Add beat functionality and synchronization support

- Beat: calling select() again with same preset restarts pattern
- Synchronization: reset step when selecting 'off' or switching presets
- Manual mode chase: advance one step per beat, calculate position from step
This commit is contained in:
2026-01-27 00:40:53 +13:00
parent b7d2f52fc3
commit 12041352db

View File

@@ -1,14 +1,67 @@
from machine import Pin
from neopixel import NeoPixel
import utime
from patterns_base import Patterns_Base
class Patterns(Patterns_Base):
def __init__(self, pin, num_leds, color1=(0,0,0), color2=(0,0,0), brightness=127, selected="off", delay=100):
super().__init__(pin, num_leds, color1, color2, brightness, selected, delay)
# Short-key parameter mapping for convenience setters
param_mapping = {
"pt": "selected",
"pa": "selected",
"cl": "colors",
"br": "brightness",
"dl": "delay",
"nl": "num_leds",
"co": "color_order",
"lp": "led_pin",
"n1": "n1",
"n2": "n2",
"n3": "n3",
"n4": "n4",
"n5": "n5",
"n6": "n6",
"auto": "auto",
}
class Preset:
def __init__(self, data):
# Set default values for all preset attributes
self.pattern = "off"
self.delay = 100
self.brightness = 127
self.colors = [(255, 255, 255)]
self.auto = True
self.n1 = 0
self.n2 = 0
self.n3 = 0
self.n4 = 0
self.n5 = 0
self.n6 = 0
# Override defaults with provided data
self.edit(data)
def edit(self, data=None):
if not data:
return False
for key, value in data.items():
setattr(self, key, value)
return True
class Patterns:
def __init__(self, pin, num_leds, brightness=127, selected="off", delay=100):
self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds)
self.num_leds = num_leds
self.brightness = brightness
self.step = 0
self.selected = selected
self.generator = None
self.presets = {}
# Register all pattern methods
self.patterns = {
"off": self.off,
"on" : self.on,
"on": self.on,
"blink": self.blink,
"rainbow": self.rainbow,
"pulse": self.pulse,
@@ -17,6 +70,85 @@ class Patterns(Patterns_Base):
"circle": self.circle,
}
self.select(self.selected)
def edit(self, name, data):
"""Create or update a preset with the given name."""
if name in self.presets:
# Update existing preset
self.presets[name].edit(data)
else:
# Create new preset
self.presets[name] = Preset(data)
return True
def delete(self, name):
if name in self.presets:
del self.presets[name]
return True
return False
def tick(self):
if self.generator is None:
return
try:
next(self.generator)
except StopIteration:
self.generator = None
def select(self, preset_name, step=None):
if preset_name in self.presets:
preset = self.presets[preset_name]
if preset.pattern in self.patterns:
# Set step value if explicitly provided
if step is not None:
self.step = step
elif preset.pattern == "off" or self.selected != preset_name:
self.step = 0
self.generator = self.patterns[preset.pattern](preset)
self.selected = preset_name # Store the preset name, not the object
return True
# If preset doesn't exist or pattern not found, default to "off"
return False
def set_param(self, key, value):
if key in param_mapping:
setattr(self, param_mapping[key], value)
return True
print(f"Invalid parameter: {key}")
return False
def update_num_leds(self, pin, num_leds):
self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds)
self.num_leds = num_leds
def apply_brightness(self, color, brightness_override=None):
effective_brightness = brightness_override if brightness_override is not None else self.brightness
return tuple(int(c * effective_brightness / 255) for c in color)
def fill(self, color=None):
fill_color = color if color is not None else (0, 0, 0)
for i in range(self.num_leds):
self.n[i] = fill_color
self.n.write()
def off(self, preset=None):
self.fill((0, 0, 0))
def on(self, preset):
colors = preset.colors
color = colors[0] if colors else (255, 255, 255)
self.fill(self.apply_brightness(color, preset.brightness))
def wheel(self, pos):
if pos < 85:
return (pos * 3, 255 - pos * 3, 0)
elif pos < 170:
pos -= 85
return (255 - pos * 3, 0, pos * 3)
else:
pos -= 170
return (0, pos * 3, 255 - pos * 3)
def blink(self, preset):
state = True # True = on, False = off
@@ -35,7 +167,6 @@ class Patterns(Patterns_Base):
# Yield once per tick so other logic can run
yield
def rainbow(self, preset):
step = self.step % 256
step_amount = max(1, int(preset.n1)) # n1 controls step increment
@@ -68,7 +199,6 @@ class Patterns(Patterns_Base):
# Yield once per tick so other logic can run
yield
def pulse(self, preset):
self.off()
@@ -159,7 +289,7 @@ class Patterns(Patterns_Base):
if elapsed >= duration:
# End of this transition step
if not preset.auto and color_index >= 0:
if not preset.auto:
# One-shot: transition from first to second color only
self.fill(self.apply_brightness(c2, preset.brightness))
break
@@ -186,16 +316,9 @@ class Patterns(Patterns_Base):
# Need at least 1 color
return
segment_length = 0 # Will be calculated in loop
position = 0 # Current position offset
step_count = 0 # Track which step we're on
last_update = utime.ticks_ms()
while True:
# Access colors, delay, and n values from preset
if not colors:
break
return
# If only one color provided, use it for both colors
if len(colors) < 2:
color0 = colors[0]
@@ -209,14 +332,29 @@ class Patterns(Patterns_Base):
n1 = max(1, int(preset.n1)) # LEDs of color 0
n2 = max(1, int(preset.n2)) # LEDs of color 1
n3 = int(preset.n3) # Step movement on odd steps (can be negative)
n4 = int(preset.n4) # Step movement on even steps (can be negative)
n3 = int(preset.n3) # Step movement on even steps (can be negative)
n4 = int(preset.n4) # Step movement on odd steps (can be negative)
segment_length = n1 + n2
transition_duration = max(10, int(preset.delay))
current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, last_update) >= transition_duration:
# Calculate position from step_count
step_count = self.step
# Position alternates: step 0 adds n3, step 1 adds n4, step 2 adds n3, etc.
if step_count % 2 == 0:
# Even steps: (step_count//2) pairs of (n3+n4) plus one extra n3
position = (step_count // 2) * (n3 + n4) + n3
else:
# Odd steps: ((step_count+1)//2) pairs of (n3+n4)
position = ((step_count + 1) // 2) * (n3 + n4)
# Wrap position to keep it reasonable
max_pos = self.num_leds + segment_length
position = position % max_pos
if position < 0:
position += max_pos
# If auto is False, run a single step and then stop
if not preset.auto:
# Clear all LEDs
self.n.fill((0, 0, 0))
@@ -235,19 +373,53 @@ class Patterns(Patterns_Base):
self.n.write()
# Move position by n3 or n4 on alternate steps
if step_count % 2 == 0:
position = position + n3
else:
position = position + n4
# Increment step for next beat
self.step = step_count + 1
# Wrap position to keep it reasonable
# Allow tick() to advance the generator once
yield
return
# Auto mode: continuous loop
last_update = utime.ticks_ms()
transition_duration = max(10, int(preset.delay))
while True:
current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, last_update) >= transition_duration:
# Calculate current position from step_count
if step_count % 2 == 0:
position = (step_count // 2) * (n3 + n4) + n3
else:
position = ((step_count + 1) // 2) * (n3 + n4)
# Wrap position
max_pos = self.num_leds + segment_length
position = position % max_pos
if position < 0:
position += max_pos
# Clear all LEDs
self.n.fill((0, 0, 0))
# Draw repeating pattern starting at position
for i in range(self.num_leds):
# Calculate position in the repeating segment
relative_pos = (i - position) % segment_length
if relative_pos < 0:
relative_pos = (relative_pos + segment_length) % segment_length
# Determine which color based on position in segment
if relative_pos < n1:
self.n[i] = color0
else:
self.n[i] = color1
self.n.write()
# Increment step
step_count += 1
self.step = step_count
last_update = current_time
# Yield once per tick so other logic can run