patterns: alternating uses n1 (on) and n2 (off); ensure visible ON color; return delay; phase via self.step

test: WS client sends nested {name:{...}}; add iterations and repeat-delay; include n per message; use n1/n2 for alternating
This commit is contained in:
2025-09-16 21:22:47 +12:00
parent 93560a253e
commit d599af271b
6 changed files with 640 additions and 474 deletions

428
patterns.py Normal file
View File

@@ -0,0 +1,428 @@
import utime
import random
from patterns_base import PatternBase # Import PatternBase
class Patterns(PatternBase): # Inherit from PatternBase
def __init__(self, pin, num_leds, color1=(0,0,0), color2=(0,0,0), brightness=127, selected="rainbow_cycle", delay=100):
super().__init__(pin, num_leds, color1, color2, brightness, selected, delay) # Call parent constructor
# Pattern-specific initializations
self.on_width = 1 # Default on width
self.off_width = 2 # Default off width (so total segment is 3, matching original behavior)
self.n1 = 0 # Default start of fill range
self.n2 = self.num_leds - 1 # Default end of fill range
self.oneshot = False # New: One-shot flag for patterns like fill_range
self.patterns = {
"off": self.off,
"on" : self.on,
"color_wipe": self.color_wipe,
"rainbow_cycle": self.rainbow_cycle,
"theater_chase": self.theater_chase,
"blink": self.blink,
"color_transition": self.color_transition, # Added new pattern
"flicker": self.flicker,
"scanner": self.scanner, # New: Single direction scanner
"bidirectional_scanner": self.bidirectional_scanner, # New: Bidirectional scanner
"fill_range": self.fill_range, # New: Fill from n1 to n2
"n_chase": self.n_chase, # New: N1 on, N2 off repeating chase
"alternating": self.alternating, # New: N1 on/off, N2 off/on alternating chase
"external": None,
"pulse": self.pulse
}
# Beat-related functionality removed
# self.selected is already initialized in PatternBase, but we need to ensure it uses our patterns dict
# self.selected = selected # Handled by PatternBase
# Ensure colors list always starts with at least two for robust transition handling
# self.colors handled by PatternBase
# Transition attributes handled by PatternBase
# Scanner attributes handled by PatternBase
# self.run handled by PatternBase
def set_on_width(self, on_width):
self.on_width = on_width
def set_off_width(self, off_width):
self.off_width = off_width
def set_on_off_width(self, on_width, off_width):
self.on_width = on_width
self.off_width = off_width
self.sync()
def set_fill_range(self, n1, n2):
self.n1 = n1
self.n2 = n2
self.sync()
def set_oneshot(self, oneshot_value):
self.oneshot = oneshot_value
if self.oneshot: # Reset pattern step if enabling one-shot
self.pattern_step = 0
self.sync()
def select(self, pattern):
if pattern in self.patterns:
super().select(pattern) # Use parent select to set self.selected and self.transition_step
self.run = True # Set run flag
if pattern == "color_transition":
if len(self.colors) < 2:
print("Warning: 'color_transition' requires at least two colors. Switching to 'on'.")
self.selected = "on" # Fallback if not enough colors
self.sync() # Re-sync for the new pattern
else:
self.transition_step = 0
self.current_color_idx = 0 # Start from the first color in the list
self.current_color = self.colors[self.current_color_idx]
self.hold_start_time = utime.ticks_ms() # Reset hold timer
self.transition_duration = self.delay * 50 # Initialize transition duration
self.hold_duration = self.delay * 10 # Initialize hold duration
return True
return False
def off(self):
self.fill((0, 0, 0))
return self.delay
def on(self):
self.fill(self.apply_brightness(self.colors[0]))
return self.delay
def color_wipe(self):
color = self.apply_brightness(self.colors[0])
current_time = utime.ticks_ms()
if self.pattern_step < self.num_leds:
for i in range(self.num_leds):
self.n[i] = (0, 0, 0)
self.n[self.pattern_step] = self.apply_brightness(color)
self.n.write()
self.pattern_step += 1
else:
self.pattern_step = 0
self.last_update = current_time
return self.delay
def rainbow_cycle(self):
current_time = utime.ticks_ms()
def wheel(pos):
if pos < 85:
return (pos * 3, 255 - pos * 3, 0)
elif pos < 170:
pos -= 85
return (255 - pos * 3, 0, pos * 3)
else:
pos -= 170
return (0, pos * 3, 255 - pos * 3)
for i in range(self.num_leds):
rc_index = (i * 256 // self.num_leds) + self.pattern_step
self.n[i] = self.apply_brightness(wheel(rc_index & 255))
self.n.write()
self.pattern_step = (self.pattern_step + 1) % 256
self.last_update = current_time
return max(1, int(self.delay // 5))
def theater_chase(self):
current_time = utime.ticks_ms()
segment_length = self.on_width + self.off_width
for i in range(self.num_leds):
if (i + self.pattern_step) % segment_length < self.on_width:
self.n[i] = self.apply_brightness(self.colors[0])
else:
self.n[i] = (0, 0, 0)
self.n.write()
self.pattern_step = (self.pattern_step + 1) % segment_length
self.last_update = current_time
return self.delay
def blink(self):
current_time = utime.ticks_ms()
if self.pattern_step % 2 == 0:
self.fill(self.apply_brightness(self.colors[0]))
else:
self.fill((0, 0, 0))
self.pattern_step = (self.pattern_step + 1) % 2
self.last_update = current_time
return self.delay
def color_transition(self):
current_time = utime.ticks_ms()
# Check for hold duration first
if utime.ticks_diff(current_time, self.hold_start_time) < self.hold_duration:
# Still in hold phase, just display the current solid color
self.fill(self.apply_brightness(self.current_color))
self.last_update = current_time # Keep updating last_update to avoid skipping frames
return self.delay
# If hold duration is over, proceed with transition
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
num_colors = len(self.colors)
if num_colors < 2:
# Should not happen if select handles it, but as a safeguard
self.select("on")
return self.delay
from_color = self.colors[self.current_color_idx]
to_color_idx = (self.current_color_idx + 1) % num_colors
to_color = self.colors[to_color_idx]
# Calculate interpolation factor (0.0 to 1.0)
# transition_step goes from 0 to transition_duration - 1
if self.transition_duration > 0:
interp_factor = self.transition_step / self.transition_duration
else:
interp_factor = 1.0 # Immediately transition if duration is zero
# Interpolate each color component
r = int(from_color[0] + (to_color[0] - from_color[0]) * interp_factor)
g = int(from_color[1] + (to_color[1] - from_color[1]) * interp_factor)
b = int(from_color[2] + (to_color[2] - from_color[2]) * interp_factor)
self.current_color = (r, g, b)
self.fill(self.apply_brightness(self.current_color))
self.transition_step += self.delay # Advance the transition step by the delay
if self.transition_step >= self.transition_duration:
# Transition complete, move to the next color and reset for hold phase
self.current_color_idx = to_color_idx
self.current_color = self.colors[self.current_color_idx] # Ensure current_color is the exact target color
self.transition_step = 0 # Reset transition progress
self.hold_start_time = current_time # Start hold phase for the new color
self.last_update = current_time
return self.delay
def flicker(self):
current_time = utime.ticks_ms()
base_color = self.colors[0]
# Increase the range for flicker_brightness_offset
# Changed from self.brightness // 4 to self.brightness // 2 (or even self.brightness for max intensity)
flicker_brightness_offset = random.randint(-int(self.brightness // 1.5), int(self.brightness // 1.5))
flicker_brightness = max(0, min(255, self.brightness + flicker_brightness_offset))
flicker_color = self.apply_brightness(base_color, brightness_override=flicker_brightness)
self.fill(flicker_color)
self.last_update = current_time
return max(1, int(self.delay // 5))
def scanner(self):
"""
Mimics a 'Knight Rider' style scanner, moving in one direction.
"""
current_time = utime.ticks_ms()
self.fill((0, 0, 0)) # Clear all LEDs
# Calculate the head and tail position
head_pos = self.pattern_step
color = self.apply_brightness(self.colors[0])
# Draw the head
if 0 <= head_pos < self.num_leds:
self.n[head_pos] = color
# Draw the trailing pixels with decreasing brightness
for i in range(1, self.scanner_tail_length + 1):
tail_pos = head_pos - i
if 0 <= tail_pos < self.num_leds:
# Calculate fading color for tail
# Example: linear fade from full brightness to off
fade_factor = 1.0 - (i / (self.scanner_tail_length + 1))
faded_color = tuple(int(c * fade_factor) for c in color)
self.n[tail_pos] = faded_color
self.n.write()
self.pattern_step += 1
if self.pattern_step >= self.num_leds + self.scanner_tail_length:
self.pattern_step = 0 # Reset to start
self.last_update = current_time
return self.delay
def bidirectional_scanner(self):
"""
Mimics a 'Knight Rider' style scanner, moving back and forth.
"""
current_time = utime.ticks_ms()
self.fill((0, 0, 0)) # Clear all LEDs
color = self.apply_brightness(self.colors[0])
# Calculate the head position based on direction
head_pos = self.pattern_step
# Draw the head
if 0 <= head_pos < self.num_leds:
self.n[head_pos] = color
# Draw the trailing pixels with decreasing brightness
for i in range(1, self.scanner_tail_length + 1):
tail_pos = head_pos - (i * self.scanner_direction)
if 0 <= tail_pos < self.num_leds:
fade_factor = 1.0 - (i / (self.scanner_tail_length + 1))
faded_color = tuple(int(c * fade_factor) for c in color)
self.n[tail_pos] = faded_color
self.n.write()
self.pattern_step += self.scanner_direction
# Change direction if boundaries are reached
if self.scanner_direction == 1 and self.pattern_step >= self.num_leds:
self.scanner_direction = -1
self.pattern_step = self.num_leds - 1 # Start moving back from the last LED
elif self.scanner_direction == -1 and self.pattern_step < 0:
self.scanner_direction = 1
self.pattern_step = 0 # Start moving forward from the first LED
self.last_update = current_time
return self.delay
def fill_range(self):
"""
Fills a range of LEDs from n1 to n2 with a solid color.
If self.oneshot is True, it fills once and then turns off the LEDs.
"""
current_time = utime.ticks_ms()
if self.oneshot and self.pattern_step >= 1:
self.fill((0, 0, 0)) # Turn off LEDs if one-shot already happened
else:
color = self.apply_brightness(self.colors[0])
for i in range(self.n1, self.n2 + 1):
self.n[i] = color
self.n.write()
self.last_update = current_time
return self.delay
self.last_update = current_time
return self.delay
def n_chase(self):
"""
A theater chase pattern using n1 for on-width and n2 for off-width.
"""
current_time = utime.ticks_ms()
segment_length = self.n1 + self.n2
if segment_length == 0: # Avoid division by zero
self.fill((0,0,0))
self.n.write()
self.last_update = current_time
return self.delay
for i in range(self.num_leds):
if (i + self.pattern_step) % segment_length < self.n1:
self.n[i] = self.apply_brightness(self.colors[0])
else:
self.n[i] = (0, 0, 0)
self.n.write()
self.pattern_step = (self.pattern_step + 1) % segment_length
self.last_update = current_time
return self.delay
def alternating(self):
"""
An alternating pattern where n1 LEDs are ON/OFF and n2 LEDs are OFF/ON globally, without moving.
"""
current_time = utime.ticks_ms()
total_segment_length = self.n1 + self.n2
if total_segment_length == 0:
self.fill((0,0,0))
self.n.write()
self.last_update = current_time
return self.delay
# current_phase will alternate between 0 and 1
current_phase = self.pattern_step % 2
for i in range(self.num_leds):
# Position within a single repeating segment (n1 + n2)
pos_in_segment = i % total_segment_length
if current_phase == 0: # State 0: n1 ON, n2 OFF
if pos_in_segment < self.n1:
self.n[i] = self.apply_brightness(self.colors[0]) # n1 is ON
else:
self.n[i] = (0, 0, 0) # n2 is OFF
else: # State 1: n1 OFF, n2 ON
if pos_in_segment < self.n1:
self.n[i] = (0, 0, 0) # n1 is OFF
else:
self.n[i] = self.apply_brightness(self.colors[0]) # n2 is ON
self.n.write()
self.pattern_step = (self.pattern_step + 1) % 2 # Toggle between 0 and 1
self.last_update = current_time
return self.delay * 2
def pulse(self):
if self.pattern_step == 0:
self.fill(self.apply_brightness(self.colors[0]))
self.pattern_step = 1
self.last_update = utime.ticks_ms()
if utime.ticks_diff(utime.ticks_ms(), self.last_update) > self.delay:
self.fill((0, 0, 0))
print(utime.ticks_diff(utime.ticks_ms(), self.last_update))
self.run = False
return self.delay
if __name__ == "__main__":
import time
from machine import WDT
wdt = WDT(timeout=2000) # Enable watchdog with a 2 second timeout
p = Patterns(pin=4, num_leds=60, color1=(255,0,0), color2=(0,0,255), brightness=127, selected="off", delay=100)
print(p.colors, p.brightness)
tests = [
("off", {"duration_ms": 500}),
("on", {"duration_ms": 500}),
("color_wipe", {"delay": 200, "duration_ms": 1000}),
("rainbow_cycle", {"delay": 100, "duration_ms": 2500}),
("theater_chase", {"on_width": 3, "off_width": 3, "delay": 1000, "duration_ms": 2500}),
("blink", {"delay": 500, "duration_ms": 2000}),
("color_transition", {"delay": 150, "colors": [(255,0,0),(0,255,0),(0,0,255)], "duration_ms": 5000}),
("flicker", {"delay": 100, "duration_ms": 2000}),
("scanner", {"delay": 150, "duration_ms": 2500}),
("bidirectional_scanner", {"delay": 50, "duration_ms": 2500}),
("fill_range", {"n1": 10, "n2": 20, "delay": 500, "duration_ms": 2000}),
("n_chase", {"n1": 5, "n2": 5, "delay": 2000, "duration_ms": 2500}),
("alternating", {"n1": 5, "n2": 5, "delay": 500, "duration_ms": 2500}),
("pulse", {"delay": 100, "duration_ms": 700}),
]
print("\n--- Running pattern self-test ---")
for name, cfg in tests:
print(f"\nPattern: {name}")
# apply simple config helpers
if "delay" in cfg:
p.set_delay(cfg["delay"])
if "on_width" in cfg:
p.set_on_width(cfg["on_width"])
if "off_width" in cfg:
p.set_off_width(cfg["off_width"])
if "n1" in cfg and "n2" in cfg:
p.set_fill_range(cfg["n1"], cfg["n2"])
if "colors" in cfg:
p.set_colors(cfg["colors"])
p.select(name)
# run per configured duration using absolute-scheduled tick(next_due_ms)
start = utime.ticks_ms()
duration_ms = cfg["duration_ms"]
delay = cfg.get("delay", 0)
next_due = utime.ticks_ms() - 1 # force immediate first call
while utime.ticks_diff(utime.ticks_ms(), start) < duration_ms:
delay = p.tick(delay)
wdt.feed()
print("\n--- Test routine finished ---")

View File

@@ -18,13 +18,7 @@ def main():
settings = Settings() settings = Settings()
print(settings) print(settings)
patterns = Patterns(settings["led_pin"], settings["num_leds"], selected=settings["pattern"]) patterns = Patterns(settings["led_pin"], settings["num_leds"], selected="off")
if settings["color_order"] == "rbg": color_order = (1, 5, 3)
else: color_order = (1, 3, 5)
patterns.set_color1(tuple(int(settings["color1"][i:i+2], 16) for i in color_order))
patterns.set_color2(tuple(int(settings["color2"][i:i+2], 16) for i in color_order))
patterns.set_brightness(int(settings["brightness"]))
patterns.set_delay(int(settings["delay"]))
sta_if = network.WLAN(network.STA_IF) sta_if = network.WLAN(network.STA_IF)
sta_if.active(True) sta_if.active(True)
@@ -35,7 +29,7 @@ def main():
wdt = machine.WDT(timeout=10000) wdt = machine.WDT(timeout=10000)
wdt.feed() wdt.feed()
while True: while True:
patterns.tick() # patterns.tick()
wdt.feed() wdt.feed()
host, msg = e.recv(0) host, msg = e.recv(0)
if msg: if msg:
@@ -46,19 +40,19 @@ def main():
defaults = data.get("d", {}) defaults = data.get("d", {})
bar = data.get(settings.get("name"), {}) bar = data.get(settings.get("name"), {})
patterns.set_brightness(bar.get("brightness", defaults.get("brightness", 100))) patterns.brightness = bar.get("brightness", defaults.get("brightness", patterns.brightness))
patterns.set_delay(bar.get("delay", defaults.get("delay", 100))) patterns.delay = bar.get("delay", defaults.get("delay", patterns.delay))
colors = bar.get("colors", defaults.get("colors", ["#000000", "#000000"])) colors = bar.get("colors", defaults.get("colors", patterns.colors))
patterns.colors = [tuple(int(color[i:i+2], 16) for i in settings.color_order) for color in colors] patterns.colors = [tuple(int(color[i:i+2], 16) for i in settings.color_order) for color in colors]
patterns.select(bar.get("pattern", defaults.get("pattern", "off"))) # patterns.select(bar.get("pattern", defaults.get("pattern", "off")))
patterns.n1 = bar.get("n1", defaults.get("n1", 0)) patterns.n1 = bar.get("n1", defaults.get("n1", patterns.n1))
patterns.n2 = bar.get("n2", defaults.get("n2", 58)) patterns.n2 = bar.get("n2", defaults.get("n2", patterns.n2))
patterns.on_width = bar.get("on_width", defaults.get("on_width", 1)) patterns.step = bar.get("pattern_step", defaults.get("step", patterns.step))
patterns.off_width = bar.get("off_width", defaults.get("off_width", 2)) selected_pattern = bar.get("pattern", defaults.get("pattern", "off"))
patterns.oneshot = bar.get("oneshot", defaults.get("oneshot", False)) if selected_pattern in patterns.patterns:
patterns.beat = bar.get("beat", defaults.get("beat", False)) patterns.patterns[selected_pattern]()
patterns.beat_mode = bar.get("beat_mode", defaults.get("beat_mode", False)) else:
patterns.auto = bar.get("auto", defaults.get("auto", True)) print(f"Pattern {selected_pattern} not found")
except: except:
print(f"Failed to load espnow data {msg}") print(f"Failed to load espnow data {msg}")

View File

@@ -14,195 +14,13 @@ class Patterns(PatternBase): # Inherit from PatternBase
self.n2 = self.num_leds - 1 # Default end of fill range self.n2 = self.num_leds - 1 # Default end of fill range
self.oneshot = False # New: One-shot flag for patterns like fill_range self.oneshot = False # New: One-shot flag for patterns like fill_range
self.patterns = { self.patterns = {
"off": self.off,
"on" : self.on,
"color_wipe": self.color_wipe,
"rainbow_cycle": self.rainbow_cycle,
"theater_chase": self.theater_chase,
"blink": self.blink,
"color_transition": self.color_transition, # Added new pattern
"flicker": self.flicker, "flicker": self.flicker,
"scanner": self.scanner, # New: Single direction scanner "fill_range": self.fill_range,
"bidirectional_scanner": self.bidirectional_scanner, # New: Bidirectional scanner "n_chase": self.n_chase,
"fill_range": self.fill_range, # New: Fill from n1 to n2 "alternating": self.alternating,
"n_chase": self.n_chase, # New: N1 on, N2 off repeating chase
"alternating": self.alternating, # New: N1 on/off, N2 off/on alternating chase
"external": None,
"pulse": self.pulse "pulse": self.pulse
} }
# Beat-related functionality removed self.step = 0
# self.selected is already initialized in PatternBase, but we need to ensure it uses our patterns dict
# self.selected = selected # Handled by PatternBase
# Ensure colors list always starts with at least two for robust transition handling
# self.colors handled by PatternBase
# Transition attributes handled by PatternBase
# Scanner attributes handled by PatternBase
# self.run handled by PatternBase
def sync(self):
super().sync() # Call parent sync
# Reset pattern_step for theater_chase when chase_width changes
if self.selected == "theater_chase" or self.selected == "fill_range" or self.selected == "n_chase" or self.selected == "alternating":
self.pattern_step = 0
self.tick()
def set_on_width(self, on_width):
self.on_width = on_width
def set_off_width(self, off_width):
self.off_width = off_width
def set_on_off_width(self, on_width, off_width):
self.on_width = on_width
self.off_width = off_width
self.sync()
def set_fill_range(self, n1, n2):
self.n1 = n1
self.n2 = n2
self.sync()
def set_oneshot(self, oneshot_value):
self.oneshot = oneshot_value
if self.oneshot: # Reset pattern step if enabling one-shot
self.pattern_step = 0
self.sync()
def select(self, pattern):
if pattern in self.patterns:
super().select(pattern) # Use parent select to set self.selected and self.transition_step
self.run = True # Set run flag
if pattern == "color_transition":
if len(self.colors) < 2:
print("Warning: 'color_transition' requires at least two colors. Switching to 'on'.")
self.selected = "on" # Fallback if not enough colors
self.sync() # Re-sync for the new pattern
else:
self.transition_step = 0
self.current_color_idx = 0 # Start from the first color in the list
self.current_color = self.colors[self.current_color_idx]
self.hold_start_time = utime.ticks_ms() # Reset hold timer
self.transition_duration = self.delay * 50 # Initialize transition duration
self.hold_duration = self.delay * 10 # Initialize hold duration
return True
return False
def off(self):
self.fill((0, 0, 0))
return self.delay
def on(self):
self.fill(self.apply_brightness(self.colors[0]))
return self.delay
def color_wipe(self):
color = self.apply_brightness(self.colors[0])
current_time = utime.ticks_ms()
if self.pattern_step < self.num_leds:
for i in range(self.num_leds):
self.n[i] = (0, 0, 0)
self.n[self.pattern_step] = self.apply_brightness(color)
self.n.write()
self.pattern_step += 1
else:
self.pattern_step = 0
self.last_update = current_time
return self.delay
def rainbow_cycle(self):
current_time = utime.ticks_ms()
def wheel(pos):
if pos < 85:
return (pos * 3, 255 - pos * 3, 0)
elif pos < 170:
pos -= 85
return (255 - pos * 3, 0, pos * 3)
else:
pos -= 170
return (0, pos * 3, 255 - pos * 3)
for i in range(self.num_leds):
rc_index = (i * 256 // self.num_leds) + self.pattern_step
self.n[i] = self.apply_brightness(wheel(rc_index & 255))
self.n.write()
self.pattern_step = (self.pattern_step + 1) % 256
self.last_update = current_time
return max(1, int(self.delay // 5))
def theater_chase(self):
current_time = utime.ticks_ms()
segment_length = self.on_width + self.off_width
for i in range(self.num_leds):
if (i + self.pattern_step) % segment_length < self.on_width:
self.n[i] = self.apply_brightness(self.colors[0])
else:
self.n[i] = (0, 0, 0)
self.n.write()
self.pattern_step = (self.pattern_step + 1) % segment_length
self.last_update = current_time
return self.delay
def blink(self):
current_time = utime.ticks_ms()
if self.pattern_step % 2 == 0:
self.fill(self.apply_brightness(self.colors[0]))
else:
self.fill((0, 0, 0))
self.pattern_step = (self.pattern_step + 1) % 2
self.last_update = current_time
return self.delay
def color_transition(self):
current_time = utime.ticks_ms()
# Check for hold duration first
if utime.ticks_diff(current_time, self.hold_start_time) < self.hold_duration:
# Still in hold phase, just display the current solid color
self.fill(self.apply_brightness(self.current_color))
self.last_update = current_time # Keep updating last_update to avoid skipping frames
return self.delay
# If hold duration is over, proceed with transition
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
num_colors = len(self.colors)
if num_colors < 2:
# Should not happen if select handles it, but as a safeguard
self.select("on")
return self.delay
from_color = self.colors[self.current_color_idx]
to_color_idx = (self.current_color_idx + 1) % num_colors
to_color = self.colors[to_color_idx]
# Calculate interpolation factor (0.0 to 1.0)
# transition_step goes from 0 to transition_duration - 1
if self.transition_duration > 0:
interp_factor = self.transition_step / self.transition_duration
else:
interp_factor = 1.0 # Immediately transition if duration is zero
# Interpolate each color component
r = int(from_color[0] + (to_color[0] - from_color[0]) * interp_factor)
g = int(from_color[1] + (to_color[1] - from_color[1]) * interp_factor)
b = int(from_color[2] + (to_color[2] - from_color[2]) * interp_factor)
self.current_color = (r, g, b)
self.fill(self.apply_brightness(self.current_color))
self.transition_step += self.delay # Advance the transition step by the delay
if self.transition_step >= self.transition_duration:
# Transition complete, move to the next color and reset for hold phase
self.current_color_idx = to_color_idx
self.current_color = self.colors[self.current_color_idx] # Ensure current_color is the exact target color
self.transition_step = 0 # Reset transition progress
self.hold_start_time = current_time # Start hold phase for the new color
self.last_update = current_time
return self.delay
def flicker(self): def flicker(self):
current_time = utime.ticks_ms() current_time = utime.ticks_ms()
@@ -217,79 +35,6 @@ class Patterns(PatternBase): # Inherit from PatternBase
self.last_update = current_time self.last_update = current_time
return max(1, int(self.delay // 5)) return max(1, int(self.delay // 5))
def scanner(self):
"""
Mimics a 'Knight Rider' style scanner, moving in one direction.
"""
current_time = utime.ticks_ms()
self.fill((0, 0, 0)) # Clear all LEDs
# Calculate the head and tail position
head_pos = self.pattern_step
color = self.apply_brightness(self.colors[0])
# Draw the head
if 0 <= head_pos < self.num_leds:
self.n[head_pos] = color
# Draw the trailing pixels with decreasing brightness
for i in range(1, self.scanner_tail_length + 1):
tail_pos = head_pos - i
if 0 <= tail_pos < self.num_leds:
# Calculate fading color for tail
# Example: linear fade from full brightness to off
fade_factor = 1.0 - (i / (self.scanner_tail_length + 1))
faded_color = tuple(int(c * fade_factor) for c in color)
self.n[tail_pos] = faded_color
self.n.write()
self.pattern_step += 1
if self.pattern_step >= self.num_leds + self.scanner_tail_length:
self.pattern_step = 0 # Reset to start
self.last_update = current_time
return self.delay
def bidirectional_scanner(self):
"""
Mimics a 'Knight Rider' style scanner, moving back and forth.
"""
current_time = utime.ticks_ms()
self.fill((0, 0, 0)) # Clear all LEDs
color = self.apply_brightness(self.colors[0])
# Calculate the head position based on direction
head_pos = self.pattern_step
# Draw the head
if 0 <= head_pos < self.num_leds:
self.n[head_pos] = color
# Draw the trailing pixels with decreasing brightness
for i in range(1, self.scanner_tail_length + 1):
tail_pos = head_pos - (i * self.scanner_direction)
if 0 <= tail_pos < self.num_leds:
fade_factor = 1.0 - (i / (self.scanner_tail_length + 1))
faded_color = tuple(int(c * fade_factor) for c in color)
self.n[tail_pos] = faded_color
self.n.write()
self.pattern_step += self.scanner_direction
# Change direction if boundaries are reached
if self.scanner_direction == 1 and self.pattern_step >= self.num_leds:
self.scanner_direction = -1
self.pattern_step = self.num_leds - 1 # Start moving back from the last LED
elif self.scanner_direction == -1 and self.pattern_step < 0:
self.scanner_direction = 1
self.pattern_step = 0 # Start moving forward from the first LED
self.last_update = current_time
return self.delay
def fill_range(self): def fill_range(self):
""" """
Fills a range of LEDs from n1 to n2 with a solid color. Fills a range of LEDs from n1 to n2 with a solid color.
@@ -331,50 +76,46 @@ class Patterns(PatternBase): # Inherit from PatternBase
return self.delay return self.delay
def alternating(self): def alternating(self):
""" # Use n1 as ON width and n2 as OFF width
An alternating pattern where n1 LEDs are ON/OFF and n2 LEDs are OFF/ON globally, without moving. segment_on = max(0, int(self.n1))
""" segment_off = max(0, int(self.n2))
current_time = utime.ticks_ms() total_segment_length = segment_on + segment_off
total_segment_length = self.n1 + self.n2 if total_segment_length <= 0:
if total_segment_length == 0: self.fill((0, 0, 0))
self.fill((0,0,0))
self.n.write() self.n.write()
self.last_update = current_time
return self.delay return self.delay
# current_phase will alternate between 0 and 1 current_phase = self.step % 2
current_phase = self.pattern_step % 2
active_color = self.apply_brightness(self.colors[0])
for i in range(self.num_leds): for i in range(self.num_leds):
# Position within a single repeating segment (n1 + n2)
pos_in_segment = i % total_segment_length pos_in_segment = i % total_segment_length
if current_phase == 0:
if current_phase == 0: # State 0: n1 ON, n2 OFF # ON then OFF
if pos_in_segment < self.n1: if pos_in_segment < segment_on:
self.n[i] = self.apply_brightness(self.colors[0]) # n1 is ON self.n[i] = active_color
else: else:
self.n[i] = (0, 0, 0) # n2 is OFF self.n[i] = (0, 0, 0)
else: # State 1: n1 OFF, n2 ON else:
if pos_in_segment < self.n1: # OFF then ON
self.n[i] = (0, 0, 0) # n1 is OFF if pos_in_segment < segment_on:
self.n[i] = (0, 0, 0)
else: else:
self.n[i] = self.apply_brightness(self.colors[0]) # n2 is ON self.n[i] = active_color
self.n.write() self.n.write()
self.pattern_step = (self.pattern_step + 1) % 2 # Toggle between 0 and 1 self.step = (self.step + 1) % 2
self.last_update = current_time return self.delay
return self.delay * 2
def pulse(self): def pulse(self):
if self.pattern_step == 0: self.fill(self.apply_brightness(self.colors[0]))
self.fill(self.apply_brightness(self.colors[0])) start = utime.ticks_ms()
self.pattern_step = 1
while utime.ticks_diff(utime.ticks_ms(), start) < self.delay:
self.last_update = utime.ticks_ms() pass
if utime.ticks_diff(utime.ticks_ms(), self.last_update) > self.delay: self.fill((0, 0, 0))
self.fill((0, 0, 0))
print(utime.ticks_diff(utime.ticks_ms(), self.last_update))
self.run = False
return self.delay return self.delay

View File

@@ -33,138 +33,21 @@ class PatternBase:
# Store last pattern-returned delay to use for subsequent gating # Store last pattern-returned delay to use for subsequent gating
self._last_returned_delay = None self._last_returned_delay = None
def sync(self):
self.pattern_step=0
self.last_update = utime.ticks_ms() - self.delay
if self.selected == "color_transition":
self.transition_step = 0
self.current_color_idx = 0
self.current_color = self.colors[self.current_color_idx]
self.hold_start_time = utime.ticks_ms() # Reset hold time
# Reset scanner specific variables
self.scanner_direction = 1
# self.tick() # Tick moved to Patterns, as patterns dict is there
def set_pattern_step(self, step):
self.pattern_step = step
def tick(self, delay=0):
now =utime.ticks_ms()
if self.patterns.get(self.selected) and self.run:
if delay == 0:
self.patterns[self.selected]()
print("manual tick")
return 0
if utime.ticks_diff(now, delay) > 0:
delay = self.patterns[self.selected]()
print("auto tick")
return delay + now
else:
return delay
def update_num_leds(self, pin, num_leds): def update_num_leds(self, pin, num_leds):
self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds) self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds)
self.num_leds = num_leds self.num_leds = num_leds
self.pattern_step = 0
def set_delay(self, delay):
self.delay = delay
# Update transition duration and hold duration when delay changes
self.transition_duration = self.delay * 50
self.hold_duration = self.delay * 10
# Reset last returned delay so next tick recomputes
self._last_returned_delay = None
def set_brightness(self, brightness):
self.brightness = brightness
def set_color1(self, color):
if len(self.colors) > 0:
self.colors[0] = color
if self.selected == "color_transition":
# If the first color is changed, potentially reset transition
# to start from this new color if we were about to transition from it
if self.current_color_idx == 0:
self.transition_step = 0
self.current_color = self.colors[0]
self.hold_start_time = utime.ticks_ms()
else:
self.colors.append(color)
def set_color2(self, color):
if len(self.colors) > 1:
self.colors[1] = color
elif len(self.colors) == 1:
self.colors.append(color)
else: # List is empty
self.colors.append((0,0,0)) # Dummy color
self.colors.append(color)
def set_colors(self, colors):
if colors and len(colors) >= 2:
self.colors = colors
if self.selected == "color_transition":
self.sync() # Reset transition if new color list is provided
elif colors and len(colors) == 1:
self.colors = [colors[0], (255,255,255)] # Add a default second color
if self.selected == "color_transition":
print("Warning: 'color_transition' requires at least two colors. Adding a default second color.")
self.sync()
else:
print("Error: set_colors requires a list of at least one color.")
self.colors = [(0,0,0), (255,255,255)] # Fallback
if self.selected == "color_transition":
self.sync()
def set_color(self, num, color): def set_color(self, num, color):
# Changed: More robust index check
if 0 <= num < len(self.colors): if 0 <= num < len(self.colors):
self.colors[num] = color self.colors[num] = color
# If the changed color is part of the current or next transition,
# restart the transition for smoother updates
if self.selected == "color_transition":
current_from_idx = self.current_color_idx
current_to_idx = (self.current_color_idx + 1) % len(self.colors)
if num == current_from_idx or num == current_to_idx:
# If we change a color involved in the current transition,
# it's best to restart the transition state for smoothness.
self.transition_step = 0
self.current_color_idx = current_from_idx # Stay at the current starting color
self.current_color = self.colors[self.current_color_idx]
self.hold_start_time = utime.ticks_ms() # Reset hold
return True
elif num == len(self.colors): # Allow setting a new color at the end elif num == len(self.colors): # Allow setting a new color at the end
self.colors.append(color) self.colors.append(color)
return True return True
return False return False
def add_color(self, color):
self.colors.append(color)
if self.selected == "color_transition" and len(self.colors) == 2:
# If we just added the second color needed for transition
self.sync()
def del_color(self, num): def del_color(self, num):
# Changed: More robust index check and using del for lists
if 0 <= num < len(self.colors): if 0 <= num < len(self.colors):
del self.colors[num] del self.colors[num]
# If the color being deleted was part of the current transition,
# re-evaluate the current_color_idx
if self.selected == "color_transition":
if len(self.colors) < 2: # Need at least two colors for transition
print("Warning: Not enough colors for 'color_transition'. Switching to 'on'.")
self.select("on") # Or some other default
else:
# Adjust index if it's out of bounds after deletion or was the one transitioning from
self.current_color_idx %= len(self.colors)
self.transition_step = 0
self.current_color = self.colors[self.current_color_idx]
self.hold_start_time = utime.ticks_ms()
return True return True
return False return False
@@ -172,38 +55,12 @@ class PatternBase:
effective_brightness = brightness_override if brightness_override is not None else self.brightness effective_brightness = brightness_override if brightness_override is not None else self.brightness
return tuple(int(c * effective_brightness / 255) for c in color) return tuple(int(c * effective_brightness / 255) for c in color)
def select(self, pattern):
# Removed self.run = True here. It should be handled by Patterns class.
if pattern in self.patterns:
self.selected = pattern
self.sync() # Reset pattern state when selecting a new pattern
# Reset last returned delay so gating can be recalculated for the new pattern
self._last_returned_delay = None
if pattern == "color_transition":
if len(self.colors) < 2:
print("Warning: 'color_transition' requires at least two colors. Switching to 'on'.")
self.selected = "on" # Fallback if not enough colors
self.sync() # Re-sync for the new pattern
else:
self.transition_step = 0
self.current_color_idx = 0 # Start from the first color in the list
self.current_color = self.colors[self.current_color_idx]
self.hold_start_time = utime.ticks_ms() # Reset hold timer
self.transition_duration = self.delay * 50 # Initialize transition duration
self.hold_duration = self.delay * 10 # Initialize hold duration
return True
return False
def set(self, i, color):
self.n[i] = color
def write(self): def write(self):
self.n.write() self.n.write()
def fill(self, color=None): def fill(self, color=None):
fill_color = color if color is not None else self.colors[0] fill_color = color if color is not None else self.colors[0]
for i in range(self.num_leds): self.n.fill(fill_color)
self.n[i] = fill_color
self.n.write() self.n.write()
def off(self): def off(self):

View File

@@ -9,26 +9,14 @@ class Settings(dict):
def __init__(self): def __init__(self):
super().__init__() super().__init__()
self.load() # Load settings from file during initialization self.load() # Load settings from file during initialization
if self["color_order"] == "rbg": self.color_order = (1, 5, 3) if self.get("color_order", "rgb") == "rbg": self.color_order = (1, 5, 3)
else: self.color_order = (1, 3, 5) else: self.color_order = (1, 3, 5)
def set_defaults(self): def set_defaults(self):
self["led_pin"] = 10 self["led_pin"] = 4
self["num_leds"] = 100 self["num_leds"] = 100
self["pattern"] = "on"
self["color1"] = "#080000"
self["color2"] = "#ff0000"
self["delay"] = 100
self["brightness"] = 100
self["on_width"] = 1 # Default on width for theater chase
self["off_width"] = 2 # Default off width for theater chase
self["n1"] = 0 # Default start of fill range
self["n2"] = 58 # Default end of fill range (assuming 59 leds for now)
self["oneshot"] = False # Default one-shot setting
self["color_order"] = "rgb" self["color_order"] = "rgb"
self["name"] = f"5" self["name"] = f"3"
self["ap_password"] = ""
self["id"] = 0
def save(self): def save(self):
try: try:

158
test/main.py Normal file
View File

@@ -0,0 +1,158 @@
import asyncio
import json
import argparse
import signal
try:
import websockets # type: ignore
except Exception as e:
print("Please install websockets: pip install websockets")
raise
WS_URI = "ws://192.168.4.1/ws"
# Default pattern suite aligned with current firmware patterns
PATTERN_SUITE = [
{"pattern": "flicker", "delay": 80, "iterations": 30, "repeat_delay": 80, "colors": ["#ffaa00"]},
{"pattern": "fill_range", "n1": 10, "n2": 20, "delay": 400, "iterations": 1, "repeat_delay": 500, "colors": ["#888888"]},
{"pattern": "n_chase", "n1": 5, "n2": 5, "delay": 250, "iterations": 40, "repeat_delay": 120, "colors": ["#00ff88"]},
{"pattern": "alternating", "n1": 6, "n2": 6, "delay": 300, "iterations": 20, "repeat_delay": 300, "colors": ["#ff8800"]},
{"pattern": "pulse", "delay": 200, "iterations": 6, "repeat_delay": 300, "colors": ["#ffffff"]},
]
def build_message(
pattern: str,
n: int | None = None,
delay: int | None = None,
colors: list[str] | None = None,
brightness: int | None = None,
num_leds: int | None = None,
n1: int | None = None,
n2: int | None = None,
name: str = "0",
pattern_step: int | None = None,
):
settings: dict[str, object] = {
"pattern": pattern,
}
if n is not None:
settings["n"] = n
if delay is not None:
settings["delay"] = delay
if colors is not None:
settings["colors"] = colors
if brightness is not None:
settings["brightness"] = brightness
if num_leds is not None:
settings["num_leds"] = num_leds
if n1 is not None:
settings["n1"] = n1
if n2 is not None:
settings["n2"] = n2
if pattern_step is not None:
settings["pattern_step"] = pattern_step
# ESP-NOW-style nested payload keyed by name (e.g., "0")
return {name: settings}
async def send_once(uri: str, payload: dict, hold_ms: int | None = None):
async with websockets.connect(uri) as ws:
await ws.send(json.dumps(payload))
if hold_ms and hold_ms > 0:
await asyncio.sleep(hold_ms / 1000)
async def run_suite(uri: str):
async with websockets.connect(uri) as ws:
for cfg in PATTERN_SUITE:
iterations = int(cfg.get("iterations", 10))
interval_ms = int(cfg.get("interval_ms", cfg.get("delay", 100) or 100))
repeat_ms = int(cfg.get("repeat_delay", interval_ms))
for i in range(iterations):
msg = build_message(
cfg.get("pattern", "off"),
i,
delay=cfg.get("delay"),
colors=cfg.get("colors"),
brightness=cfg.get("brightness", 127),
num_leds=cfg.get("num_leds"),
n1=cfg.get("n1"),
n2=cfg.get("n2"),
name=cfg.get("name", "0"),
pattern_step=cfg.get("pattern_step"),
)
print(msg)
await ws.send(json.dumps(msg))
await asyncio.sleep(repeat_ms / 1000)
def _parse_args():
p = argparse.ArgumentParser(description="WebSocket LED pattern tester")
p.add_argument("--uri", default=WS_URI, help="WebSocket URI, default ws://192.168.4.1/ws")
p.add_argument("--pattern", help="Single pattern to send (overrides suite)")
p.add_argument("--delay", type=int, help="Delay ms")
p.add_argument("--brightness", type=int, help="Brightness 0-255")
p.add_argument("--num-leds", type=int, help="Number of LEDs")
p.add_argument("--colors", nargs="*", help="Hex colors like #ff0000 #00ff00")
p.add_argument("--on-width", type=int)
p.add_argument("--off-width", type=int)
p.add_argument("--n1", type=int)
p.add_argument("--n2", type=int)
p.add_argument("--name", default="0", help="Target name key for nested payload (default: 0)")
p.add_argument("--iterations", type=int, help="How many cycles/messages to send")
p.add_argument("--interval", type=int, help="Interval between messages in ms (default: delay or 100)")
p.add_argument("--repeat-delay", dest="repeat_delay", type=int, help="Delay between repeats in ms (overrides --interval if set)")
p.add_argument("--hold", type=int, default=1500, help="Hold ms for single send")
return p.parse_args()
def _setup_sigint(loop: asyncio.AbstractEventLoop):
for sig in (signal.SIGINT, signal.SIGTERM):
try:
loop.add_signal_handler(sig, loop.stop)
except NotImplementedError:
pass
async def main_async():
args = _parse_args()
if args.pattern:
iterations = int(args.iterations or 1)
interval_ms = int(args.interval or (args.delay if args.delay is not None else 100))
repeat_ms = int(args.repeat_delay or interval_ms)
async with websockets.connect(args.uri) as ws:
for i in range(iterations):
msg = build_message(
pattern=args.pattern,
n=i,
delay=args.delay,
colors=args.colors,
brightness=args.brightness,
num_leds=args.num_leds,
n1=args.n1,
n2=args.n2,
name=args.name,
)
print(msg)
await ws.send(json.dumps(msg))
await asyncio.sleep(repeat_ms / 1000)
else:
await run_suite(args.uri)
def main():
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
_setup_sigint(loop)
try:
loop.run_until_complete(main_async())
finally:
try:
loop.run_until_complete(asyncio.sleep(0))
except Exception:
pass
loop.close()
if __name__ == "__main__":
main()