_RSV_CTRL + 1); rtw_write8(padapter, REG_RSV_CTRL + 1, u1bTmp | BIT3); } } void _8051Reset88E(PADAPTER padapter) { u8 u1bTmp; _MCUIO_Reset88E(padapter, _TRUE); u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN + 1); rtw_write8(padapter, REG_SYS_FUNC_EN + 1, u1bTmp & (~BIT2)); _MCUIO_Reset88E(padapter, _FALSE); rtw_write8(padapter, REG_SYS_FUNC_EN + 1, u1bTmp | (BIT2)); RTW_INFO("=====> _8051Reset88E(): 8051 reset success .\n"); } static s32 polling_fwdl_chksum(_adapter *adapter, u32 min_cnt, u32 timeout_ms) { s32 ret = _FAIL; u32 value32; systime start = rtw_get_current_time(); u32 cnt = 0; /* polling CheckSum report */ do { cnt++; value32 = rtw_read32(adapter, REG_MCUFWDL); if (value32 & FWDL_ChkSum_rpt || RTW_CANNOT_IO(adapter)) break; rtw_yield_os(); } while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt); if (!(value32 & FWDL_ChkSum_rpt)) goto exit; if (rtw_fwdl_test_trigger_chksum_fail()) goto exit; ret = _SUCCESS; exit: RTW_INFO("%s: Checksum report %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __FUNCTION__ , (ret == _SUCCESS) ? "OK" : "Fail", cnt, rtw_get_passing_time_ms(start), value32); return ret; } static s32 _FWFreeToGo(_adapter *adapter, u32 min_cnt, u32 timeout_ms) { s32 ret = _FAIL; u32 value32; systime start = rtw_get_current_time(); u32 cnt = 0; value32 = rtw_read32(adapter, REG_MCUFWDL); value32 |= MCUFWDL_RDY; value32 &= ~WINTINI_RDY; rtw_write32(adapter, REG_MCUFWDL, value32); _8051Reset88E(adapter); /* polling for FW ready */ do { cnt++; value32 = rtw_read32(adapter, REG_MCUFWDL); if (value32 & WINTINI_RDY || RTW_CANNOT_IO(adapter)) break; rtw_yield_os(); } while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt); if (!(value32 & WINTINI_RDY)) goto exit; if (rtw_fwdl_test_trigger_wintint_rdy_fail()) goto exit; ret = _SUCCESS; exit: RTW_INFO("%s: Polling FW ready %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __FUNCTION__ , (ret == _SUCCESS) ? "OK" : "Fail", cnt, rtw_get_passing_time_ms(start), value32); return ret; } #define IS_FW_81xxC(padapter) (((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0) #ifdef CONFIG_FILE_FWIMG extern char *rtw_fw_file_path; extern char *rtw_fw_wow_file_path; u8 FwBuffer8188E[FW_8188E_SIZE]; #endif /* CONFIG_FILE_FWIMG */ /* * Description: * Download 8192C firmware code. * * */ s32 rtl8188e_FirmwareDownload(PADAPTER padapter, BOOLEAN bUsedWoWLANFw) { s32 rtStatus = _SUCCESS; u8 write_fw = 0; systime fwdl_start_time; PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); PRT_FIRMWARE_8188E pFirmware = NULL; PRT_8188E_FIRMWARE_HDR pFwHdr = NULL; u8 *pFirmwareBuf; u32 FirmwareLen, tmp_fw_len = 0; #ifdef CONFIG_FILE_FWIMG u8 *fwfilepath; #endif /* CONFIG_FILE_FWIMG */ #if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN) struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter); #endif pFirmware = (PRT_FIRMWARE_8188E)rtw_zmalloc(sizeof(RT_FIRMWARE_8188E)); if (!pFirmware) { rtStatus = _FAIL; goto exit; } #ifdef CONFIG_FILE_FWIMG #ifdef CONFIG_WOWLAN if (bUsedWoWLANFw) fwfilepath = rtw_fw_wow_file_path; else #endif /* CONFIG_WOWLAN */ { fwfilepath = rtw_fw_file_path; } #endif /* CONFIG_FILE_FWIMG */ #ifdef CONFIG_FILE_FWIMG if (rtw_is_file_readable(fwfilepath) == _TRUE) { RTW_INFO("%s accquire FW from file:%s\n", __FUNCTION__, fwfilepath); pFirmware->eFWSource = FW_SOURCE_IMG_FILE; } else #endif /* CONFIG_FILE_FWIMG */ { pFirmware->eFWSource = FW_SOURCE_HEADER_FILE; } switch (pFirmware->eFWSource) { case FW_SOURCE_IMG_FILE: #ifdef CONFIG_FILE_FWIMG rtStatus = rtw_retrieve_from_file(fwfilepath, FwBuffer8188E, FW_8188E_SIZE); pFirmware->ulFwLength = rtStatus >= 0 ? rtStatus : 0; pFirmware->szFwBuffer = FwBuffer8188E; #endif /* CONFIG_FILE_FWIMG */ break; case FW_SOURCE_HEADER_FILE: if (bUsedWoWLANFw) { #ifdef CONFIG_WOWLAN if (pwrpriv->wowlan_mode) { #ifdef CONFIG_SFW_SUPPORTED if (IS_VENDOR_8188E_I_CUT_SERIES(padapter)) { pFirmware->szFwBuffer = array_mp_8188e_s_fw_wowlan; pFirmware->ulFwLength = array_length_mp_8188e_s_fw_wowlan; } else #endif { pFirmware->szFwBuffer = array_mp_8188e_t_fw_wowlan; pFirmware->ulFwLength = array_length_mp_8188e_t_fw_wowlan; } RTW_INFO("%s fw:%s, size: %d\n", __func__, "WoWLAN", pFirmware->ulFwLength); } #endif /*CONFIG_WOWLAN*/ #ifdef CONFIG_AP_WOWLAN if (pwrpriv->wowlan_ap_mode) { pFirmware->szFwBuffer = array_mp_8188e_t_fw_ap; pFirmware->ulFwLength = array_length_mp_8188e_t_fw_ap; RTW_INFO("%s fw: %s, size: %d\n", __func__, "AP_WoWLAN", pFirmware->ulFwLength); } #endif /*CONFIG_AP_WOWLAN*/ } else { #ifdef CONFIG_SFW_SUPPORTED if (IS_VENDOR_8188E_I_CUT_SERIES(padapter)) { pFirmware->szFwBuffer = array_mp_8188e_s_fw_nic; pFirmware->ulFwLength = array_length_mp_8188e_s_fw_nic; } else #endif { pFirmware->szFwBuffer = array_mp_8188e_t_fw_nic; pFirmware->ulFwLength = array_length_mp_8188e_t_fw_nic; } RTW_INFO("%s fw:%s, size: %d\n", __FUNCTION__, "NIC", pFirmware->ulFwLength); } break; } tmp_fw_len = IS_VENDOR_8188E_I_CUT_SERIES(padapter) ? FW_8188E_SIZE_2 : FW_8188E_SIZE; if ((pFirmware->ulFwLength - 32) > tmp_fw_len) { rtStatus = _FAIL; RTW_ERR("Firmware size:%u exceed %u\n", pFirmware->ulFwLength, tmp_fw_len); goto exit; } pFirmwareBuf = pFirmware->szFwBuffer; FirmwareLen = pFirmware->ulFwLength; /* To Check Fw header. Added by tynli. 2009.12.04. */ pFwHdr = (PRT_8188E_FIRMWARE_HDR)pFirmwareBuf; pHalData->firmware_version = le16_to_cpu(pFwHdr->Version); pHalData->firmware_sub_version = pFwHdr->Subversion; pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->Signature); RTW_INFO("%s: fw_ver=%x fw_subver=%04x sig=0x%x, Month=%02x, Date=%02x, Hour=%02x, Minute=%02x\n", __FUNCTION__, pHalData->firmware_version, pHalData->firmware_sub_version, pHalData->FirmwareSignature , pFwHdr->Month, pFwHdr->Date, pFwHdr->Hour, pFwHdr->Minute); if (IS_FW_HEADER_EXIST_88E(pFwHdr)) { /* Shift 32 bytes for FW header */ pFirmwareBuf = pFirmwareBuf + 32; FirmwareLen = FirmwareLen - 32; } /* Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, */ /* or it will cause download Fw fail. 2010.02.01. by tynli. */ if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) { /* 8051 RAM code */ rtw_write8(padapter, REG_MCUFWDL, 0x00); _8051Reset88E(padapter); } _FWDownloadEnable_8188E(padapter, _TRUE); fwdl_start_time = rtw_get_current_time(); while (!RTW_CANNOT_IO(padapter) && (write_fw++ < 3 || rtw_get_passing_time_ms(fwdl_start_time) < 500)) { /* reset FWDL chksum */ rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL) | FWDL_ChkSum_rpt); rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen); if (rtStatus != _SUCCESS) continue; rtStatus = polling_fwdl_chksum(padapter, 5, 50); if (rtStatus == _SUCCESS) break; } _FWDownloadEnable_8188E(padapter, _FALSE); if (_SUCCESS != rtStatus) goto fwdl_stat; rtStatus = _FWFreeToGo(padapter, 10, 200); if (_SUCCESS != rtStatus) goto fwdl_stat; fwdl_stat: RTW_INFO("FWDL %s. write_fw:%u, %dms\n" , (rtStatus == _SUCCESS) ? "success" : "fail" , write_fw , rtw_get_passing_time_ms(fwdl_start_time) ); exit: if (pFirmware) rtw_mfree((u8 *)pFirmware, sizeof(RT_FIRMWARE_8188E)); rtl8188e_InitializeFirmwareVars(padapter); return rtStatus; } void rtl8188e_InitializeFirmwareVars(PADAPTER padapter) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter); /* Init Fw LPS related. */ pwrpriv->bFwCurrentInPSMode = _FALSE; /* Init H2C cmd. */ rtw_write8(padapter, REG_HMETFR, 0x0f); /* Init H2C counter. by tynli. 2009.12.09. */ pHalData->LastHMEBoxNum = 0; } /* *********************************************************** * Efuse related code * *********************************************************** */ enum { VOLTAGE_V25 = 0x03, LDOE25_SHIFT = 28 , }; static BOOLEAN hal_EfusePgPacketWrite2ByteHeader( IN PADAPTER pAdapter, IN u8 efuseType, IN u16 *pAddr, IN PPGPKT_STRUCT pTargetPkt, IN BOOLEAN bPseudoTest); static BOOLEAN hal_EfusePgPacketWrite1ByteHeader( IN PADAPTER pAdapter, IN u8 efuseType, IN u16 *pAddr, IN PPGPKT_STRUCT pTargetPkt, IN BOOLEAN bPseudoTest); static BOOLEAN hal_EfusePgPacketWriteData( IN PADAPTER pAdapter, IN u8 efuseType, IN u16 *pAddr, IN PPGPKT_STRUCT pTargetPkt, IN BOOLEAN bPseudoTest); static VOID hal_EfusePowerSwitch_RTL8188E( IN PADAPTER pAdapter, IN u8 bWrite, IN u8 PwrState) { u8 tempval; u16 tmpV16; if (PwrState == _TRUE) { rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON); #if 0 /* 1.2V Power: From VDDON with Power Cut(0x0000h[15]), defualt valid */ tmpV16 = rtw_read16(pAdapter, REG_SYS_ISO_CTRL); if (!(tmpV16 & PWC_EV12V)) { tmpV16 |= PWC_EV12V ; rtw_write16(pAdapter, REG_SYS_ISO_CTRL, tmpV16); } #endif /* Reset: 0x0000h[28], default valid */ tmpV16 = rtw_read16(pAdapter, REG_SYS_FUNC_EN); if (!(tmpV16 & FEN_ELDR)) { tmpV16 |= FEN_ELDR ; rtw_write16(pAdapter, REG_SYS_FUNC_EN, tmpV16); } /* Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */ tmpV16 = rtw_read16(pAdapter, REG_SYS_CLKR); if ((!(tmpV16 & LOADER_CLK_EN)) || (!(tmpV16 & ANA8M))) { tmpV16 |= (LOADER_CLK_EN | ANA8M) ; rtw_write16(pAdapter, REG_SYS_CLKR, tmpV16); } if (bWrite == _TRUE) { /* Enable LDO 2.5V before read/write action */ tempval = rtw_read8(pAdapter, EFUSE_TEST + 3); if (IS_VENDOR_8188E_I_CUT_SERIES(pAdapter)) { tempval &= 0x87; tempval |= 0x38; /* 0x34[30:27] = 0b'0111, Use LDO 2.25V, Suggested by SD1 Pisa */ } else { tempval &= 0x0F; tempval |= (VOLTAGE_V25 << 4); } rtw_write8(pAdapter, EFUSE_TEST + 3, (tempval | 0x80)); } } else { rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF); if (bWrite == _TRUE) { /* Disable LDO 2.5V after read/write action */ tempval = rtw_read8(pAdapter, EFUSE_TEST + 3); rtw_write8(pAdapter, EFUSE_TEST + 3, (tempval & 0x7F)); } } } static VOID rtl8188e_EfusePowerSwitch( IN PADAPTER pAdapter, IN u8 bWrite, IN u8 PwrState) { hal_EfusePowerSwitch_RTL8188E(pAdapter, bWrite, PwrState); } static bool efuse_read_phymap( PADAPTER Adapter, u8 *pbuf, /* buffer to store efuse physical map */ u16 *size /* the max byte to read. will update to byte read */ ) { u8 *pos = pbuf; u16 limit = *size; u16 addr = 0; bool reach_end = _FALSE; /* */ /* Refresh efuse init map as all 0xFF. */ /* */ _rtw_memset(pbuf, 0xFF, limit); /* */ /* Read physical efuse content. */ /* */ while (addr < limit) { ReadEFuseByte(Adapter, addr, pos, _FALSE); if (*pos != 0xFF) { pos++; addr++; } else { reach_end = _TRUE; break; } } *size = addr; return reach_end; } static VOID Hal_EfuseReadEFuse88E( PADAPTER Adapter, u16 _offset, u16 _size_byte, u8 *pbuf, IN BOOLEAN bPseudoTest ) { /* u8 efuseTbl[EFUSE_MAP_LEN_88E]; */ u8 *efuseTbl = NULL; u8 rtemp8[1]; u16 eFuse_Addr = 0; u8 offset, wren; u16 i, j; /* u16 eFuseWord[EFUSE_MAX_SECTION_88E][EFUSE_MAX_WORD_UNIT]; */ u16 **eFuseWord = NULL; u16 efuse_utilized = 0; u8 efuse_usage = 0; u8 u1temp = 0; /* */ /* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */ /* */ if ((_offset + _size_byte) > EFUSE_MAP_LEN_88E) { /* total E-Fuse table is 512bytes */ RTW_INFO("Hal_EfuseReadEFuse88E(): Invalid offset(%#x) with read bytes(%#x)!!\n", _offset, _size_byte); goto exit; } efuseTbl = (u8 *)rtw_zmalloc(EFUSE_MAP_LEN_88E); if (efuseTbl == NULL) { RTW_INFO("%s: alloc efuseTbl fail!\n", __FUNCTION__); goto exit; } eFuseWord = (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, 2); if (eFuseWord == NULL) { RTW_INFO("%s: alloc eFuseWord fail!\n", __FUNCTION__); goto exit; } /* 0. Refresh efuse init map as all oxFF. */ for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) eFuseWord[i][j] = 0xFFFF; /* */ /* 1. Read the first byte to check if efuse is empty!!! */ /* */ /* */ ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); if (*rtemp8 != 0xFF) { efuse_utilized++; /* RTW_INFO("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8); */ eFuse_Addr++; } else { RTW_INFO("EFUSE is empty efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8); goto exit; } /* */ /* 2. Read real efuse content. Filter PG header and every section data. */ /* */ while ((*rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) { /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr-1, *rtemp8)); */ /* Check PG header for section num. */ if ((*rtemp8 & 0x1F) == 0x0F) { /* extended header */ u1temp = ((*rtemp8 & 0xE0) >> 5); /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x *rtemp&0xE0 0x%x\n", u1temp, *rtemp8 & 0xE0)); */ /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x\n", u1temp)); */ ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8)); */ if ((*rtemp8 & 0x0F) == 0x0F) { eFuse_Addr++; ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) eFuse_Addr++; continue; } else { offset = ((*rtemp8 & 0xF0) >> 1) | u1temp; wren = (*rtemp8 & 0x0F); eFuse_Addr++; } } else { offset = ((*rtemp8 >> 4) & 0x0f); wren = (*rtemp8 & 0x0f); } if (offset < EFUSE_MAX_SECTION_88E) { /* Get word enable value from PG header */ /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Offset-%d Worden=%x\n", offset, wren)); */ for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { /* Check word enable condition in the section */ if (!(wren & 0x01)) { /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d\n", eFuse_Addr)); */ ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); eFuse_Addr++; /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8)); */ efuse_utilized++; eFuseWord[offset][i] = (*rtemp8 & 0xff); if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E) break; /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d", eFuse_Addr)); */ ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); eFuse_Addr++; /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8)); */ efuse_utilized++; eFuseWord[offset][i] |= (((u2Byte)*rtemp8 << 8) & 0xff00); if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E) break; } wren >>= 1; } } else { /* deal with error offset,skip error data */ RTW_PRINT("invalid offset:0x%02x\n", offset); for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { /* Check word enable condition in the section */ if (!(wren & 0x01)) { eFuse_Addr++; efuse_utilized++; if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E) break; eFuse_Addr++; efuse_utilized++; if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E) break; } } } /* Read next PG header */ ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d rtemp 0x%x\n", eFuse_Addr, *rtemp8)); */ if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) { efuse_utilized++; eFuse_Addr++; } } /* */ /* 3. Collect 16 sections and 4 word unit into Efuse map. */ /* */ for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) { for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) { efuseTbl[(i * 8) + (j * 2)] = (eFuseWord[i][j] & 0xff); efuseTbl[(i * 8) + ((j * 2) + 1)] = ((eFuseWord[i][j] >> 8) & 0xff); } } /* */ /* 4. Copy from Efuse map to output pointer memory!!! */ /* */ for (i = 0; i < _size_byte; i++) pbuf[i] = efuseTbl[_offset + i]; /* */ /* 5. Calculate Efuse utilization. */ /* */ efuse_usage = (u1Byte)((eFuse_Addr * 100) / EFUSE_REAL_CONTENT_LEN_88E); rtw_hal_set_hwreg(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&eFuse_Addr); exit: if (efuseTbl) rtw_mfree(efuseTbl, EFUSE_MAP_LEN_88E); if (eFuseWord) rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16)); } static BOOLEAN Hal_EfuseSwitchToBank( IN PADAPTER pAdapter, IN u8 bank, IN BOOLEAN bPseudoTest ) { BOOLEAN bRet = _FALSE; u32 value32 = 0; /* RTPRINT(FEEPROM, EFUSE_PG, ("Efuse switch bank to %d\n", bank)); */ if (bPseudoTest) { fakeEfuseBank = bank; bRet = _TRUE; } else bRet = _TRUE; return bRet; } static VOID ReadEFuseByIC( PADAPTER Adapter, u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf, IN BOOLEAN bPseudoTest ) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter); #ifdef DBG_IOL_READ_EFUSE_MAP u8 logical_map[512]; #endif #ifdef CONFIG_IOL_READ_EFUSE_MAP if (!bPseudoTest) { /* && rtw_IOL_applied(Adapter)) */ int ret = _FAIL; if (rtw_IOL_applied(Adapter)) { rtw_hal_power_on(Adapter); iol_mode_enable(Adapter, 1); #ifdef DBG_IOL_READ_EFUSE_MAP iol_read_efuse(Adapter, 0, _offset, _size_byte, logical_map); #else ret = iol_read_efuse(Adapter, 0, _offset, _size_byte, pbuf); #endif iol_mode_enable(Adapter, 0); if (_SUCCESS == ret) goto exit; } } #endif Hal_EfuseReadEFuse88E(Adapter, _offset, _size_byte, pbuf, bPseudoTest); exit: #ifdef DBG_IOL_READ_EFUSE_MAP if (_rtw_memcmp(logical_map, pHalData->efuse_eeprom_data, 0x130) == _FALSE) { int i; RTW_INFO("%s compare first 0x130 byte fail\n", __FUNCTION__); for (i = 0; i < 512; i++) { if (i % 16 == 0) RTW_INFO("0x%03x: ", i); RTW_INFO("%02x ", logical_map[i]); if (i % 16 == 15) RTW_INFO("\n"); } RTW_INFO("\n"); } #endif return; } static VOID ReadEFuse_Pseudo( PADAPTER Adapter, u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf, IN BOOLEAN bPseudoTest ) { Hal_EfuseReadEFuse88E(Adapter, _offset, _size_byte, pbuf, bPseudoTest); } static VOID rtl8188e_ReadEFuse( PADAPTER Adapter, u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf, IN BOOLEAN bPseudoTest ) { if (bPseudoTest) ReadEFuse_Pseudo(Adapter, efuseType, _offset, _size_byte, pbuf, bPseudoTest); else ReadEFuseByIC(Adapter, efuseType, _offset, _size_byte, pbuf, bPseudoTest); } /* Do not support BT */ VOID Hal_EFUSEGetEfuseDefinition88E( IN PADAPTER pAdapter, IN u1Byte efuseType, IN u1Byte type, OUT PVOID pOut ) { switch (type) { case TYPE_EFUSE_MAX_SECTION: { u8 *pMax_section; pMax_section = (u8 *)pOut; *pMax_section = EFUSE_MAX_SECTION_88E; } break; case TYPE_EFUSE_REAL_CONTENT_LEN: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; *pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E; } break; case TYPE_EFUSE_CONTENT_LEN_BANK: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; *pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E; } break; case TYPE_AVAILABLE_EFUSE_BYTES_BANK: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; *pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E); } break; case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; *pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E); } break; case TYPE_EFUSE_MAP_LEN: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; *pu2Tmp = (u16)EFUSE_MAP_LEN_88E; } break; case TYPE_EFUSE_PROTECT_BYTES_BANK: { u8 *pu1Tmp; pu1Tmp = (u8 *)pOut; *pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES_88E); } break; default: { u8 *pu1Tmp; pu1Tmp = (u8 *)pOut; *pu1Tmp = 0; } break; } } VOID Hal_EFUSEGetEfuseDefinition_Pseudo88E( IN PADAPTER pAdapter, IN u8 efuseType, IN u8 type, OUT PVOID pOut ) { switch (type) { case TYPE_EFUSE_MAX_SECTION: { u8 *pMax_section; pMax_section = (pu1Byte)pOut; *pMax_section = EFUSE_MAX_SECTION_88E; } break; case TYPE_EFUSE_REAL_CONTENT_LEN: { u16 *pu2Tmp; pu2Tmp = (pu2Byte)pOut; *pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E; } break; case TYPE_EFUSE_CONTENT_LEN_BANK: { u16 *pu2Tmp; pu2Tmp = (pu2Byte)pOut; *pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E; } break; case TYPE_AVAILABLE_EFUSE_BYTES_BANK: { u16 *pu2Tmp; pu2Tmp = (pu2Byte)pOut; *pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E); } break; case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL: { u16 *pu2Tmp; pu2Tmp = (pu2Byte)pOut; *pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E); } break; case TYPE_EFUSE_MAP_LEN: { u16 *pu2Tmp; pu2Tmp = (pu2Byte)pOut; *pu2Tmp = (u2Byte)EFUSE_MAP_LEN_88E; } break; case TYPE_EFUSE_PROTECT_BYTES_BANK: { u8 *pu1Tmp; pu1Tmp = (u8 *)pOut; *pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES_88E); } break; default: { u8 *pu1Tmp; pu1Tmp = (u8 *)pOut; *pu1Tmp = 0; } break; } } static VOID rtl8188e_EFUSE_GetEfuseDefinition( IN PADAPTER pAdapter, IN u8 efuseType, IN u8 type, OUT void *pOut, IN BOOLEAN bPseudoTest ) { if (bPseudoTest) Hal_EFUSEGetEfuseDefinition_Pseudo88E(pAdapter, efuseType, type, pOut); else Hal_EFUSEGetEfuseDefinition88E(pAdapter, efuseType, type, pOut); } static u8 Hal_EfuseWordEnableDataWrite(IN PADAPTER pAdapter, IN u16 efuse_addr, IN u8 word_en, IN u8 *data, IN BOOLEAN bPseudoTest) { u16 tmpaddr = 0; u16 start_addr = efuse_addr; u8 badworden = 0x0F; u8 tmpdata[8]; _rtw_memset((PVOID)tmpdata, 0xff, PGPKT_DATA_SIZE); if (!(word_en & BIT0)) { tmpaddr = start_addr; efuse_OneByteWrite(pAdapter, start_addr++, data[0], bPseudoTest); efuse_OneByteWrite(pAdapter, start_addr++, data[1], bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[0], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[1], bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) badworden &= (~BIT0); } if (!(word_en & BIT1)) { tmpaddr = start_addr; efuse_OneByteWrite(pAdapter, start_addr++, data[2], bPseudoTest); efuse_OneByteWrite(pAdapter, start_addr++, data[3], bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(pAdapter, tmpaddr , &tmpdata[2], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[3], bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) badworden &= (~BIT1); } if (!(word_en & BIT2)) { tmpaddr = start_addr; efuse_OneByteWrite(pAdapter, start_addr++, data[4], bPseudoTest); efuse_OneByteWrite(pAdapter, start_addr++, data[5], bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[4], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[5], bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) badworden &= (~BIT2); } if (!(word_en & BIT3)) { tmpaddr = start_addr; efuse_OneByteWrite(pAdapter, start_addr++, data[6], bPseudoTest); efuse_OneByteWrite(pAdapter, start_addr++, data[7], bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[6], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[7], bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) badworden &= (~BIT3); } return badworden; } static u8 Hal_EfuseWordEnableDataWrite_Pseudo(IN PADAPTER pAdapter, IN u16 efuse_addr, IN u8 word_en, IN u8 *data, IN BOOLEAN bPseudoTest) { u8 ret = 0; ret = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr, word_en, data, bPseudoTest); return ret; } static u8 rtl8188e_Efuse_WordEnableDataWrite(IN PADAPTER pAdapter, IN u16 efuse_addr, IN u8 word_en, IN u8 *data, IN BOOLEAN bPseudoTest) { u8 ret = 0; if (bPseudoTest) ret = Hal_EfuseWordEnableDataWrite_Pseudo(pAdapter, efuse_addr, word_en, data, bPseudoTest); else ret = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr, word_en, data, bPseudoTest); return ret; } static u16 hal_EfuseGetCurrentSize_8188e(IN PADAPTER pAdapter, IN BOOLEAN bPseudoTest) { int bContinual = _TRUE; u16 efuse_addr = 0; u8 hoffset = 0, hworden = 0; u8 efuse_data, word_cnts = 0; if (bPseudoTest) efuse_addr = (u16)(fakeEfuseUsedBytes); else rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr); /* RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), start_efuse_addr = %d\n", efuse_addr)); */ while (bContinual && efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest) && AVAILABLE_EFUSE_ADDR(efuse_addr)) { if (efuse_data != 0xFF) { if ((efuse_data & 0x1F) == 0x0F) { /* extended header */ hoffset = efuse_data; efuse_addr++; efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest); if ((efuse_data & 0x0F) == 0x0F) { efuse_addr++; continue; } else { hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); hworden = efuse_data & 0x0F; } } else { hoffset = (efuse_data >> 4) & 0x0F; hworden = efuse_data & 0x0F; } word_cnts = Efuse_CalculateWordCnts(hworden); /* read next header */ efuse_addr = efuse_addr + (word_cnts * 2) + 1; } else bContinual = _FALSE ; } if (bPseudoTest) { fakeEfuseUsedBytes = efuse_addr; /* RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), return %d\n", fakeEfuseUsedBytes)); */ } else { rtw_hal_set_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr); /* RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), return %d\n", efuse_addr)); */ } return efuse_addr; } static u16 Hal_EfuseGetCurrentSize_Pseudo(IN PADAPTER pAdapter, IN BOOLEAN bPseudoTest) { u16 ret = 0; ret = hal_EfuseGetCurrentSize_8188e(pAdapter, bPseudoTest); return ret; } static u16 rtl8188e_EfuseGetCurrentSize( IN PADAPTER pAdapter, IN u8 efuseType, IN BOOLEAN bPseudoTest) { u16 ret = 0; if (bPseudoTest) ret = Hal_EfuseGetCurrentSize_Pseudo(pAdapter, bPseudoTest); else ret = hal_EfuseGetCurrentSize_8188e(pAdapter, bPseudoTest); return ret; } static int hal_EfusePgPacketRead_8188e( IN PADAPTER pAdapter, IN u8 offset, IN u8 *data, IN BOOLEAN bPseudoTest) { u8 ReadState = PG_STATE_HEADER; int bContinual = _TRUE; int bDataEmpty = _TRUE ; u8 efuse_data, word_cnts = 0; u16 efuse_addr = 0; u8 hoffset = 0, hworden = 0; u8 tmpidx = 0; u8 tmpdata[8]; u8 max_section = 0; u8 tmp_header = 0; EFUSE_GetEfuseDefinition(pAdapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, (PVOID)&max_section, bPseudoTest); if (data == NULL) return _FALSE; if (offset > max_section) return _FALSE; _rtw_memset((PVOID)data, 0xff, sizeof(u8) * PGPKT_DATA_SIZE); _rtw_memset((PVOID)tmpdata, 0xff, sizeof(u8) * PGPKT_DATA_SIZE); /* */ /* Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */ /* Skip dummy parts to prevent unexpected data read from Efuse. */ /* By pass right now. 2009.02.19. */ /* */ while (bContinual && AVAILABLE_EFUSE_ADDR(efuse_addr)) { /* ------- Header Read ------------- */ if (ReadState & PG_STATE_HEADER) { if (efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) { if (EXT_HEADER(efuse_data)) { tmp_header = efuse_data; efuse_addr++; efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest); if (!ALL_WORDS_DISABLED(efuse_data)) { hoffset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); hworden = efuse_data & 0x0F; } else { RTW_INFO("Error, All words disabled\n"); efuse_addr++; continue; } } else { hoffset = (efuse_data >> 4) & 0x0F; hworden = efuse_data & 0x0F; } word_cnts = Efuse_CalculateWordCnts(hworden); bDataEmpty = _TRUE ; if (hoffset == offset) { for (tmpidx = 0; tmpidx < word_cnts * 2 ; tmpidx++) { if (efuse_OneByteRead(pAdapter, efuse_addr + 1 + tmpidx , &efuse_data, bPseudoTest)) { tmpdata[tmpidx] = efuse_data; if (efuse_data != 0xff) bDataEmpty = _FALSE; } } if (bDataEmpty == _FALSE) ReadState = PG_STATE_DATA; else { /* read next header */ efuse_addr = efuse_addr + (word_cnts * 2) + 1; ReadState = PG_STATE_HEADER; } } else { /* read next header */ efuse_addr = efuse_addr + (word_cnts * 2) + 1; ReadState = PG_STATE_HEADER; } } else bContinual = _FALSE ; } /* ------- Data section Read ------------- */ else if (ReadState & PG_STATE_DATA) { efuse_WordEnableDataRead(hworden, tmpdata, data); efuse_addr = efuse_addr + (word_cnts * 2) + 1; ReadState = PG_STATE_HEADER; } } if ((data[0] == 0xff) && (data[1] == 0xff) && (data[2] == 0xff) && (data[3] == 0xff) && (data[4] == 0xff) && (data[5] == 0xff) && (data[6] == 0xff) && (data[7] == 0xff)) return _FALSE; else return _TRUE; } static int Hal_EfusePgPacketRead(IN PADAPTER pAdapter, IN u8 offset, IN u8 *data, IN BOOLEAN bPseudoTest) { int ret = 0; ret = hal_EfusePgPacketRead_8188e(pAdapter, offset, data, bPseudoTest); return ret; } static int Hal_EfusePgPacketRead_Pseudo(IN PADAPTER pAdapter, IN u8 offset, IN u8 *data, IN BOOLEAN bPseudoTest) { int ret = 0; ret = hal_EfusePgPacketRead_8188e(pAdapter, offset, data, bPseudoTest); return ret; } static int rtl8188e_Efuse_PgPacketRead(IN PADAPTER pAdapter, IN u8 offset, IN u8 *data, IN BOOLEAN bPseudoTest) { int ret = 0; if (bPseudoTest) ret = Hal_EfusePgPacketRead_Pseudo(pAdapter, offset, data, bPseudoTest); else ret = Hal_EfusePgPacketRead(pAdapter, offset, data, bPseudoTest); return ret; } static BOOLEAN hal_EfuseFixHeaderProcess( IN PADAPTER pAdapter, IN u8 efuseType, IN PPGPKT_STRUCT pFixPkt, IN u16 *pAddr, IN BOOLEAN bPseudoTest ) { u8 originaldata[8], badworden = 0; u16 efuse_addr = *pAddr; u32 PgWriteSuccess = 0; _rtw_memset((PVOID)originaldata, 0xff, 8); if (Efuse_PgPacketRead(pAdapter, pFixPkt->offset, originaldata, bPseudoTest)) { /* check if data exist */ badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, pFixPkt->word_en, originaldata, bPseudoTest); if (badworden != 0xf) { /* write fail */ PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pFixPkt->offset, badworden, originaldata, bPseudoTest); if (!PgWriteSuccess) return _FALSE; else efuse_addr = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest); } else efuse_addr = efuse_addr + (pFixPkt->word_cnts * 2) + 1; } else efuse_addr = efuse_addr + (pFixPkt->word_cnts * 2) + 1; *pAddr = efuse_addr; return _TRUE; } static BOOLEAN hal_EfusePgPacketWrite2ByteHeader( IN PADAPTER pAdapter, IN u8 efuseType, IN u16 *pAddr, IN PPGPKT_STRUCT pTargetPkt, IN BOOLEAN bPseudoTest) { BOOLEAN bRet = _FALSE, bContinual = _TRUE; u16 efuse_addr = *pAddr, efuse_max_available_len = 0; u8 pg_header = 0, tmp_header = 0, pg_header_temp = 0; u8 repeatcnt = 0; /* RTPRINT(FEEPROM, EFUSE_PG, ("Wirte 2byte header\n")); */ EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, (PVOID)&efuse_max_available_len, bPseudoTest); while (efuse_addr < efuse_max_available_len) { pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F; /* RTPRINT(FEEPROM, EFUSE_PG, ("pg_header = 0x%x\n", pg_header)); */ efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); while (tmp_header == 0xFF || pg_header != tmp_header) { if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { /* RTPRINT(FEEPROM, EFUSE_PG, ("Repeat over limit for pg_header!!\n")); */ return _FALSE; } efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); } /* to write ext_header */ if (tmp_header == pg_header) { efuse_addr++; pg_header_temp = pg_header; pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en; efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); while (tmp_header == 0xFF || pg_header != tmp_header) { if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { /* RTPRINT(FEEPROM, EFUSE_PG, ("Repeat over limit for ext_header!!\n")); */ return _FALSE; } efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); } if ((tmp_header & 0x0F) == 0x0F) { /* word_en PG fail */ if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { /* RTPRINT(FEEPROM, EFUSE_PG, ("Repeat over limit for word_en!!\n")); */ return _FALSE; } else { efuse_addr++; continue; } } else if (pg_header != tmp_header) { /* offset PG fail */ PGPKT_STRUCT fixPkt; /* RTPRINT(FEEPROM, EFUSE_PG, ("Error condition for offset PG fail, need to cover the existed data\n")); */ fixPkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1); fixPkt.word_en = tmp_header & 0x0F; fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en); if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest)) return _FALSE; } else { bRet = _TRUE; break; } } else if ((tmp_header & 0x1F) == 0x0F) { /* wrong extended header */ efuse_addr += 2; continue; } } *pAddr = efuse_addr; return bRet; } static BOOLEAN hal_EfusePgPacketWrite1ByteHeader( IN PADAPTER pAdapter, IN u8 efuseType, IN u16 *pAddr, IN PPGPKT_STRUCT pTargetPkt, IN BOOLEAN bPseudoTest) { BOOLEAN bRet = _FALSE; u8 pg_header = 0, tmp_header = 0; u16 efuse_addr = *pAddr; u8 repeatcnt = 0; /* RTPRINT(FEEPROM, EFUSE_PG, ("Wirte 1byte header\n")); */ pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en; efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); while (tmp_header == 0xFF || pg_header != tmp_header) { if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) return _FALSE; efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); } if (pg_header == tmp_header) bRet = _TRUE; else { PGPKT_STRUCT fixPkt; /* RTPRINT(FEEPROM, EFUSE_PG, ("Error condition for fixed PG packet, need to cover the existed data\n")); */ fixPkt.offset = (tmp_header >> 4) & 0x0F; fixPkt.word_en = tmp_header & 0x0F; fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en); if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest)) return _FALSE; } *pAddr = efuse_addr; return bRet; } static BOOLEAN hal_EfusePgPacketWriteData( IN PADAPTER pAdapter, IN u8 efuseType, IN u16 *pAddr, IN PPGPKT_STRUCT pTargetPkt, IN BOOLEAN bPseudoTest) { BOOLEAN bRet = _FALSE; u16 efuse_addr = *pAddr; u8 badworden = 0; u32 PgWriteSuccess = 0; badworden = 0x0f; badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest); if (badworden == 0x0F) { /* write ok */ /* RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfusePgPacketWriteData ok!!\n")); */ return _TRUE; } else { /* RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfusePgPacketWriteData Fail!!\n")); */ /* reorganize other pg packet */ PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest); if (!PgWriteSuccess) return _FALSE; else return _TRUE; } return bRet; } static BOOLEAN hal_EfusePgPacketWriteHeader( IN PADAPTER pAdapter, IN u8 efuseType, IN u16 *pAddr, IN PPGPKT_STRUCT pTargetPkt, IN BOOLEAN bPseudoTest) { BOOLEAN bRet = _FALSE; if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE) bRet = hal_EfusePgPacketWrite2ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest); else bRet = hal_EfusePgPacketWrite1ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest); return bRet; } static BOOLEAN wordEnMatched( IN PPGPKT_STRUCT pTargetPkt, IN PPGPKT_STRUCT pCurPkt, IN u8 *pWden ) { u8 match_word_en = 0x0F; /* default all words are disabled */ u8 i; /* check if the same words are enabled both target and current PG packet */ if (((pTargetPkt->word_en & BIT0) == 0) && ((pCurPkt->word_en & BIT0) == 0)) { match_word_en &= ~BIT0; /* enable word 0 */ } if (((pTargetPkt->word_en & BIT1) == 0) && ((pCurPkt->word_en & BIT1) == 0)) { match_word_en &= ~BIT1; /* enable word 1 */ } if (((pTargetPkt->word_en & BIT2) == 0) && ((pCurPkt->word_en & BIT2) == 0)) { match_word_en &= ~BIT2; /* enable word 2 */ } if (((pTargetPkt->word_en & BIT3) == 0) && ((pCurPkt->word_en & BIT3) == 0)) { match_word_en &= ~BIT3; /* enable word 3 */ } *pWden = match_word_en; if (match_word_en != 0xf) return _TRUE; else return _FALSE; } static BOOLEAN hal_EfuseCheckIfDatafollowed( IN PADAPTER pAdapter, IN u8 word_cnts, IN u16 startAddr, IN BOOLEAN bPseudoTest ) { BOOLEAN bRet = _FALSE; u8 i, efuse_data; for (i = 0; i < (word_cnts * 2) ; i++) { if (efuse_OneByteRead(pAdapter, (startAddr + i) , &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) bRet = _TRUE; } return bRet; } static BOOLEAN hal_EfusePartialWriteCheck( IN PADAPTER pAdapter, IN u8 efuseType, IN u16 *pAddr, IN PPGPKT_STRUCT pTargetPkt, IN BOOLEAN bPseudoTest ) { BOOLEAN bRet = _FALSE; u8 i, efuse_data = 0, cur_header = 0; u8 new_wden = 0, matched_wden = 0, badworden = 0; u16 startAddr = 0, efuse_max_available_len = 0, efuse_max = 0; PGPKT_STRUCT curPkt; EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, (PVOID)&efuse_max_available_len, bPseudoTest); EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_REAL_CONTENT_LEN, (PVOID)&efuse_max, bPseudoTest); if (efuseType == EFUSE_WIFI) { if (bPseudoTest) startAddr = (u16)(fakeEfuseUsedBytes % EFUSE_REAL_CONTENT_LEN); else { rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr); startAddr %= EFUSE_REAL_CONTENT_LEN; } } else { if (bPseudoTest) startAddr = (u16)(fakeBTEfuseUsedBytes % EFUSE_REAL_CONTENT_LEN); else startAddr = (u16)(BTEfuseUsedBytes % EFUSE_REAL_CONTENT_LEN); } /* RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfusePartialWriteCheck(), startAddr=%d\n", startAddr)); */ while (1) { if (startAddr >= efuse_max_available_len) { bRet = _FALSE; break; } if (efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) { if (EXT_HEADER(efuse_data)) { cur_header = efuse_data; startAddr++; efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest); if (ALL_WORDS_DISABLED(efuse_data)) { /* RTPRINT(FEEPROM, EFUSE_PG, ("Error condition, all words disabled")); */ bRet = _FALSE; break; } else { curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); curPkt.word_en = efuse_data & 0x0F; } } else { cur_header = efuse_data; curPkt.offset = (cur_header >> 4) & 0x0F; curPkt.word_en = cur_header & 0x0F; } curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en); /* if same header is found but no data followed */ /* write some part of data followed by the header. */ if ((curPkt.offset == pTargetPkt->offset) && (!hal_EfuseCheckIfDatafollowed(pAdapter, curPkt.word_cnts, startAddr + 1, bPseudoTest)) && wordEnMatched(pTargetPkt, &curPkt, &matched_wden)) { /* RTPRINT(FEEPROM, EFUSE_PG, ("Need to partial write data by the previous wrote header\n")); */ /* Here to write partial data */ badworden = Efuse_WordEnableDataWrite(pAdapter, startAddr + 1, matched_wden, pTargetPkt->data, bPseudoTest); if (badworden != 0x0F) { u32 PgWriteSuccess = 0; /* if write fail on some words, write these bad words again */ PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest); if (!PgWriteSuccess) { bRet = _FALSE; /* write fail, return */ break; } } /* partial write ok, update the target packet for later use */ for (i = 0; i < 4; i++) { if ((matched_wden & (0x1 << i)) == 0) { /* this word has been written */ pTargetPkt->word_en |= (0x1 << i); /* disable the word */ } } pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en); } /* read from next header */ startAddr = startAddr + (curPkt.word_cnts * 2) + 1; } else { /* not used header, 0xff */ *pAddr = startAddr; /* RTPRINT(FEEPROM, EFUSE_PG, ("Started from unused header offset=%d\n", startAddr)); */ bRet = _TRUE; break; } } return bRet; } static BOOLEAN hal_EfusePgCheckAvailableAddr( IN PADAPTER pAdapter, IN u8 efuseType, IN BOOLEAN bPseudoTest ) { u16 efuse_max_available_len = 0; /* Change to check TYPE_EFUSE_MAP_LEN ,beacuse 8188E raw 256,logic map over 256. */ EFUSE_GetEfuseDefinition(pAdapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (PVOID)&efuse_max_available_len, _FALSE); /* EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (PVOID)&efuse_max_available_len, bPseudoTest); */ /* RTPRINT(FEEPROM, EFUSE_PG, ("efuse_max_available_len = %d\n", efuse_max_available_len)); */ if (Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest) >= efuse_max_available_len) { /* RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfusePgCheckAvailableAddr error!!\n")); */ return _FALSE; } return _TRUE; } static VOID hal_EfuseConstructPGPkt( IN u8 offset, IN u8 word_en, IN u8 *pData, IN PPGPKT_STRUCT pTargetPkt ) { _rtw_memset((PVOID)pTargetPkt->data, 0xFF, sizeof(u8) * 8); pTargetPkt->offset = offset; pTargetPkt->word_en = word_en; efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data); pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en); /* RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseConstructPGPkt(), targetPkt, offset=%d, word_en=0x%x, word_cnts=%d\n", pTargetPkt->offset, pTargetPkt->word_en, pTargetPkt->word_cnts)); */ } static BOOLEAN hal_EfusePgPacketWrite_BT( IN PADAPTER pAdapter, IN u8 offset, IN u8 word_en, IN u8 *pData, IN BOOLEAN bPseudoTest ) { PGPKT_STRUCT targetPkt; u16 startAddr = 0; u8 efuseType = EFUSE_BT; if (!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType, bPseudoTest)) return _FALSE; hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt); if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; return _TRUE; } static BOOLEAN hal_EfusePgPacketWrite_8188e( IN PADAPTER pAdapter, IN u8 offset, IN u8 word_en, IN u8 *pData, IN BOOLEAN bPseudoTest ) { PGPKT_STRUCT targetPkt; u16 startAddr = 0; u8 efuseType = EFUSE_WIFI; if (!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType, bPseudoTest)) return _FALSE; hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt); if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; return _TRUE; } static int Hal_EfusePgPacketWrite_Pseudo(IN PADAPTER pAdapter, IN u8 offset, IN u8 word_en, IN u8 *data, IN BOOLEAN bPseudoTest) { int ret; ret = hal_EfusePgPacketWrite_8188e(pAdapter, offset, word_en, data, bPseudoTest); return ret; } static int Hal_EfusePgPacketWrite(IN PADAPTER pAdapter, IN u8 offset, IN u8 word_en, IN u8 *data, IN BOOLEAN bPseudoTest) { int ret = 0; ret = hal_EfusePgPacketWrite_8188e(pAdapter, offset, word_en, data, bPseudoTest); return ret; } static int rtl8188e_Efuse_PgPacketWrite(IN PADAPTER pAdapter, IN u8 offset, IN u8 word_en, IN u8 *data, IN BOOLEAN bPseudoTest) { int ret; if (bPseudoTest) ret = Hal_EfusePgPacketWrite_Pseudo(pAdapter, offset, word_en, data, bPseudoTest); else ret = Hal_EfusePgPacketWrite(pAdapter, offset, word_en, data, bPseudoTest); return ret; } static void read_chip_version_8188e(PADAPTER padapter) { u32 value32; HAL_DATA_TYPE *pHalData; pHalData = GET_HAL_DATA(padapter); value32 = rtw_read32(padapter, REG_SYS_CFG); pHalData->version_id.ICType = CHIP_8188E; pHalData->version_id.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP); pHalData->version_id.RFType = RF_TYPE_1T1R; pHalData->version_id.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC); pHalData->version_id.CUTVersion = (value32 & CHIP_VER_RTL_MASK) >> CHIP_VER_RTL_SHIFT; /* IC version (CUT) */ /* For regulator mode. by tynli. 2011.01.14 */ pHalData->RegulatorMode = ((value32 & TRP_BT_EN) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR); pHalData->version_id.ROMVer = 0; /* ROM code version. */ pHalData->MultiFunc = RT_MULTI_FUNC_NONE; rtw_hal_config_rftype(padapter); #if 1 dump_chip_info(pHalData->version_id); #endif } void rtl8188e_start_thread(_adapter *padapter) { #if defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI) #ifndef CONFIG_SDIO_TX_TASKLET struct xmit_priv *xmitpriv = &padapter->xmitpriv; if (xmitpriv->SdioXmitThread == NULL) { RTW_INFO(FUNC_ADPT_FMT " start RTWHALXT\n", FUNC_ADPT_ARG(padapter)); xmitpriv->SdioXmitThread = kthread_run(rtl8188es_xmit_thread, padapter, "RTWHALXT"); if (IS_ERR(xmitpriv->SdioXmitThread)) { RTW_ERR("%s: start rtl8188es_xmit_thread FAIL!!\n", __func__); xmitpriv->SdioXmitThread = NULL; } } #endif #endif } void rtl8188e_stop_thread(_adapter *padapter) { #if defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI) #ifndef CONFIG_SDIO_TX_TASKLET struct xmit_priv *xmitpriv = &padapter->xmitpriv; /* stop xmit_buf_thread */ if (xmitpriv->SdioXmitThread) { _rtw_up_sema(&xmitpriv->SdioXmitSema); rtw_thread_stop(xmitpriv->SdioXmitThread); xmitpriv->SdioXmitThread = NULL; } #endif #endif } void hal_notch_filter_8188e(_adapter *adapter, bool enable) { if (enable) { RTW_INFO("Enable notch filter\n"); rtw_write8(adapter, rOFDM0_RxDSP + 1, rtw_read8(adapter, rOFDM0_RxDSP + 1) | BIT1); } else { RTW_INFO("Disable notch filter\n"); rtw_write8(adapter, rOFDM0_RxDSP + 1, rtw_read8(adapter, rOFDM0_RxDSP + 1) & ~BIT1); } } void init_hal_spec_8188e(_adapter *adapter) { struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter); hal_spec->ic_name = "rtl8188e"; hal_spec->macid_num = 64; hal_spec->sec_cam_ent_num = 32; hal_spec->sec_cap = 0; hal_spec->rfpath_num_2g = 1; hal_spec->rfpath_num_5g = 0; hal_spec->max_tx_cnt = 1; hal_spec->tx_nss_num = 1; hal_spec->rx_nss_num = 1; hal_spec->band_cap = BAND_CAP_2G; hal_spec->bw_cap = BW_CAP_20M | BW_CAP_40M; hal_spec->port_num = 2; hal_spec->proto_cap = PROTO_CAP_11B | PROTO_CAP_11G | PROTO_CAP_11N; hal_spec->wl_func = 0 | WL_FUNC_P2P | WL_FUNC_MIRACAST | WL_FUNC_TDLS ; hal_spec->pg_txpwr_saddr = 0x10; rtw_macid_ctl_init_sleep_reg(adapter_to_macidctl(adapter) , REG_MACID_PAUSE_0 , REG_MACID_PAUSE_1, 0, 0); } #ifdef CONFIG_RFKILL_POLL bool rtl8188e_gpio_radio_on_off_check(_adapter *adapter, u8 *valid) { u32 tmp32; bool ret; #ifdef CONFIG_PCI_HCI #if 1 *valid = 0; return _FALSE; /* unblock */ #else tmp32 = rtw_read32(adapter, REG_GSSR); ret = (tmp32 & BIT(31)) ? _FALSE : _TRUE; /* Power down pin output value, low active */ *valid = 1; return ret; #endif #else *valid = 0; return _FALSE; /* unblock */ #endif } #endif void rtl8188e_init_default_value(_adapter *adapter) { HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); adapter->registrypriv.wireless_mode = WIRELESS_11BG_24N; } void InitBeaconParameters_8188e(_adapter *adapter) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(adapter); rtw_write16(adapter, REG_BCN_CTRL, 0x1010); /* TBTT setup time */ rtw_write8(adapter, REG_TBTT_PROHIBIT, TBTT_PROHIBIT_SETUP_TIME); /* TBTT hold time: 0x540[19:8] */ rtw_write8(adapter, REG_TBTT_PROHIBIT + 1, TBTT_PROHIBIT_HOLD_TIME_STOP_BCN & 0xFF); rtw_write8(adapter, REG_TBTT_PROHIBIT + 2, (rtw_read8(adapter, REG_TBTT_PROHIBIT + 2) & 0xF0) | (TBTT_PROHIBIT_HOLD_TIME_STOP_BCN >> 8)); rtw_write8(adapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8188E); /* 5ms */ rtw_write8(adapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8188E); /* 2ms */ /* Suggested by designer timchen. Change beacon AIFS to the largest number */ /* beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */ rtw_write16(adapter, REG_BCNTCFG, 0x660F); } static VOID _BeaconFunctionEnable( IN PADAPTER padapter, IN BOOLEAN Enable, IN BOOLEAN Linked ) { rtw_write8(padapter, REG_BCN_CTRL, (BIT4 | BIT3 | BIT1)); rtw_write8(padapter, REG_RD_CTRL + 1, 0x6F); } void SetBeaconRelatedRegisters8188E(PADAPTER padapter) { u32 value32; /* HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); */ struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv); struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); u32 bcn_ctrl_reg = REG_BCN_CTRL; /* reset TSF, enable update TSF, correcting TSF On Beacon */ /* REG_BCN_INTERVAL */ /* REG_BCNDMATIM */ /* REG_ATIMWND */ /* REG_TBTT_PROHIBIT */ /* REG_DRVERLYINT */ /* REG_BCN_MAX_ERR */ /* REG_BCNTCFG */ /* (0x510) */ /* REG_DUAL_TSF_RST */ /* REG_BCN_CTRL */ /* (0x550) */ #ifdef CONFIG_CONCURRENT_MODE if (padapter->hw_port == HW_PORT1) bcn_ctrl_reg = REG_BCN_CTRL_1; #endif /* */ /* ATIM window */ /* */ rtw_write16(padapter, REG_ATIMWND, 2); /* */ /* Beacon interval (in unit of TU). */ /* */ rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval); InitBeaconParameters_8188e(padapter); rtw_write8(padapter, REG_SLOT, 0x09); /* */ /* Force beacon frame transmission even after receiving beacon frame from other ad hoc STA */ /* */ /* PlatformEFIOWrite1Byte(Adapter, BCN_ERR_THRESH, 0x0a); */ /* We force beacon sent to prevent unexpect disconnect status in Ad hoc mode */ /* */ /* Reset TSF Timer to zero, added by Roger. 2008.06.24 */ /* */ value32 = rtw_read32(padapter, REG_TCR); value32 &= ~TSFRST; rtw_write32(padapter, REG_TCR, value32); value32 |= TSFRST; rtw_write32(padapter, REG_TCR, value32); /* TODO: Modify later (Find the right parameters) */ /* NOTE: Fix test chip's bug (about contention windows's randomness) */ if (check_fwstate(&padapter->mlmepriv, WIFI_ADHOC_STATE | WIFI_AP_STATE | WIFI_MESH_STATE) == _TRUE) { rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50); rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50); } _BeaconFunctionEnable(padapter, _TRUE, _TRUE); ResumeTxBeacon(padapter); rtw_write8(padapter, bcn_ctrl_reg, rtw_read8(padapter, bcn_ctrl_reg) | BIT(1)); } void rtl8188e_read_wmmedca_reg(PADAPTER adapter, u16 *vo_params, u16 *vi_params, u16 *be_params, u16 *bk_params) { u8 vo_reg_params[4]; u8 vi_reg_params[4]; u8 be_reg_params[4]; u8 bk_reg_params[4]; GetHwReg8188E(adapter, HW_VAR_AC_PARAM_VO, vo_reg_params); GetHwReg8188E(adapter, HW_VAR_AC_PARAM_VI, vi_reg_params); GetHwReg8188E(adapter, HW_VAR_AC_PARAM_BE, be_reg_params); GetHwReg8188E(adapter, HW_VAR_AC_PARAM_BK, bk_reg_params); vo_params[0] = vo_reg_params[0]; vo_params[1] = vo_reg_params[1] & 0x0F; vo_params[2] = (vo_reg_params[1] & 0xF0) >> 4; vo_params[3] = ((vo_reg_params[3] << 8) | (vo_reg_params[2])) * 32; vi_params[0] = vi_reg_params[0]; vi_params[1] = vi_reg_params[1] & 0x0F; vi_params[2] = (vi_reg_params[1] & 0xF0) >> 4; vi_params[3] = ((vi_reg_params[3] << 8) | (vi_reg_params[2])) * 32; be_params[0] = be_reg_params[0]; be_params[1] = be_reg_params[1] & 0x0F; be_params[2] = (be_reg_params[1] & 0xF0) >> 4; be_params[3] = ((be_reg_params[3] << 8) | (be_reg_params[2])) * 32; bk_params[0] = bk_reg_params[0]; bk_params[1] = bk_reg_params[1] & 0x0F; bk_params[2] = (bk_reg_params[1] & 0xF0) >> 4; bk_params[3] = ((bk_reg_params[3] << 8) | (bk_reg_params[2])) * 32; vo_params[1] = (1 << vo_params[1]) - 1; vo_params[2] = (1 << vo_params[2]) - 1; vi_params[1] = (1 << vi_params[1]) - 1; vi_params[2] = (1 << vi_params[2]) - 1; be_params[1] = (1 << be_params[1]) - 1; be_params[2] = (1 << be_params[2]) - 1; bk_params[1] = (1 << bk_params[1]) - 1; bk_params[2] = (1 << bk_params[2]) - 1; } void rtl8188e_set_hal_ops(struct hal_ops *pHalFunc) { pHalFunc->dm_init = &rtl8188e_init_dm_priv; pHalFunc->dm_deinit = &rtl8188e_deinit_dm_priv; pHalFunc->read_chip_version = read_chip_version_8188e; pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8188E; pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8188E; pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8188E; pHalFunc->set_tx_power_index_handler = PHY_SetTxPowerIndex_8188E; pHalFunc->get_tx_power_index_handler = &PHY_GetTxPowerIndex_8188E; pHalFunc->hal_dm_watchdog = &rtl8188e_HalDmWatchDog; pHalFunc->run_thread = &rtl8188e_start_thread; pHalFunc->cancel_thread = &rtl8188e_stop_thread; pHalFunc->read_bbreg = &PHY_QueryBBReg8188E; pHalFunc->write_bbreg = &PHY_SetBBReg8188E; pHalFunc->read_rfreg = &PHY_QueryRFReg8188E; pHalFunc->write_rfreg = &PHY_SetRFReg8188E; pHalFunc->read_wmmedca_reg = &rtl8188e_read_wmmedca_reg; /* Efuse related function */ pHalFunc->EfusePowerSwitch = &rtl8188e_EfusePowerSwitch; pHalFunc->ReadEFuse = &rtl8188e_ReadEFuse; pHalFunc->EFUSEGetEfuseDefinition = &rtl8188e_EFUSE_GetEfuseDefinition; pHalFunc->EfuseGetCurrentSize = &rtl8188e_EfuseGetCurrentSize; pHalFunc->Efuse_PgPacketRead = &rtl8188e_Efuse_PgPacketRead; pHalFunc->Efuse_PgPacketWrite = &rtl8188e_Efuse_PgPacketWrite; pHalFunc->Efuse_WordEnableDataWrite = &rtl8188e_Efuse_WordEnableDataWrite; #ifdef DBG_CONFIG_ERROR_DETECT pHalFunc->sreset_init_value = &sreset_init_value; pHalFunc->sreset_reset_value = &sreset_reset_value; pHalFunc->silentreset = &sreset_reset; pHalFunc->sreset_xmit_status_check = &rtl8188e_sreset_xmit_status_check; pHalFunc->sreset_linked_status_check = &rtl8188e_sreset_linked_status_check; pHalFunc->sreset_get_wifi_status = &sreset_get_wifi_status; pHalFunc->sreset_inprogress = &sreset_inprogress; #endif /* DBG_CONFIG_ERROR_DETECT */ pHalFunc->GetHalODMVarHandler = GetHalODMVar; pHalFunc->SetHalODMVarHandler = SetHalODMVar; #ifdef CONFIG_IOL pHalFunc->IOL_exec_cmds_sync = &rtl8188e_IOL_exec_cmds_sync; #endif pHalFunc->hal_notch_filter = &hal_notch_filter_8188e; pHalFunc->fill_h2c_cmd = &FillH2CCmd_88E; pHalFunc->fill_fake_txdesc = &rtl8188e_fill_fake_txdesc; pHalFunc->fw_dl = &rtl8188e_FirmwareDownload; pHalFunc->hal_get_tx_buff_rsvd_page_num = &GetTxBufferRsvdPageNum8188E; #ifdef CONFIG_GPIO_API pHalFunc->hal_gpio_func_check = &rtl8188e_GpioFuncCheck; #endif #ifdef CONFIG_RFKILL_POLL pHalFunc->hal_radio_onoff_check = rtl8188e_gpio_radio_on_off_check; #endif } u8 GetEEPROMSize8188E(PADAPTER padapter) { u8 size = 0; u32 cr; cr = rtw_read16(padapter, REG_9346CR); /* 6: EEPROM used is 93C46, 4: boot from E-Fuse. */ size = (cr & BOOT_FROM_EEPROM) ? 6 : 4; RTW_INFO("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46"); return size; } #if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI) || defined(CONFIG_PCI_HCI) || defined(CONFIG_GSPI_HCI) /* ------------------------------------------------------------------------- * * LLT R/W/Init function * * ------------------------------------------------------------------------- */ s32 _LLTWrite(PADAPTER padapter, u32 address, u32 data) { s32 status = _SUCCESS; s8 count = POLLING_LLT_THRESHOLD; u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS); rtw_write32(padapter, REG_LLT_INIT, value); /* polling */ do { value = rtw_read32(padapter, REG_LLT_INIT); if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) break; } while (--count); if (count <= 0) { RTW_INFO("Failed to polling write LLT done at address %d!\n", address); status = _FAIL; } return status; } u8 _LLTRead(PADAPTER padapter, u32 address) { s32 count = POLLING_LLT_THRESHOLD; u32 value = _LLT_INIT_ADDR(address) | _LLT_OP(_LLT_READ_ACCESS); u16 LLTReg = REG_LLT_INIT; rtw_write32(padapter, LLTReg, value); /* polling and get value */ do { value = rtw_read32(padapter, LLTReg); if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) return (u8)value; } while (--count); return 0xFF; } s32 InitLLTTable(PADAPTER padapter, u8 txpktbuf_bndy) { s32 status = _FAIL; u32 i; u32 Last_Entry_Of_TxPktBuf = LAST_ENTRY_OF_TX_PKT_BUFFER_8188E(padapter);/* 176, 22k */ HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); #if defined(CONFIG_IOL_LLT) if (rtw_IOL_applied(padapter)) status = iol_InitLLTTable(padapter, txpktbuf_bndy); else #endif { for (i = 0; i < (txpktbuf_bndy - 1); i++) { status = _LLTWrite(padapter, i, i + 1); if (_SUCCESS != status) return status; } /* end of list */ status = _LLTWrite(padapter, (txpktbuf_bndy - 1), 0xFF); if (_SUCCESS != status) return status; /* Make the other pages as ring buffer */ /* This ring buffer is used as beacon buffer if we config this MAC as two MAC transfer. */ /* Otherwise used as local loopback buffer. */ for (i = txpktbuf_bndy; i < Last_Entry_Of_TxPktBuf; i++) { status = _LLTWrite(padapter, i, (i + 1)); if (_SUCCESS != status) return status; } /* Let last entry point to the start entry of ring buffer */ status = _LLTWrite(padapter, Last_Entry_Of_TxPktBuf, txpktbuf_bndy); if (_SUCCESS != status) return status; } return status; } #endif void Hal_InitPGData88E(PADAPTER padapter) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); u32 i; u16 value16; if (_FALSE == pHalData->bautoload_fail_flag) { /* autoload OK. */ if (is_boot_from_eeprom(padapter)) { /* Read all Content from EEPROM or EFUSE. */ for (i = 0; i < HWSET_MAX_SIZE; i += 2) { /* value16 = EF2Byte(ReadEEprom(pAdapter, (u2Byte) (i>>1))); * *((u16*)(&PROMContent[i])) = value16; */ } } else { /* Read EFUSE real map to shadow. */ EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE); } } else { /* autoload fail */ /* pHalData->AutoloadFailFlag = _TRUE; */ /* update to default value 0xFF */ if (!is_boot_from_eeprom(padapter)) EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE); } #ifdef CONFIG_EFUSE_CONFIG_FILE if (check_phy_efuse_tx_power_info_valid(padapter) == _FALSE) { if (Hal_readPGDataFromConfigFile(padapter) != _SUCCESS) RTW_ERR("invalid phy efuse and read from file fail, will use driver default!!\n"); } #endif } void Hal_EfuseParseIDCode88E( IN PADAPTER padapter, IN u8 *hwinfo ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); u16 EEPROMId; /* Checl 0x8129 again for making sure autoload status!! */ EEPROMId = le16_to_cpu(*((u16 *)hwinfo)); if (EEPROMId != RTL_EEPROM_ID) { RTW_INFO("EEPROM ID(%#x) is invalid!!\n", EEPROMId); pHalData->bautoload_fail_flag = _TRUE; } else pHalData->bautoload_fail_flag = _FALSE; RTW_INFO("EEPROM ID=0x%04x\n", EEPROMId); } void Hal_ReadPowerSavingMode88E( PADAPTER padapter, IN u8 *hwinfo, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter); u8 tmpvalue; if (AutoLoadFail) { pwrctl->bHWPowerdown = _FALSE; pwrctl->bSupportRemoteWakeup = _FALSE; } else { /* hw power down mode selection , 0:rf-off / 1:power down */ if (padapter->registrypriv.hwpdn_mode == 2) pwrctl->bHWPowerdown = (hwinfo[EEPROM_RF_FEATURE_OPTION_88E] & BIT4); else pwrctl->bHWPowerdown = padapter->registrypriv.hwpdn_mode; /* decide hw if support remote wakeup function */ /* if hw supported, 8051 (SIE) will generate WeakUP signal( D+/D- toggle) when autoresume */ #ifdef CONFIG_USB_HCI pwrctl->bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0] & BIT1) ? _TRUE : _FALSE; #endif /* CONFIG_USB_HCI */ RTW_INFO("%s...bHWPwrPindetect(%x)-bHWPowerdown(%x) ,bSupportRemoteWakeup(%x)\n", __FUNCTION__, pwrctl->bHWPwrPindetect, pwrctl->bHWPowerdown, pwrctl->bSupportRemoteWakeup); RTW_INFO("### PS params=> power_mgnt(%x),usbss_enable(%x) ###\n", padapter->registrypriv.power_mgnt, padapter->registrypriv.usbss_enable); } } void Hal_ReadTxPowerInfo88E( IN PADAPTER padapter, IN u8 *PROMContent, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); TxPowerInfo24G pwrInfo24G; hal_load_txpwr_info(padapter, &pwrInfo24G, NULL, PROMContent); /* 2010/10/19 MH Add Regulator recognize for EU. */ if (!AutoLoadFail) { struct registry_priv *registry_par = &padapter->registrypriv; if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF) pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION & 0x7); /* bit0~2 */ else pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_88E] & 0x7); /* bit0~2 */ } else pHalData->EEPROMRegulatory = 0; RTW_INFO("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory); } VOID Hal_EfuseParseXtal_8188E( IN PADAPTER pAdapter, IN u8 *hwinfo, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); if (!AutoLoadFail) { pHalData->crystal_cap = hwinfo[EEPROM_XTAL_88E]; if (pHalData->crystal_cap == 0xFF) pHalData->crystal_cap = EEPROM_Default_CrystalCap_88E; } else pHalData->crystal_cap = EEPROM_Default_CrystalCap_88E; RTW_INFO("crystal_cap: 0x%2x\n", pHalData->crystal_cap); } VOID Hal_ReadPAType_8188E( IN PADAPTER Adapter, IN u8 *PROMContent, IN BOOLEAN AutoloadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 PA_LNAType_2G = 0; if (!AutoloadFail) { if (GetRegAmplifierType2G(Adapter) == 0) { /* AUTO*/ /* PA & LNA Type */ PA_LNAType_2G = LE_BITS_TO_1BYTE(&PROMContent[EEPROM_RFE_OPTION_8188E], 2, 2); /* 0xCA[3:2] */ /* ePA/eLNA sel.(ePA+eLNA=0x0, ePA+iLNA enable = 0x1, iPA+eLNA enable =0x2, iPA+iLNA=0x3) */ switch (PA_LNAType_2G) { case 0: pHalData->ExternalPA_2G = 1; pHalData->ExternalLNA_2G = 1; break; case 1: pHalData->ExternalPA_2G = 1; pHalData->ExternalLNA_2G = 0; break; case 2: pHalData->ExternalPA_2G = 0; pHalData->ExternalLNA_2G = 1; break; case 3: default: pHalData->ExternalPA_2G = 0; pHalData->ExternalLNA_2G = 0; break; } } else { pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_PA) ? 1 : 0; pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_LNA) ? 1 : 0; } #if 0 if (GetRegAmplifierType5G(Adapter) == 0) { /* AUTO */ pHalData->external_pa_5g = ((pHalData->PAType_5G & BIT1) && (pHalData->PAType_5G & BIT0)) ? 1 : 0; pHalData->external_lna_5g = ((pHalData->LNAType_5G & BIT7) && (pHalData->LNAType_5G & BIT3)) ? 1 : 0; /* 5G only now. */ } else { pHalData->external_pa_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_PA_5G) ? 1 : 0; pHalData->external_lna_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_LNA_5G) ? 1 : 0; } #endif } else { pHalData->ExternalPA_2G = EEPROM_Default_PAType; pHalData->external_pa_5g = EEPROM_Default_PAType; pHalData->ExternalLNA_2G = EEPROM_Default_LNAType; pHalData->external_lna_5g = EEPROM_Default_LNAType; if (GetRegAmplifierType2G(Adapter) == 0) { /* AUTO*/ pHalData->ExternalPA_2G = EEPROM_Default_PAType; pHalData->ExternalLNA_2G = EEPROM_Default_LNAType; } else { pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_PA) ? 1 : 0; pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_LNA) ? 1 : 0; } #if 0 if (GetRegAmplifierType5G(Adapter) == 0) { /* AUTO */ pHalData->external_pa_5g = 0; pHalData->external_lna_5g = 0; } else { pHalData->external_pa_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_PA_5G) ? 1 : 0; pHalData->external_lna_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_LNA_5G) ? 1 : 0; } #endif } RTW_INFO("pHalData->ExternalPA_2G = %d , pHalData->ExternalLNA_2G = %d\n", pHalData->ExternalPA_2G, pHalData->ExternalLNA_2G); } VOID Hal_ReadAmplifierType_8188E( IN PADAPTER Adapter, IN pu1Byte PROMContent, IN BOOLEAN AutoloadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 GLNA_type = 0; if (!AutoloadFail) { if (GetRegGLNAType(Adapter) == 0) /* AUTO */ GLNA_type = LE_BITS_TO_1BYTE(&PROMContent[EEPROM_RFE_OPTION_8188E], 4, 3); /* 0xCA[6:4] */ else GLNA_type = GetRegGLNAType(Adapter) & 0x7; } else { if (GetRegGLNAType(Adapter) == 0) /* AUTO */ GLNA_type = 0; else GLNA_type = GetRegGLNAType(Adapter) & 0x7; } /* Ext-LNA Gain sel.(form 10dB to 24dB, 1table/2dB,ext: 000=10dB, 001=12dB...) */ switch (GLNA_type) { case 0: pHalData->TypeGLNA = 0x1; /* (10dB) */ break; case 2: pHalData->TypeGLNA = 0x2; /* (14dB) */ break; default: pHalData->TypeGLNA = 0x0; /* (others not support) */ break; } RTW_INFO("pHalData->TypeGLNA is 0x%x\n", pHalData->TypeGLNA); } VOID Hal_ReadRFEType_8188E( IN PADAPTER Adapter, IN pu1Byte PROMContent, IN BOOLEAN AutoloadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); /* Keep the same flow as 8192EU to be extensible */ const u8 RFETypeMaxVal = 1, RFETypeMask = 0x1; if (!AutoloadFail) { if (GetRegRFEType(Adapter) != 64) { pHalData->rfe_type = GetRegRFEType(Adapter); /* Above 1, rfe_type is filled the default value. */ if (pHalData->rfe_type > RFETypeMaxVal) pHalData->rfe_type = EEPROM_DEFAULT_RFE_OPTION_8188E; } else if ((0xFF == PROMContent[EEPROM_RFE_OPTION_8188E]) || ((pHalData->ExternalPA_2G == 0) && (pHalData->ExternalLNA_2G == 0))) pHalData->rfe_type = EEPROM_DEFAULT_RFE_OPTION_8188E; else { /* type 0:0x00 for 88EE/ER_HP RFE control */ pHalData->rfe_type = PROMContent[EEPROM_RFE_OPTION_8188E] & RFETypeMask; /* 0xCA[1:0] */ } } else { if (GetRegRFEType(Adapter) != 64) { pHalData->rfe_type = GetRegRFEType(Adapter); /* Above 3, rfe_type is filled the default value. */ if (pHalData->rfe_type > RFETypeMaxVal) pHalData->rfe_type = EEPROM_DEFAULT_RFE_OPTION_8188E; } else pHalData->rfe_type = EEPROM_DEFAULT_RFE_OPTION_8188E; } RTW_INFO("pHalData->rfe_type is 0x%x\n", pHalData->rfe_type); } void Hal_EfuseParseBoardType88E( IN PADAPTER pAdapter, IN u8 *hwinfo, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); if (!AutoLoadFail) { pHalData->InterfaceSel = ((hwinfo[EEPROM_RF_BOARD_OPTION_88E] & 0xE0) >> 5); if (hwinfo[EEPROM_RF_BOARD_OPTION_88E] == 0xFF) pHalData->InterfaceSel = (EEPROM_DEFAULT_BOARD_OPTION & 0xE0) >> 5; } else pHalData->InterfaceSel = 0; RTW_INFO("Board Type: 0x%2x\n", pHalData->InterfaceSel); } void Hal_EfuseParseEEPROMVer88E( IN PADAPTER padapter, IN u8 *hwinfo, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); if (!AutoLoadFail) { pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_88E]; if (pHalData->EEPROMVersion == 0xFF) pHalData->EEPROMVersion = EEPROM_Default_Version; } else pHalData->EEPROMVersion = 1; } void rtl8188e_EfuseParseChnlPlan( IN PADAPTER padapter, IN u8 *hwinfo, IN BOOLEAN AutoLoadFail ) { hal_com_config_channel_plan( padapter , hwinfo ? &hwinfo[EEPROM_COUNTRY_CODE_88E] : NULL , hwinfo ? hwinfo[EEPROM_ChannelPlan_88E] : 0xFF , padapter->registrypriv.alpha2 , padapter->registrypriv.channel_plan , RTW_CHPLAN_WORLD_NULL , AutoLoadFail ); } void Hal_EfuseParseCustomerID88E( IN PADAPTER padapter, IN u8 *hwinfo, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); if (!AutoLoadFail) { pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_88E]; /* pHalData->EEPROMSubCustomerID = hwinfo[EEPROM_CustomID_88E]; */ } else { pHalData->EEPROMCustomerID = 0; pHalData->EEPROMSubCustomerID = 0; } RTW_INFO("EEPROM Customer ID: 0x%2x\n", pHalData->EEPROMCustomerID); /* RTW_INFO("EEPROM SubCustomer ID: 0x%02x\n", pHalData->EEPROMSubCustomerID); */ } void Hal_ReadAntennaDiversity88E( IN PADAPTER pAdapter, IN u8 *PROMContent, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); struct registry_priv *registry_par = &pAdapter->registrypriv; if (!AutoLoadFail) { /* Antenna Diversity setting. */ if (registry_par->antdiv_cfg == 2) { /* 2:By EFUSE */ pHalData->AntDivCfg = (PROMContent[EEPROM_RF_BOARD_OPTION_88E] & 0x18) >> 3; if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF) pHalData->AntDivCfg = (EEPROM_DEFAULT_BOARD_OPTION & 0x18) >> 3; } else { pHalData->AntDivCfg = registry_par->antdiv_cfg ; /* 0:OFF , 1:ON, 2:By EFUSE */ } if (registry_par->antdiv_type == 0) { /* If TRxAntDivType is AUTO in advanced setting, use EFUSE value instead. */ pHalData->TRxAntDivType = PROMContent[EEPROM_RF_ANTENNA_OPT_88E]; if (pHalData->TRxAntDivType == 0xFF) pHalData->TRxAntDivType = CG_TRX_HW_ANTDIV; /* For 88EE, 1Tx and 1RxCG are fixed.(1Ant, Tx and RxCG are both on aux port) */ } else pHalData->TRxAntDivType = registry_par->antdiv_type ; if (pHalData->TRxAntDivType == CG_TRX_HW_ANTDIV || pHalData->TRxAntDivType == CGCS_RX_HW_ANTDIV) pHalData->AntDivCfg = 1; /* 0xC1[3] is ignored. */ } else pHalData->AntDivCfg = 0; RTW_INFO("EEPROM : AntDivCfg = %x, TRxAntDivType = %x\n", pHalData->AntDivCfg, pHalData->TRxAntDivType); } void Hal_ReadThermalMeter_88E( IN PADAPTER Adapter, IN u8 *PROMContent, IN BOOLEAN AutoloadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u1Byte tempval; /* */ /* ThermalMeter from EEPROM */ /* */ if (!AutoloadFail) pHalData->eeprom_thermal_meter = PROMContent[EEPROM_THERMAL_METER_88E]; else pHalData->eeprom_thermal_meter = EEPROM_Default_ThermalMeter_88E; /* pHalData->eeprom_thermal_meter = (tempval&0x1f); */ /* [4:0] */ if (pHalData->eeprom_thermal_meter == 0xff || AutoloadFail) { pHalData->odmpriv.rf_calibrate_info.is_apk_thermal_meter_ignore = _TRUE; pHalData->eeprom_thermal_meter = EEPROM_Default_ThermalMeter_88E; } /* pHalData->ThermalMeter[0] = pHalData->eeprom_thermal_meter; */ RTW_INFO("ThermalMeter = 0x%x\n", pHalData->eeprom_thermal_meter); } #ifdef CONFIG_RF_POWER_TRIM void Hal_ReadRFGainOffset( IN PADAPTER Adapter, IN u8 *PROMContent, IN BOOLEAN AutoloadFail) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 thermal_offset = 0; /* */ /* BB_RF Gain Offset from EEPROM */ /* */ if (!AutoloadFail) { pHalData->EEPROMRFGainOffset = PROMContent[EEPROM_RF_GAIN_OFFSET]; if ((pHalData->EEPROMRFGainOffset != 0xFF) && (pHalData->EEPROMRFGainOffset & BIT4)) efuse_OneByteRead(Adapter, EEPROM_RF_GAIN_VAL, &pHalData->EEPROMRFGainVal, _FALSE); else { pHalData->EEPROMRFGainOffset = 0; pHalData->EEPROMRFGainVal = 0; } RTW_INFO("pHalData->EEPROMRFGainVal=%x\n", pHalData->EEPROMRFGainVal); } else { efuse_OneByteRead(Adapter, EEPROM_RF_GAIN_VAL, &pHalData->EEPROMRFGainVal, _FALSE); if (pHalData->EEPROMRFGainVal != 0xFF) pHalData->EEPROMRFGainOffset = BIT4; else pHalData->EEPROMRFGainOffset = 0; RTW_INFO("else AutoloadFail =%x,\n", AutoloadFail); } if (Adapter->registrypriv.RegPwrTrimEnable == 1) { efuse_OneByteRead(Adapter, EEPROM_RF_GAIN_VAL, &pHalData->EEPROMRFGainVal, _FALSE); RTW_INFO("pHalData->EEPROMRFGainVal=%x\n", pHalData->EEPROMRFGainVal); } /* */ /* BB_RF Thermal Offset from EEPROM */ /* */ if (((pHalData->EEPROMRFGainOffset != 0xFF) && (pHalData->EEPROMRFGainOffset & BIT4)) || (Adapter->registrypriv.RegPwrTrimEnable == 1)) { efuse_OneByteRead(Adapter, EEPROM_THERMAL_OFFSET, &thermal_offset, _FALSE); if (thermal_offset != 0xFF) { if (thermal_offset & BIT0) pHalData->eeprom_thermal_meter += ((thermal_offset >> 1) & 0x0F); else pHalData->eeprom_thermal_meter -= ((thermal_offset >> 1) & 0x0F); RTW_INFO("%s =>thermal_offset:0x%02x pHalData->eeprom_thermal_meter=0x%02x\n", __FUNCTION__ , thermal_offset, pHalData->eeprom_thermal_meter); } } RTW_INFO("%s => EEPRORFGainOffset = 0x%02x,EEPROMRFGainVal=0x%02x,thermal_offset:0x%02x\n", __FUNCTION__, pHalData->EEPROMRFGainOffset, pHalData->EEPROMRFGainVal, thermal_offset); } #endif /*CONFIG_RF_POWER_TRIM*/ BOOLEAN HalDetectPwrDownMode88E(PADAPTER Adapter) { u8 tmpvalue = 0; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(Adapter); EFUSE_ShadowRead(Adapter, 1, EEPROM_RF_FEATURE_OPTION_88E, (u32 *)&tmpvalue); /* 2010/08/25 MH INF priority > PDN Efuse value. */ if (tmpvalue & BIT(4) && pwrctrlpriv->reg_pdnmode) pHalData->pwrdown = _TRUE; else pHalData->pwrdown = _FALSE; RTW_INFO("HalDetectPwrDownMode(): PDN=%d\n", pHalData->pwrdown); return pHalData->pwrdown; } /* HalDetectPwrDownMode */ #if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN) void Hal_DetectWoWMode(PADAPTER pAdapter) { adapter_to_pwrctl(pAdapter)->bSupportRemoteWakeup = _TRUE; } #endif /* ************************************************************************************ * * 20100209 Joseph: * This function is used only for 92C to set REG_BCN_CTRL(0x550) register. * We just reserve the value of the register in variable pHalData->RegBcnCtrlVal and then operate * the value of the register via atomic operation. * This prevents from race condition when setting this register. * The value of pHalData->RegBcnCtrlVal is initialized in HwConfigureRTL8192CE() function. * */ void SetBcnCtrlReg( PADAPTER padapter, u8 SetBits, u8 ClearBits) { PHAL_DATA_TYPE pHalData; u8 RegBcnCtrlVal = 0; pHalData = GET_HAL_DATA(padapter); RegBcnCtrlVal = rtw_read8(padapter, REG_BCN_CTRL); RegBcnCtrlVal |= SetBits; RegBcnCtrlVal &= ~ClearBits; #if 0 /* #ifdef CONFIG_SDIO_HCI */ if (pHalData->sdio_himr & (SDIO_HIMR_TXBCNOK_MSK | SDIO_HIMR_TXBCNERR_MSK)) RegBcnCtrlVal |= EN_TXBCN_RPT; #endif rtw_write8(padapter, REG_BCN_CTRL, RegBcnCtrlVal); } void _InitTransferPageSize(PADAPTER padapter) { /* Tx page size is always 128. */ u8 value8; value8 = _PSRX(PBP_128) | _PSTX(PBP_128); rtw_write8(padapter, REG_PBP, value8); } static void hw_var_set_monitor(PADAPTER Adapter, u8 variable, u8 *val) { u32 rcr_bits; u16 value_rxfltmap2; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct mlme_priv *pmlmepriv = &(Adapter->mlmepriv); if (*((u8 *)val) == _HW_STATE_MONITOR_) { /* Receive all type */ rcr_bits = RCR_AAP | RCR_APM | RCR_AM | RCR_AB | RCR_APWRMGT | RCR_ADF | RCR_ACF | RCR_AMF | RCR_APP_PHYST_RXFF; /* Append FCS */ rcr_bits |= RCR_APPFCS; #if 0 /* CRC and ICV packet will drop in recvbuf2recvframe() We no turn on it. */ rcr_bits |= (RCR_ACRC32 | RCR_AICV); #endif rtw_hal_get_hwreg(Adapter, HW_VAR_RCR, (u8 *)&pHalData->rcr_backup); rtw_hal_set_hwreg(Adapter, HW_VAR_RCR, (u8 *)&rcr_bits); /* Receive all data frames */ value_rxfltmap2 = 0xFFFF; rtw_write16(Adapter, REG_RXFLTMAP2, value_rxfltmap2); #if 0 /* tx pause */ rtw_write8(padapter, REG_TXPAUSE, 0xFF); #endif } else { /* do nothing */ } } static void hw_var_set_opmode(PADAPTER Adapter, u8 variable, u8 *val) { u8 val8; u8 mode = *((u8 *)val); static u8 isMonitor = _FALSE; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); if (isMonitor == _TRUE) { /* reset RCR from backup */ rtw_hal_set_hwreg(Adapter, HW_VAR_RCR, (u8 *)&pHalData->rcr_backup); rtw_hal_rcr_set_chk_bssid(Adapter, MLME_ACTION_NONE); isMonitor = _FALSE; } RTW_INFO(ADPT_FMT "- Port-%d set opmode = %d\n", ADPT_ARG(Adapter), get_hw_port(Adapter), mode); if (mode == _HW_STATE_MONITOR_) { isMonitor = _TRUE; /* set net_type */ Set_MSR(Adapter, _HW_STATE_NOLINK_); hw_var_set_monitor(Adapter, variable, val); return; } rtw_hal_set_hwreg(Adapter, HW_VAR_MAC_ADDR, adapter_mac_addr(Adapter)); /* set mac addr to mac register */ #ifdef CONFIG_CONCURRENT_MODE if (Adapter->hw_port == HW_PORT1) { /* disable Port1 TSF update */ rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) | BIT(4)); /* set net_type */ Set_MSR(Adapter, mode); if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) { if (!rtw_mi_get_ap_num(Adapter) && !rtw_mi_get_mesh_num(Adapter)) { #ifdef CONFIG_INTERRUPT_BASED_TXBCN #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT rtw_write8(Adapter, REG_DRVERLYINT, 0x05);/* restore early int time to 5ms */ #if defined(CONFIG_USB_HCI) UpdateInterruptMask8188EU(Adapter, _TRUE, 0, IMR_BCNDMAINT0_88E); #elif defined(CONFIG_SDIO_HCI) UpdateInterruptMask8188ESdio(Adapter, 0, SDIO_HIMR_BCNERLY_INT_MSK); #endif #endif /* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */ #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR #if defined(CONFIG_USB_HCI) UpdateInterruptMask8188EU(Adapter, _TRUE , 0, (IMR_TBDER_88E | IMR_TBDOK_88E)); #elif defined(CONFIG_SDIO_HCI) UpdateInterruptMask8188ESdio(Adapter, 0, (SDIO_HIMR_TXBCNOK_MSK | SDIO_HIMR_TXBCNERR_MSK)); #endif #endif/* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */ #endif /* CONFIG_INTERRUPT_BASED_TXBCN */ StopTxBeacon(Adapter); #if defined(CONFIG_PCI_HCI) UpdateInterruptMask8188EE(Adapter, 0, 0, RT_BCN_INT_MASKS, 0); #endif } rtw_write8(Adapter, REG_BCN_CTRL_1, 0x11); /* disable atim wnd and disable beacon function */ /* rtw_write8(Adapter,REG_BCN_CTRL_1, 0x18); */ } else if (mode == _HW_STATE_ADHOC_) { /* Beacon is polled to TXBUF */ rtw_write32(Adapter, REG_CR, rtw_read32(Adapter, REG_CR) | BIT(8)); ResumeTxBeacon(Adapter); rtw_write8(Adapter, REG_BCN_CTRL_1, 0x1a); /* BIT4 - If set 0, hw will clr bcnq when tx becon ok/fail or port 1 */ rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM) | BIT(3) | BIT(4)); } else if (mode == _HW_STATE_AP_) { #ifdef CONFIG_INTERRUPT_BASED_TXBCN #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT #if defined(CONFIG_USB_HCI) UpdateInterruptMask8188EU(Adapter, _TRUE , IMR_BCNDMAINT0_88E, 0); #elif defined(CONFIG_SDIO_HCI) UpdateInterruptMask8188ESdio(Adapter, SDIO_HIMR_BCNERLY_INT_MSK, 0); #endif #endif/* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */ #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR #if defined(CONFIG_USB_HCI) UpdateInterruptMask8188EU(Adapter, _TRUE , (IMR_TBDER_88E | IMR_TBDOK_88E), 0); #elif defined(CONFIG_SDIO_HCI) UpdateInterruptMask8188ESdio(Adapter, (SDIO_HIMR_TXBCNOK_MSK | SDIO_HIMR_TXBCNERR_MSK), 0); #endif #endif/* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */ #endif /* CONFIG_INTERRUPT_BASED_TXBCN */ ResumeTxBeacon(Adapter); rtw_write8(Adapter, REG_BCN_CTRL_1, 0x12); /* Beacon is polled to TXBUF */ rtw_write32(Adapter, REG_CR, rtw_read32(Adapter, REG_CR) | BIT(8)); /* enable to rx data frame */ rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF); /* enable to rx ps-poll */ rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400); /* Beacon Control related register for first time */ rtw_write8(Adapter, REG_BCNDMATIM, 0x02); /* 2ms */ rtw_write8(Adapter, REG_DRVERLYINT, 0x05);/* 5ms */ /* rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF); */ rtw_write8(Adapter, REG_ATIMWND_1, 0x0c); /* 13ms for port1 */ rtw_write16(Adapter, REG_BCNTCFG, 0x00); rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */ /* reset TSF2 */ rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1)); /* BIT4 - If set 0, hw will clr bcnq when tx becon ok/fail or port 1 */ rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM) | BIT(3) | BIT(4)); /* enable BCN1 Function for if2 */ /* don't enable update TSF1 for if2 (due to TSF update when beacon/probe rsp are received) */ rtw_write8(Adapter, REG_BCN_CTRL_1, (DIS_TSF_UDT0_NORMAL_CHIP | EN_BCN_FUNCTION | EN_TXBCN_RPT | BIT(1))); if (!rtw_mi_buddy_check_fwstate(Adapter, WIFI_FW_ASSOC_SUCCESS)) rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) & ~EN_BCN_FUNCTION); /* BCN1 TSF will sync to BCN0 TSF with offset(0x518) if if1_sta linked */ /* rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(5)); */ /* rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(3)); */ /* dis BCN0 ATIM WND if if1 is station */ rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) | BIT(0)); #ifdef CONFIG_TSF_RESET_OFFLOAD /* Reset TSF for STA+AP concurrent mode */ if (rtw_mi_buddy_check_fwstate(Adapter, (WIFI_STATION_STATE | WIFI_ASOC_STATE))) { if (rtw_hal_reset_tsf(Adapter, HW_PORT1) == _FAIL) RTW_INFO("ERROR! %s()-%d: Reset port1 TSF fail\n", __FUNCTION__, __LINE__); } #endif /* CONFIG_TSF_RESET_OFFLOAD */ #if defined(CONFIG_PCI_HCI) UpdateInterruptMask8188EE(Adapter, RT_BCN_INT_MASKS, 0, 0, 0); #endif } } else /* (Adapter->hw_port == HW_PORT1)*/ #endif /* CONFIG_CONCURRENT_MODE */ { #ifdef CONFIG_MI_WITH_MBSSID_CAM /*For Port0 - MBSS CAM*/ hw_var_set_opmode_mbid(Adapter, mode); #else /* disable Port0 TSF update */ rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) | BIT(4)); /* set net_type */ Set_MSR(Adapter, mode); if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) { #ifdef CONFIG_CONCURRENT_MODE if (!rtw_mi_get_ap_num(Adapter) && !rtw_mi_get_mesh_num(Adapter)) #endif /*CONFIG_CONCURRENT_MODE*/ { #ifdef CONFIG_INTERRUPT_BASED_TXBCN #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT rtw_write8(Adapter, REG_DRVERLYINT, 0x05);/* restore early int time to 5ms */ #if defined(CONFIG_USB_HCI) UpdateInterruptMask8188EU(Adapter, _TRUE, 0, IMR_BCNDMAINT0_88E); #elif defined(CONFIG_SDIO_HCI) UpdateInterruptMask8188ESdio(Adapter, 0, SDIO_HIMR_BCNERLY_INT_MSK); #endif #endif/* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */ #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR #if defined(CONFIG_USB_HCI) UpdateInterruptMask8188EU(Adapter, _TRUE , 0, (IMR_TBDER_88E | IMR_TBDOK_88E)); #elif defined(CONFIG_SDIO_HCI) UpdateInterruptMask8188ESdio(Adapter, 0, (SDIO_HIMR_TXBCNOK_MSK | SDIO_HIMR_TXBCNERR_MSK)); #endif #endif /* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */ #endif /* CONFIG_INTERRUPT_BASED_TXBCN */ StopTxBeacon(Adapter); #if defined(CONFIG_PCI_HCI) UpdateInterruptMask8188EE(Adapter, 0, 0, RT_BCN_INT_MASKS, 0); #endif } rtw_write8(Adapter, REG_BCN_CTRL, 0x19); /* disable atim wnd */ /* rtw_write8(Adapter,REG_BCN_CTRL, 0x18); */ } else if (mode == _HW_STATE_ADHOC_) { /* Beacon is polled to TXBUF */ rtw_write16(Adapter, REG_CR, rtw_read16(Adapter, REG_CR) | BIT(8)); ResumeTxBeacon(Adapter); rtw_write8(Adapter, REG_BCN_CTRL, 0x1a); /* BIT3 - If set 0, hw will clr bcnq when tx becon ok/fail or port 0 */ rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM) | BIT(3) | BIT(4)); } else if (mode == _HW_STATE_AP_) { #ifdef CONFIG_INTERRUPT_BASED_TXBCN #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT #if defined(CONFIG_USB_HCI) UpdateInterruptMask8188EU(Adapter, _TRUE , IMR_BCNDMAINT0_88E, 0); #elif defined(CONFIG_SDIO_HCI) UpdateInterruptMask8188ESdio(Adapter, SDIO_HIMR_BCNERLY_INT_MSK, 0); #endif #endif/* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */ #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR #if defined(CONFIG_USB_HCI) UpdateInterruptMask8188EU(Adapter, _TRUE , (IMR_TBDER_88E | IMR_TBDOK_88E), 0); #elif defined(CONFIG_SDIO_HCI) UpdateInterruptMask8188ESdio(Adapter, (SDIO_HIMR_TXBCNOK_MSK | SDIO_HIMR_TXBCNERR_MSK), 0); #endif #endif/* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */ #endif /* CONFIG_INTERRUPT_BASED_TXBCN */ ResumeTxBeacon(Adapter); rtw_write8(Adapter, REG_BCN_CTRL, 0x12); /* Beacon is polled to TXBUF */ rtw_write32(Adapter, REG_CR, rtw_read32(Adapter, REG_CR) | BIT(8)); /* enable to rx data frame */ rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF); /* enable to rx ps-poll */ rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400); /* Beacon Control related register for first time */ rtw_write8(Adapter, REG_BCNDMATIM, 0x02); /* 2ms */ rtw_write8(Adapter, REG_DRVERLYINT, 0x05);/* 5ms */ /* rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF); */ rtw_write8(Adapter, REG_ATIMWND, 0x0c); /* 13ms */ rtw_write16(Adapter, REG_BCNTCFG, 0x00); rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */ /* reset TSF */ rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0)); /* BIT3 - If set 0, hw will clr bcnq when tx becon ok/fail or port 0 */ rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM) | BIT(3) | BIT(4)); /* enable BCN0 Function for if1 */ /* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */ #if defined(CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR) rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT0_NORMAL_CHIP | EN_BCN_FUNCTION | EN_TXBCN_RPT | BIT(1))); #else rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT0_NORMAL_CHIP | EN_BCN_FUNCTION | BIT(1))); #endif #ifdef CONFIG_CONCURRENT_MODE if (!rtw_mi_buddy_check_fwstate(Adapter, WIFI_FW_ASSOC_SUCCESS)) rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) & ~EN_BCN_FUNCTION); #endif /* dis BCN1 ATIM WND if if2 is station */ rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) | BIT(0)); #ifdef CONFIG_TSF_RESET_OFFLOAD /* Reset TSF for STA+AP concurrent mode */ if (rtw_mi_buddy_check_fwstate(Adapter, (WIFI_STATION_STATE | WIFI_ASOC_STATE))) { if (rtw_hal_reset_tsf(Adapter, HW_PORT0) == _FAIL) RTW_INFO("ERROR! %s()-%d: Reset port0 TSF fail\n", __FUNCTION__, __LINE__); } #endif /* CONFIG_TSF_RESET_OFFLOAD */ #if defined(CONFIG_PCI_HCI) UpdateInterruptMask8188EE(Adapter, RT_BCN_INT_MASKS, 0, 0, 0); #endif } #endif } } static void hw_var_set_bcn_func(PADAPTER Adapter, u8 variable, u8 *val) { u32 bcn_ctrl_reg; #ifdef CONFIG_CONCURRENT_MODE if (Adapter->hw_port == HW_PORT1) bcn_ctrl_reg = REG_BCN_CTRL_1; else #endif bcn_ctrl_reg = REG_BCN_CTRL; if (*((u8 *)val)) rtw_write8(Adapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT)); else rtw_write8(Adapter, bcn_ctrl_reg, rtw_read8(Adapter, bcn_ctrl_reg) & (~(EN_BCN_FUNCTION | EN_TXBCN_RPT))); } static void hw_var_set_mlme_disconnect(PADAPTER Adapter, u8 variable, u8 *val) { /* reject all data frames */ #ifdef CONFIG_CONCURRENT_MODE if (rtw_mi_check_status(Adapter, MI_LINKED) == _FALSE) #endif rtw_write16(Adapter, REG_RXFLTMAP2, 0x00); #ifdef CONFIG_CONCURRENT_MODE if (Adapter->hw_port == HW_PORT1) { /*reset TSF1*/ rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1)); /*disable update TSF1*/ rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) | DIS_TSF_UDT); /* disable Port1's beacon function*/ rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) & (~BIT(3))); } else #endif { /*reset TSF*/ rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0)); /*disable update TSF*/ rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) | DIS_TSF_UDT); } } static void hw_var_set_mlme_join(PADAPTER Adapter, u8 variable, u8 *val) { #ifdef CONFIG_CONCURRENT_MODE u8 RetryLimit = RL_VAL_STA; u8 type = *((u8 *)val); HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct mlme_priv *pmlmepriv = &Adapter->mlmepriv; if (type == 0) { /* prepare to join */ if (rtw_mi_get_ap_num(Adapter) || rtw_mi_get_mesh_num(Adapter)) StopTxBeacon(Adapter); /* enable to rx data frame.Accept all data frame */ rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF); if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == _TRUE) RetryLimit = (pHalData->CustomerID == RT_CID_CCX) ? RL_VAL_AP : RL_VAL_STA; else /* Ad-hoc Mode */ RetryLimit = RL_VAL_AP; } else if (type == 1) { /* joinbss_event call back when join res < 0 */ if (rtw_mi_check_status(Adapter, MI_LINKED) == _FALSE) rtw_write16(Adapter, REG_RXFLTMAP2, 0x00); if (rtw_mi_get_ap_num(Adapter) || rtw_mi_get_mesh_num(Adapter)) { ResumeTxBeacon(Adapter); /* reset TSF 1/2 after ResumeTxBeacon */ rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1) | BIT(0)); } } else if (type == 2) { /* sta add event call back */ #ifdef CONFIG_MI_WITH_MBSSID_CAM /*if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) && (rtw_mi_get_assoced_sta_num(Adapter) == 1)) rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~DIS_TSF_UDT));*/ #else /* enable update TSF */ if (Adapter->hw_port == HW_PORT1) rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) & (~DIS_TSF_UDT)); else rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) & (~DIS_TSF_UDT)); #endif if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) { /* fixed beacon issue for 8191su........... */ rtw_write8(Adapter, 0x542 , 0x02); RetryLimit = RL_VAL_AP; } if (rtw_mi_get_ap_num(Adapter) || rtw_mi_get_mesh_num(Adapter)) { ResumeTxBeacon(Adapter); /* reset TSF 1/2 after ResumeTxBeacon */ rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1) | BIT(0)); } } rtw_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT); #endif } u8 SetHwReg8188E(_adapter *adapter, u8 variable, u8 *val) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(adapter); struct dm_struct *podmpriv = &pHalData->odmpriv; u8 ret = _SUCCESS; switch (variable) { case HW_VAR_SET_OPMODE: hw_var_set_opmode(adapter, variable, val); break; case HW_VAR_BASIC_RATE: { struct mlme_ext_info *mlmext_info = &adapter->mlmeextpriv.mlmext_info; u16 input_b = 0, masked = 0, ioted = 0, BrateCfg = 0; u16 rrsr_2g_force_mask = RRSR_CCK_RATES; u16 rrsr_2g_allow_mask = (RRSR_24M | RRSR_12M | RRSR_6M | RRSR_CCK_RATES); HalSetBrateCfg(adapter, val, &BrateCfg); input_b = BrateCfg; /* apply force and allow mask */ BrateCfg |= rrsr_2g_force_mask; BrateCfg &= rrsr_2g_allow_mask; masked = BrateCfg; /* IOT consideration */ if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) { /* if peer is cisco and didn't use ofdm rate, we enable 6M ack */ if ((BrateCfg & (RRSR_24M | RRSR_12M | RRSR_6M)) == 0) BrateCfg |= RRSR_6M; } ioted = BrateCfg; pHalData->BasicRateSet = BrateCfg; RTW_INFO("HW_VAR_BASIC_RATE: %#x->%#x->%#x\n", input_b, masked, ioted); /* Set RRSR rate table. */ rtw_write16(adapter, REG_RRSR, BrateCfg); rtw_write8(adapter, REG_RRSR + 2, rtw_read8(adapter, REG_RRSR + 2) & 0xf0); rtw_hal_set_hwreg(adapter, HW_VAR_INIT_RTS_RATE, (u8 *)&BrateCfg); } break; case HW_VAR_TXPAUSE: rtw_write8(adapter, REG_TXPAUSE, *((u8 *)val)); break; case HW_VAR_BCN_FUNC: hw_var_set_bcn_func(adapter, variable, val); break; case HW_VAR_MLME_DISCONNECT: hw_var_set_mlme_disconnect(adapter, variable, val); break; case HW_VAR_MLME_JOIN: #ifdef CONFIG_CONCURRENT_MODE hw_var_set_mlme_join(adapter, variable, val); #else { u8 RetryLimit = RL_VAL_STA; u8 type = *((u8 *)val); struct mlme_priv *pmlmepriv = &adapter->mlmepriv; if (type == 0) { /* prepare to join */ /* enable to rx data frame.Accept all data frame */ rtw_write16(adapter, REG_RXFLTMAP2, 0xFFFF); if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == _TRUE) RetryLimit = (pHalData->CustomerID == RT_CID_CCX) ? RL_VAL_AP : RL_VAL_STA; else /* Ad-hoc Mode */ RetryLimit = RL_VAL_AP; } else if (type == 1) /* joinbss_event call back when join res < 0 */ rtw_write16(adapter, REG_RXFLTMAP2, 0x00); else if (type == 2) { /* sta add event call back */ /* enable update TSF */ rtw_write8(adapter, REG_BCN_CTRL, rtw_read8(adapter, REG_BCN_CTRL) & (~BIT(4))); if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) RetryLimit = RL_VAL_AP; } rtw_write16(adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT); } #endif break; case HW_VAR_BEACON_INTERVAL: { u16 bcn_interval = *((u16 *)val); #ifdef CONFIG_SWTIMER_BASED_TXBCN bcn_interval = rtw_hal_bcn_interval_adjust(adapter, bcn_interval); #endif rtw_write16(adapter, REG_BCN_INTERVAL, bcn_interval); #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT { struct mlme_ext_priv *pmlmeext = &adapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); if ((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE) { RTW_INFO("%s==> bcn_interval:%d, eraly_int:%d\n", __func__, bcn_interval, bcn_interval >> 1); rtw_write8(adapter, REG_DRVERLYINT, bcn_interval >> 1); } } #endif/* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */ } break; case HW_VAR_SLOT_TIME: { rtw_write8(adapter, REG_SLOT, val[0]); } break; case HW_VAR_ACK_PREAMBLE: { u8 regTmp; u8 bShortPreamble = *((PBOOLEAN)val); /* Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */ regTmp = (pHalData->nCur40MhzPrimeSC) << 5; rtw_write8(adapter, REG_RRSR + 2, regTmp); regTmp = rtw_read8(adapter, REG_WMAC_TRXPTCL_CTL + 2); if (bShortPreamble) regTmp |= BIT1; else regTmp &= (~BIT1); rtw_write8(adapter, REG_WMAC_TRXPTCL_CTL + 2, regTmp); } break; case HW_VAR_CAM_EMPTY_ENTRY: { u8 ucIndex = *((u8 *)val); u8 i; u32 ulCommand = 0; u32 ulContent = 0; u32 ulEncAlgo = CAM_AES; for (i = 0; i < CAM_CONTENT_COUNT; i++) { /* filled id in CAM config 2 byte */ if (i == 0) { ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo) << 2); /* ulContent |= CAM_VALID; */ } else ulContent = 0; /* polling bit, and No Write enable, and address */ ulCommand = CAM_CONTENT_COUNT * ucIndex + i; ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE; /* write content 0 is equall to mark invalid */ rtw_write32(adapter, WCAMI, ulContent); /* delay_ms(40); */ rtw_write32(adapter, RWCAM, ulCommand); /* delay_ms(40); */ } } break; case HW_VAR_CAM_INVALID_ALL: rtw_write32(adapter, RWCAM, BIT(31) | BIT(30)); break; case HW_VAR_AC_PARAM_VO: rtw_write32(adapter, REG_EDCA_VO_PARAM, ((u32 *)(val))[0]); break; case HW_VAR_AC_PARAM_VI: rtw_write32(adapter, REG_EDCA_VI_PARAM, ((u32 *)(val))[0]); break; case HW_VAR_AC_PARAM_BE: pHalData->ac_param_be = ((u32 *)(val))[0]; rtw_write32(adapter, REG_EDCA_BE_PARAM, ((u32 *)(val))[0]); break; case HW_VAR_AC_PARAM_BK: rtw_write32(adapter, REG_EDCA_BK_PARAM, ((u32 *)(val))[0]); break; case HW_VAR_ACM_CTRL: { u8 acm_ctrl = *((u8 *)val); u8 AcmCtrl = rtw_read8(adapter, REG_ACMHWCTRL); if (acm_ctrl > 1) AcmCtrl = AcmCtrl | 0x1; if (acm_ctrl & BIT(1)) AcmCtrl |= AcmHw_VoqEn; else AcmCtrl &= (~AcmHw_VoqEn); if (acm_ctrl & BIT(2)) AcmCtrl |= AcmHw_ViqEn; else AcmCtrl &= (~AcmHw_ViqEn); if (acm_ctrl & BIT(3)) AcmCtrl |= AcmHw_BeqEn; else AcmCtrl &= (~AcmHw_BeqEn); RTW_INFO("[HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl); rtw_write8(adapter, REG_ACMHWCTRL, AcmCtrl); } break; case HW_VAR_AMPDU_FACTOR: { u8 RegToSet_Normal[4] = {0x41, 0xa8, 0x72, 0xb9}; u8 RegToSet_BT[4] = {0x31, 0x74, 0x42, 0x97}; u8 FactorToSet; u8 *pRegToSet; u8 index = 0; #ifdef CONFIG_BT_COEXIST if ((pHalData->bt_coexist.BT_Coexist) && (pHalData->bt_coexist.BT_CoexistType == BT_CSR_BC4)) pRegToSet = RegToSet_BT; /* 0x97427431; */ else #endif pRegToSet = RegToSet_Normal; /* 0xb972a841; */ FactorToSet = *((u8 *)val); if (FactorToSet <= 3) { FactorToSet = (1 << (FactorToSet + 2)); if (FactorToSet > 0xf) FactorToSet = 0xf; for (index = 0; index < 4; index++) { if ((pRegToSet[index] & 0xf0) > (FactorToSet << 4)) pRegToSet[index] = (pRegToSet[index] & 0x0f) | (FactorToSet << 4); if ((pRegToSet[index] & 0x0f) > FactorToSet) pRegToSet[index] = (pRegToSet[index] & 0xf0) | (FactorToSet); rtw_write8(adapter, (REG_AGGLEN_LMT + index), pRegToSet[index]); } } } break; case HW_VAR_H2C_FW_PWRMODE: { u8 psmode = (*(u8 *)val); rtl8188e_set_FwPwrMode_cmd(adapter, psmode); } break; case HW_VAR_H2C_FW_JOINBSSRPT: { u8 mstatus = (*(u8 *)val); rtl8188e_set_FwJoinBssReport_cmd(adapter, mstatus); } break; #ifdef CONFIG_P2P_PS case HW_VAR_H2C_FW_P2P_PS_OFFLOAD: { u8 p2p_ps_state = (*(u8 *)val); rtl8188e_set_p2p_ps_offload_cmd(adapter, p2p_ps_state); } break; #endif /* CONFIG_P2P_PS */ #ifdef CONFIG_BT_COEXIST case HW_VAR_BT_SET_COEXIST: { u8 bStart = (*(u8 *)val); rtl8192c_set_dm_bt_coexist(adapter, bStart); } break; case HW_VAR_BT_ISSUE_DELBA: { u8 dir = (*(u8 *)val); rtl8192c_issue_delete_ba(adapter, dir); } break; #endif #if (RATE_ADAPTIVE_SUPPORT == 1) case HW_VAR_RPT_TIMER_SETTING: { u16 min_rpt_time = (*(u16 *)val); odm_ra_set_tx_rpt_time(podmpriv, min_rpt_time); } break; #endif case HW_VAR_EFUSE_BYTES: /* To set EFUE total used bytes, added by Roger, 2008.12.22. */ pHalData->EfuseUsedBytes = *((u16 *)val); break; case HW_VAR_FIFO_CLEARN_UP: { struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapter); u8 trycnt = 100; /* pause tx */ rtw_write8(adapter, REG_TXPAUSE, 0xff); /* keep sn */ adapter->xmitpriv.nqos_ssn = rtw_read16(adapter, REG_NQOS_SEQ); if (pwrpriv->bkeepfwalive != _TRUE) { /* RX DMA stop */ rtw_write32(adapter, REG_RXPKT_NUM, (rtw_read32(adapter, REG_RXPKT_NUM) | RW_RELEASE_EN)); do { if (!(rtw_read32(adapter, REG_RXPKT_NUM) & RXDMA_IDLE)) break; } while (trycnt--); if (trycnt == 0) RTW_INFO("Stop RX DMA failed......\n"); /* RQPN Load 0 */ rtw_write16(adapter, REG_RQPN_NPQ, 0x0); rtw_write32(adapter, REG_RQPN, 0x80000000); rtw_mdelay_os(10); } } break; case HW_VAR_RESTORE_HW_SEQ: /* restore Sequence No. */ rtw_write8(adapter, 0x4dc, adapter->xmitpriv.nqos_ssn); break; #if (RATE_ADAPTIVE_SUPPORT == 1) case HW_VAR_TX_RPT_MAX_MACID: { u8 maxMacid = *val; RTW_INFO("### MacID(%d),Set Max Tx RPT MID(%d)\n", maxMacid, maxMacid + 1); rtw_write8(adapter, REG_TX_RPT_CTRL + 1, maxMacid + 1); } break; #endif /* (RATE_ADAPTIVE_SUPPORT == 1) */ case HW_VAR_BCN_VALID: /* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */ rtw_write8(adapter, REG_TDECTRL + 2, rtw_read8(adapter, REG_TDECTRL + 2) | BIT0); break; case HW_VAR_CHECK_TXBUF: { u8 retry_limit; u16 val16; u32 reg_200 = 0, reg_204 = 0; u32 init_reg_200 = 0, init_reg_204 = 0; systime start = rtw_get_current_time(); u32 pass_ms; int i = 0; retry_limit = 0x01; val16 = retry_limit << RETRY_LIMIT_SHORT_SHIFT | retry_limit << RETRY_LIMIT_LONG_SHIFT; rtw_write16(adapter, REG_RL, val16); while (rtw_get_passing_time_ms(start) < 2000 && !RTW_CANNOT_RUN(adapter) ) { reg_200 = rtw_read32(adapter, 0x200); reg_204 = rtw_read32(adapter, 0x204); if (i == 0) { init_reg_200 = reg_200; init_reg_204 = reg_204; } i++; if ((reg_200 & 0x00ffffff) != (reg_204 & 0x00ffffff)) { /* RTW_INFO("%s: (HW_VAR_CHECK_TXBUF)TXBUF NOT empty - 0x204=0x%x, 0x200=0x%x (%d)\n", __FUNCTION__, reg_204, reg_200, i); */ rtw_msleep_os(10); } else break; } pass_ms = rtw_get_passing_time_ms(start); if (RTW_CANNOT_RUN(adapter)) ; else if (pass_ms >= 2000 || (reg_200 & 0x00ffffff) != (reg_204 & 0x00ffffff)) { RTW_PRINT("%s:(HW_VAR_CHECK_TXBUF)NOT empty(%d) in %d ms\n", __FUNCTION__, i, pass_ms); RTW_PRINT("%s:(HW_VAR_CHECK_TXBUF)0x200=0x%08x, 0x204=0x%08x (0x%08x, 0x%08x)\n", __FUNCTION__, reg_200, reg_204, init_reg_200, init_reg_204); /* rtw_warn_on(1); */ } else RTW_INFO("%s:(HW_VAR_CHECK_TXBUF)TXBUF Empty(%d) in %d ms\n", __FUNCTION__, i, pass_ms); retry_limit = RL_VAL_STA; val16 = retry_limit << RETRY_LIMIT_SHORT_SHIFT | retry_limit << RETRY_LIMIT_LONG_SHIFT; rtw_write16(adapter, REG_RL, val16); } break; case HW_VAR_RESP_SIFS: { struct mlme_ext_priv *pmlmeext = &adapter->mlmeextpriv; if ((pmlmeext->cur_wireless_mode == WIRELESS_11G) || (pmlmeext->cur_wireless_mode == WIRELESS_11BG)) { /* WIRELESS_MODE_G){ */ val[0] = 0x0a; val[1] = 0x0a; } else { val[0] = 0x0e; val[1] = 0x0e; } /* SIFS for OFDM Data ACK */ rtw_write8(adapter, REG_SIFS_CTX + 1, val[0]); /* SIFS for OFDM consecutive tx like CTS data! */ rtw_write8(adapter, REG_SIFS_TRX + 1, val[1]); rtw_write8(adapter, REG_SPEC_SIFS + 1, val[0]); rtw_write8(adapter, REG_MAC_SPEC_SIFS + 1, val[0]); /* RESP_SIFS for OFDM */ rtw_write8(adapter, REG_RESP_SIFS_OFDM, val[0]); rtw_write8(adapter, REG_RESP_SIFS_OFDM + 1, val[0]); } break; case HW_VAR_MACID_LINK: { u32 reg_macid_no_link; u8 bit_shift; u8 id = *(u8 *)val; u32 val32; if (id < 32) { reg_macid_no_link = REG_MACID_NO_LINK_0; bit_shift = id; } else if (id < 64) { reg_macid_no_link = REG_MACID_NO_LINK_1; bit_shift = id - 32; } else { rtw_warn_on(1); break; } val32 = rtw_read32(adapter, reg_macid_no_link); if (!(val32 & BIT(bit_shift))) break; val32 &= ~BIT(bit_shift); rtw_write32(adapter, reg_macid_no_link, val32); } break; case HW_VAR_MACID_NOLINK: { u32 reg_macid_no_link; u8 bit_shift; u8 id = *(u8 *)val; u32 val32; if (id < 32) { reg_macid_no_link = REG_MACID_NO_LINK_0; bit_shift = id; } else if (id < 64) { reg_macid_no_link = REG_MACID_NO_LINK_1; bit_shift = id - 32; } else { rtw_warn_on(1); break; } val32 = rtw_read32(adapter, reg_macid_no_link); if (val32 & BIT(bit_shift)) break; val32 |= BIT(bit_shift); rtw_write32(adapter, reg_macid_no_link, val32); } break; default: ret = SetHwReg(adapter, variable, val); break; } return ret; } struct qinfo_88e { u32 head:8; u32 pkt_num:8; u32 tail:8; u32 ac:2; u32 macid:6; }; struct bcn_qinfo_88e { u16 head:8; u16 pkt_num:8; }; void dump_qinfo_88e(void *sel, struct qinfo_88e *info, const char *tag) { /* if (info->pkt_num) */ RTW_PRINT_SEL(sel, "%shead:0x%02x, tail:0x%02x, pkt_num:%u, macid:%u, ac:%u\n" , tag ? tag : "", info->head, info->tail, info->pkt_num, info->macid, info->ac ); } void dump_bcn_qinfo_88e(void *sel, struct bcn_qinfo_88e *info, const char *tag) { /* if (info->pkt_num) */ RTW_PRINT_SEL(sel, "%shead:0x%02x, pkt_num:%u\n" , tag ? tag : "", info->head, info->pkt_num ); } void dump_mac_qinfo_88e(void *sel, _adapter *adapter) { u32 q0_info; u32 q1_info; u32 q2_info; u32 q3_info; /* u32 q4_info; u32 q5_info; u32 q6_info; u32 q7_info; */ u32 mg_q_info; u32 hi_q_info; u16 bcn_q_info; q0_info = rtw_read32(adapter, REG_Q0_INFO); q1_info = rtw_read32(adapter, REG_Q1_INFO); q2_info = rtw_read32(adapter, REG_Q2_INFO); q3_info = rtw_read32(adapter, REG_Q3_INFO); /* q4_info = rtw_read32(adapter, REG_Q4_INFO); q5_info = rtw_read32(adapter, REG_Q5_INFO); q6_info = rtw_read32(adapter, REG_Q6_INFO); q7_info = rtw_read32(adapter, REG_Q7_INFO); */ mg_q_info = rtw_read32(adapter, REG_MGQ_INFO); hi_q_info = rtw_read32(adapter, REG_HGQ_INFO); bcn_q_info = rtw_read16(adapter, REG_BCNQ_INFO); dump_qinfo_88e(sel, (struct qinfo_88e *)&q0_info, "Q0 "); dump_qinfo_88e(sel, (struct qinfo_88e *)&q1_info, "Q1 "); dump_qinfo_88e(sel, (struct qinfo_88e *)&q2_info, "Q2 "); dump_qinfo_88e(sel, (struct qinfo_88e *)&q3_info, "Q3 "); /* dump_qinfo_88e(sel, (struct qinfo_88e *)&q4_info, "Q4 "); dump_qinfo_88e(sel, (struct qinfo_88e *)&q5_info, "Q5 "); dump_qinfo_88e(sel, (struct qinfo_88e *)&q6_info, "Q6 "); dump_qinfo_88e(sel, (struct qinfo_88e *)&q7_info, "Q7 "); */ dump_qinfo_88e(sel, (struct qinfo_88e *)&mg_q_info, "MG "); dump_qinfo_88e(sel, (struct qinfo_88e *)&hi_q_info, "HI "); dump_bcn_qinfo_88e(sel, (struct bcn_qinfo_88e *)&bcn_q_info, "BCN "); } static void dump_mac_txfifo_88e(void *sel, _adapter *adapter) { u32 rqpn, rqpn_npq; u32 hpq, lpq, npq, pubq; rqpn = rtw_read32(adapter, REG_FIFOPAGE); rqpn_npq = rtw_read32(adapter, REG_RQPN_NPQ); hpq = (rqpn & 0xFF); lpq = ((rqpn & 0xFF00)>>8); pubq = ((rqpn & 0xFF0000)>>16); npq = ((rqpn_npq & 0xFF00)>>8); RTW_PRINT_SEL(sel, "Tx: available page num: "); if ((hpq == 0xEA) && (hpq == lpq) && (hpq == pubq)) RTW_PRINT_SEL(sel, "N/A (reg val = 0xea)\n"); else RTW_PRINT_SEL(sel, "HPQ: %d, LPQ: %d, NPQ: %d, PUBQ: %d\n" , hpq, lpq, npq, pubq); } void GetHwReg8188E(_adapter *adapter, u8 variable, u8 *val) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(adapter); u32 val32; switch (variable) { case HW_VAR_SYS_CLKR: *val = rtw_read8(adapter, REG_SYS_CLKR); break; case HW_VAR_TXPAUSE: val[0] = rtw_read8(adapter, REG_TXPAUSE); break; case HW_VAR_BCN_VALID: /* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */ val[0] = (BIT0 & rtw_read8(adapter, REG_TDECTRL + 2)) ? _TRUE : _FALSE; break; case HW_VAR_AC_PARAM_VO: val32 = rtw_read32(adapter, REG_EDCA_VO_PARAM); val[0] = val32 & 0xFF; val[1] = (val32 >> 8) & 0xFF; val[2] = (val32 >> 16) & 0xFF; val[3] = (val32 >> 24) & 0x07; break; case HW_VAR_AC_PARAM_VI: val32 = rtw_read32(adapter, REG_EDCA_VI_PARAM); val[0] = val32 & 0xFF; val[1] = (val32 >> 8) & 0xFF; val[2] = (val32 >> 16) & 0xFF; val[3] = (val32 >> 24) & 0x07; break; case HW_VAR_AC_PARAM_BE: val32 = rtw_read32(adapter, REG_EDCA_BE_PARAM); val[0] = val32 & 0xFF; val[1] = (val32 >> 8) & 0xFF; val[2] = (val32 >> 16) & 0xFF; val[3] = (val32 >> 24) & 0x07; break; case HW_VAR_AC_PARAM_BK: val32 = rtw_read32(adapter, REG_EDCA_BK_PARAM); val[0] = val32 & 0xFF; val[1] = (val32 >> 8) & 0xFF; val[2] = (val32 >> 16) & 0xFF; val[3] = (val32 >> 24) & 0x07; break; case HW_VAR_EFUSE_BYTES: /* To get EFUE total used bytes, added by Roger, 2008.12.22. */ *((u16 *)(val)) = pHalData->EfuseUsedBytes; break; case HW_VAR_CHK_HI_QUEUE_EMPTY: *val = ((rtw_read32(adapter, REG_HGQ_INFO) & 0x0000ff00) == 0) ? _TRUE : _FALSE; break; case HW_VAR_CHK_MGQ_CPU_EMPTY: *val = (rtw_read16(adapter, REG_TXPKT_EMPTY) & BIT8) ? _TRUE : _FALSE; break; case HW_VAR_DUMP_MAC_QUEUE_INFO: dump_mac_qinfo_88e(val, adapter); break; case HW_VAR_DUMP_MAC_TXFIFO: dump_mac_txfifo_88e(val, adapter); break; default: GetHwReg(adapter, variable, val); break; } } void hal_ra_info_dump(_adapter *padapter , void *sel) { int i; u8 mac_id; u8 bLinked = _FALSE; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); struct dvobj_priv *dvobj = adapter_to_dvobj(padapter); struct macid_ctl_t *macid_ctl = dvobj_to_macidctl(dvobj); _adapter *iface; for (i = 0; i < dvobj->iface_nums; i++) { iface = dvobj->padapters[i]; if ((iface) && rtw_is_adapter_up(iface)) { if (rtw_linked_check(iface)) { bLinked = _TRUE; break; } } } for (i = 0; i < macid_ctl->num; i++) { if (rtw_macid_is_used(macid_ctl, i) && !rtw_macid_is_bmc(macid_ctl, i)) { mac_id = (u8) i; if (bLinked) { RTW_PRINT_SEL(sel , "============ RA status - Mac_id:%d ===================\n", mac_id); if (pHalData->fw_ractrl == _FALSE) { #if (RATE_ADAPTIVE_SUPPORT == 1) RTW_PRINT_SEL(sel , "Mac_id:%d ,RSSI:%d(%%)\n", mac_id, pHalData->odmpriv.ra_info[mac_id].rssi_sta_ra); RTW_PRINT_SEL(sel , "rate_sgi = %d, decision_rate = %s\n", pHalData->odmpriv.ra_info[mac_id].rate_sgi, HDATA_RATE(pHalData->odmpriv.ra_info[mac_id].decision_rate)); RTW_PRINT_SEL(sel , "pt_stage = %d\n", pHalData->odmpriv.ra_info[mac_id].pt_stage); RTW_PRINT_SEL(sel , "rate_id = %d,ra_use_rate = 0x%08x\n", pHalData->odmpriv.ra_info[mac_id].rate_id, pHalData->odmpriv.ra_info[mac_id].ra_use_rate); #endif /* (RATE_ADAPTIVE_SUPPORT == 1)*/ } else { u8 cur_rate = rtw_read8(padapter, REG_ADAPTIVE_DATA_RATE_0 + mac_id); u8 sgi = (cur_rate & BIT7) ? _TRUE : _FALSE; cur_rate &= 0x7f; RTW_PRINT_SEL(sel , "Mac_id:%d ,SGI:%d ,Rate:%s\n", mac_id, sgi, HDATA_RATE(cur_rate)); } } } } } u8 GetHalDefVar8188E( IN PADAPTER Adapter, IN HAL_DEF_VARIABLE eVariable, IN PVOID pValue ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 bResult = _SUCCESS; switch (eVariable) { case HAL_DEF_IS_SUPPORT_ANT_DIV: #ifdef CONFIG_ANTENNA_DIVERSITY *((u8 *)pValue) = (pHalData->AntDivCfg == 0) ? _FALSE : _TRUE; #endif break; case HAL_DEF_DRVINFO_SZ: *((u32 *)pValue) = DRVINFO_SZ; break; case HAL_DEF_MAX_RECVBUF_SZ: #ifdef CONFIG_SDIO_HCI *((u32 *)pValue) = MAX_RX_DMA_BUFFER_SIZE_88E(Adapter); #else *((u32 *)pValue) = MAX_RECVBUF_SZ; #endif break; case HAL_DEF_RX_PACKET_OFFSET: *((u32 *)pValue) = RXDESC_SIZE + DRVINFO_SZ * 8; break; #if (RATE_ADAPTIVE_SUPPORT == 1) case HAL_DEF_RA_DECISION_RATE: { u8 MacID = *((u8 *)pValue); *((u8 *)pValue) = odm_ra_get_decision_rate_8188e(&(pHalData->odmpriv), MacID); } break; case HAL_DEF_RA_SGI: { u8 MacID = *((u8 *)pValue); *((u8 *)pValue) = odm_ra_get_sgi_8188e(&(pHalData->odmpriv), MacID); } break; #endif case HAL_DEF_PT_PWR_STATUS: #if (POWER_TRAINING_ACTIVE == 1) { u8 MacID = *((u8 *)pValue); *((u8 *)pValue) = odm_ra_get_hw_pwr_status_8188e(&(pHalData->odmpriv), MacID); } #endif /* (POWER_TRAINING_ACTIVE==1) */ break; case HAL_DEF_EXPLICIT_BEAMFORMEE: case HAL_DEF_EXPLICIT_BEAMFORMER: *((u8 *)pValue) = _FALSE; break; case HW_DEF_RA_INFO_DUMP: hal_ra_info_dump(Adapter, pValue); break; case HAL_DEF_TX_PAGE_SIZE: *((u32 *)pValue) = PAGE_SIZE_128; break; case HAL_DEF_TX_PAGE_BOUNDARY: if (!Adapter->registrypriv.wifi_spec) *(u8 *)pValue = TX_PAGE_BOUNDARY_88E(Adapter); else *(u8 *)pValue = WMM_NORMAL_TX_PAGE_BOUNDARY_88E(Adapter); break; case HAL_DEF_RX_DMA_SZ_WOW: *(u32 *)pValue = RX_DMA_SIZE_88E(Adapter) - RESV_FMWF; break; case HAL_DEF_RX_DMA_SZ: *(u32 *)pValue = MAX_RX_DMA_BUFFER_SIZE_88E(Adapter); break; case HAL_DEF_RX_PAGE_SIZE: *(u32 *)pValue = PAGE_SIZE_128; break; case HW_VAR_BEST_AMPDU_DENSITY: *((u32 *)pValue) = AMPDU_DENSITY_VALUE_7; break; default: bResult = GetHalDefVar(Adapter, eVariable, pValue); break; } return bResult; } #ifdef CONFIG_GPIO_API int rtl8188e_GpioFuncCheck(PADAPTER adapter, u8 gpio_num) { int ret = _SUCCESS; if (IS_HARDWARE_TYPE_8188E(adapter) == _FAIL) { if ((gpio_num > 7) || (gpio_num < 4)) { RTW_INFO("%s The gpio number does not included 4~7.\n",__FUNCTION__); ret = _FAIL; } } return ret; } #endif