from machine import Pin from neopixel import NeoPixel import utime import random class Patterns: def __init__(self, pin, num_leds, color1=(0,0,0), color2=(0,0,0), brightness=127, selected="rainbow_cycle", delay=100): self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds) self.num_leds = num_leds self.pattern_step = 0 self.last_update = utime.ticks_ms() self.delay = delay self.brightness = brightness self.patterns = { "off": self.off, "on" : self.on, "color_wipe": self.color_wipe_step, "rainbow_cycle": self.rainbow_cycle_step, "theater_chase": self.theater_chase_step, "blink": self.blink_step, "random_color_wipe": self.random_color_wipe_step, "random_rainbow_cycle": self.random_rainbow_cycle_step, "random_theater_chase": self.random_theater_chase_step, "random_blink": self.random_blink_step, "color_transition": self.color_transition_step, "external": None } self.selected = selected self.color1 = color1 self.color2 = color2 self.transition_duration = delay * 10 # Default transition duration is 10 times the delay self.transition_step = 0 self.current_color = self.color1 def sync(self): self.pattern_step=0 self.last_update = utime.ticks_ms() - self.delay self.tick() def tick(self): if self.patterns[self.selected]: self.patterns[self.selected]() def update_num_leds(self, pin, num_leds): self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds) self.num_leds = num_leds self.pattern_step = 0 def set_delay(self, delay): self.delay = delay # Update transition duration when delay changes for color_transition pattern if self.selected == "color_transition": self.transition_duration = self.delay * 10 # Or some other multiplier def set_brightness(self, brightness): self.brightness = brightness def set_color1(self, color): self.color1 = color if self.selected == "color_transition": self.transition_step = 0 self.current_color = self.color1 def set_color2(self, color): self.color2 = color if self.selected == "color_transition": self.transition_step = 0 self.current_color = self.color1 def apply_brightness(self, color): return tuple(int(c * self.brightness / 255) for c in color) def select(self, pattern): if pattern in self.patterns: self.selected = pattern self.sync() # Reset pattern state when selecting a new pattern if pattern == "color_transition": self.transition_step = 0 self.current_color = self.color1 self.transition_duration = self.delay * 10 # Initialize transition duration return True return False def set(self, i, color): self.n[i] = color def write(self): self.n.write() def fill(self, color=None): fill_color = color if color is not None else self.color1 for i in range(self.num_leds): self.n[i] = fill_color self.n.write() def off(self): self.fill((0, 0, 0)) def on(self): self.fill(self.apply_brightness(self.color1)) def color_wipe_step(self): color = self.apply_brightness(self.color1) current_time = utime.ticks_ms() if utime.ticks_diff(current_time, self.last_update) >= self.delay: if self.pattern_step < self.num_leds: for i in range(self.num_leds): self.n[i] = (0, 0, 0) self.n[self.pattern_step] = self.apply_brightness(color) self.n.write() self.pattern_step += 1 else: self.pattern_step = 0 self.last_update = current_time def rainbow_cycle_step(self): current_time = utime.ticks_ms() if utime.ticks_diff(current_time, self.last_update) >= self.delay/5: def wheel(pos): if pos < 85: return (pos * 3, 255 - pos * 3, 0) elif pos < 170: pos -= 85 return (255 - pos * 3, 0, pos * 3) else: pos -= 170 return (0, pos * 3, 255 - pos * 3) for i in range(self.num_leds): rc_index = (i * 256 // self.num_leds) + self.pattern_step self.n[i] = self.apply_brightness(wheel(rc_index & 255)) self.n.write() self.pattern_step = (self.pattern_step + 1) % 256 self.last_update = current_time def theater_chase_step(self): current_time = utime.ticks_ms() if utime.ticks_diff(current_time, self.last_update) >= self.delay: for i in range(self.num_leds): if (i + self.pattern_step) % 3 == 0: self.n[i] = self.apply_brightness(self.color1) else: self.n[i] = (0, 0, 0) self.n.write() self.pattern_step = (self.pattern_step + 1) % 3 self.last_update = current_time def blink_step(self): current_time = utime.ticks_ms() if utime.ticks_diff(current_time, self.last_update) >= self.delay: if self.pattern_step % 2 == 0: self.fill(self.apply_brightness(self.color1)) else: self.fill((0, 0, 0)) self.pattern_step = (self.pattern_step + 1) % 2 self.last_update = current_time def random_color_wipe_step(self): current_time = utime.ticks_ms() if utime.ticks_diff(current_time, self.last_update) >= self.delay: color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) if self.pattern_step < self.num_leds: for i in range(self.num_leds): self.n[i] = (0, 0, 0) self.n[self.pattern_step] = self.apply_brightness(color) self.n.write() self.pattern_step += 1 else: self.pattern_step = 0 self.last_update = current_time def random_rainbow_cycle_step(self): current_time = utime.ticks_ms() if utime.ticks_diff(current_time, self.last_update) >= self.delay: def wheel(pos): if pos < 85: return (pos * 3, 255 - pos * 3, 0) elif pos < 170: pos -= 85 return (255 - pos * 3, 0, pos * 3) else: pos -= 170 return (0, pos * 3, 255 - pos * 3) random_offset = random.randint(0, 255) for i in range(self.num_leds): rc_index = (i * 256 // self.num_leds) + self.pattern_step + random_offset self.n[i] = self.apply_brightness(wheel(rc_index & 255)) self.n.write() self.pattern_step = (self.pattern_step + 1) % 256 self.last_update = current_time def random_theater_chase_step(self): current_time = utime.ticks_ms() if utime.ticks_diff(current_time, self.last_update) >= self.delay: color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for i in range(self.num_leds): if (i + self.pattern_step) % 3 == 0: self.n[i] = self.apply_brightness(color) else: self.n[i] = (0, 0, 0) self.n.write() self.pattern_step = (self.pattern_step + 1) % 3 self.last_update = current_time def random_blink_step(self): current_time = utime.ticks_ms() if utime.ticks_diff(current_time, self.last_update) >= self.delay*10: color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) if self.pattern_step % 2 == 0: self.fill(self.apply_brightness(color)) else: self.fill((0, 0, 0)) self.pattern_step = (self.pattern_step + 1) % 2 self.last_update = current_time def interpolate_color(self, color_a, color_b, factor): """Interpolates between two colors.""" return tuple(int(a + (b - a) * factor) for a, b in zip(color_a, color_b)) def color_transition_step(self): current_time = utime.ticks_ms() # Use delay for how often to update the transition, not for the duration if utime.ticks_diff(current_time, self.last_update) >= 1: # Update frequently for smooth transition self.transition_step += utime.ticks_diff(current_time, self.last_update) self.last_update = current_time if self.transition_step >= self.transition_duration: # Transition complete, swap colors and restart self.color1, self.color2 = self.color2, self.color1 self.transition_step = 0 # Calculate the interpolation factor (0 to 1) factor = self.transition_step / self.transition_duration # Get the interpolated color and apply brightness interpolated_color = self.interpolate_color(self.color1, self.color2, factor) self.current_color = self.apply_brightness(interpolated_color) # Fill the LEDs with the current interpolated color self.fill(self.current_color) if __name__ == "__main__": p = Patterns(4, 180) p.set_color1((255,0,0)) p.set_color2((0,255,0)) #p.set_delay(10) try: while True: for key in p.patterns: print(key) p.select(key) for _ in range(2000): p.tick() utime.sleep_ms(1) except KeyboardInterrupt: p.fill((0, 0, 0))