patterns: alternating uses n1 (on) and n2 (off); ensure visible ON color; return delay; phase via self.step

test: WS client sends nested {name:{...}}; add iterations and repeat-delay; include n per message; use n1/n2 for alternating
This commit is contained in:
2025-09-16 21:22:47 +12:00
parent 93560a253e
commit d599af271b
6 changed files with 640 additions and 474 deletions

428
patterns.py Normal file
View File

@@ -0,0 +1,428 @@
import utime
import random
from patterns_base import PatternBase # Import PatternBase
class Patterns(PatternBase): # Inherit from PatternBase
def __init__(self, pin, num_leds, color1=(0,0,0), color2=(0,0,0), brightness=127, selected="rainbow_cycle", delay=100):
super().__init__(pin, num_leds, color1, color2, brightness, selected, delay) # Call parent constructor
# Pattern-specific initializations
self.on_width = 1 # Default on width
self.off_width = 2 # Default off width (so total segment is 3, matching original behavior)
self.n1 = 0 # Default start of fill range
self.n2 = self.num_leds - 1 # Default end of fill range
self.oneshot = False # New: One-shot flag for patterns like fill_range
self.patterns = {
"off": self.off,
"on" : self.on,
"color_wipe": self.color_wipe,
"rainbow_cycle": self.rainbow_cycle,
"theater_chase": self.theater_chase,
"blink": self.blink,
"color_transition": self.color_transition, # Added new pattern
"flicker": self.flicker,
"scanner": self.scanner, # New: Single direction scanner
"bidirectional_scanner": self.bidirectional_scanner, # New: Bidirectional scanner
"fill_range": self.fill_range, # New: Fill from n1 to n2
"n_chase": self.n_chase, # New: N1 on, N2 off repeating chase
"alternating": self.alternating, # New: N1 on/off, N2 off/on alternating chase
"external": None,
"pulse": self.pulse
}
# Beat-related functionality removed
# self.selected is already initialized in PatternBase, but we need to ensure it uses our patterns dict
# self.selected = selected # Handled by PatternBase
# Ensure colors list always starts with at least two for robust transition handling
# self.colors handled by PatternBase
# Transition attributes handled by PatternBase
# Scanner attributes handled by PatternBase
# self.run handled by PatternBase
def set_on_width(self, on_width):
self.on_width = on_width
def set_off_width(self, off_width):
self.off_width = off_width
def set_on_off_width(self, on_width, off_width):
self.on_width = on_width
self.off_width = off_width
self.sync()
def set_fill_range(self, n1, n2):
self.n1 = n1
self.n2 = n2
self.sync()
def set_oneshot(self, oneshot_value):
self.oneshot = oneshot_value
if self.oneshot: # Reset pattern step if enabling one-shot
self.pattern_step = 0
self.sync()
def select(self, pattern):
if pattern in self.patterns:
super().select(pattern) # Use parent select to set self.selected and self.transition_step
self.run = True # Set run flag
if pattern == "color_transition":
if len(self.colors) < 2:
print("Warning: 'color_transition' requires at least two colors. Switching to 'on'.")
self.selected = "on" # Fallback if not enough colors
self.sync() # Re-sync for the new pattern
else:
self.transition_step = 0
self.current_color_idx = 0 # Start from the first color in the list
self.current_color = self.colors[self.current_color_idx]
self.hold_start_time = utime.ticks_ms() # Reset hold timer
self.transition_duration = self.delay * 50 # Initialize transition duration
self.hold_duration = self.delay * 10 # Initialize hold duration
return True
return False
def off(self):
self.fill((0, 0, 0))
return self.delay
def on(self):
self.fill(self.apply_brightness(self.colors[0]))
return self.delay
def color_wipe(self):
color = self.apply_brightness(self.colors[0])
current_time = utime.ticks_ms()
if self.pattern_step < self.num_leds:
for i in range(self.num_leds):
self.n[i] = (0, 0, 0)
self.n[self.pattern_step] = self.apply_brightness(color)
self.n.write()
self.pattern_step += 1
else:
self.pattern_step = 0
self.last_update = current_time
return self.delay
def rainbow_cycle(self):
current_time = utime.ticks_ms()
def wheel(pos):
if pos < 85:
return (pos * 3, 255 - pos * 3, 0)
elif pos < 170:
pos -= 85
return (255 - pos * 3, 0, pos * 3)
else:
pos -= 170
return (0, pos * 3, 255 - pos * 3)
for i in range(self.num_leds):
rc_index = (i * 256 // self.num_leds) + self.pattern_step
self.n[i] = self.apply_brightness(wheel(rc_index & 255))
self.n.write()
self.pattern_step = (self.pattern_step + 1) % 256
self.last_update = current_time
return max(1, int(self.delay // 5))
def theater_chase(self):
current_time = utime.ticks_ms()
segment_length = self.on_width + self.off_width
for i in range(self.num_leds):
if (i + self.pattern_step) % segment_length < self.on_width:
self.n[i] = self.apply_brightness(self.colors[0])
else:
self.n[i] = (0, 0, 0)
self.n.write()
self.pattern_step = (self.pattern_step + 1) % segment_length
self.last_update = current_time
return self.delay
def blink(self):
current_time = utime.ticks_ms()
if self.pattern_step % 2 == 0:
self.fill(self.apply_brightness(self.colors[0]))
else:
self.fill((0, 0, 0))
self.pattern_step = (self.pattern_step + 1) % 2
self.last_update = current_time
return self.delay
def color_transition(self):
current_time = utime.ticks_ms()
# Check for hold duration first
if utime.ticks_diff(current_time, self.hold_start_time) < self.hold_duration:
# Still in hold phase, just display the current solid color
self.fill(self.apply_brightness(self.current_color))
self.last_update = current_time # Keep updating last_update to avoid skipping frames
return self.delay
# If hold duration is over, proceed with transition
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
num_colors = len(self.colors)
if num_colors < 2:
# Should not happen if select handles it, but as a safeguard
self.select("on")
return self.delay
from_color = self.colors[self.current_color_idx]
to_color_idx = (self.current_color_idx + 1) % num_colors
to_color = self.colors[to_color_idx]
# Calculate interpolation factor (0.0 to 1.0)
# transition_step goes from 0 to transition_duration - 1
if self.transition_duration > 0:
interp_factor = self.transition_step / self.transition_duration
else:
interp_factor = 1.0 # Immediately transition if duration is zero
# Interpolate each color component
r = int(from_color[0] + (to_color[0] - from_color[0]) * interp_factor)
g = int(from_color[1] + (to_color[1] - from_color[1]) * interp_factor)
b = int(from_color[2] + (to_color[2] - from_color[2]) * interp_factor)
self.current_color = (r, g, b)
self.fill(self.apply_brightness(self.current_color))
self.transition_step += self.delay # Advance the transition step by the delay
if self.transition_step >= self.transition_duration:
# Transition complete, move to the next color and reset for hold phase
self.current_color_idx = to_color_idx
self.current_color = self.colors[self.current_color_idx] # Ensure current_color is the exact target color
self.transition_step = 0 # Reset transition progress
self.hold_start_time = current_time # Start hold phase for the new color
self.last_update = current_time
return self.delay
def flicker(self):
current_time = utime.ticks_ms()
base_color = self.colors[0]
# Increase the range for flicker_brightness_offset
# Changed from self.brightness // 4 to self.brightness // 2 (or even self.brightness for max intensity)
flicker_brightness_offset = random.randint(-int(self.brightness // 1.5), int(self.brightness // 1.5))
flicker_brightness = max(0, min(255, self.brightness + flicker_brightness_offset))
flicker_color = self.apply_brightness(base_color, brightness_override=flicker_brightness)
self.fill(flicker_color)
self.last_update = current_time
return max(1, int(self.delay // 5))
def scanner(self):
"""
Mimics a 'Knight Rider' style scanner, moving in one direction.
"""
current_time = utime.ticks_ms()
self.fill((0, 0, 0)) # Clear all LEDs
# Calculate the head and tail position
head_pos = self.pattern_step
color = self.apply_brightness(self.colors[0])
# Draw the head
if 0 <= head_pos < self.num_leds:
self.n[head_pos] = color
# Draw the trailing pixels with decreasing brightness
for i in range(1, self.scanner_tail_length + 1):
tail_pos = head_pos - i
if 0 <= tail_pos < self.num_leds:
# Calculate fading color for tail
# Example: linear fade from full brightness to off
fade_factor = 1.0 - (i / (self.scanner_tail_length + 1))
faded_color = tuple(int(c * fade_factor) for c in color)
self.n[tail_pos] = faded_color
self.n.write()
self.pattern_step += 1
if self.pattern_step >= self.num_leds + self.scanner_tail_length:
self.pattern_step = 0 # Reset to start
self.last_update = current_time
return self.delay
def bidirectional_scanner(self):
"""
Mimics a 'Knight Rider' style scanner, moving back and forth.
"""
current_time = utime.ticks_ms()
self.fill((0, 0, 0)) # Clear all LEDs
color = self.apply_brightness(self.colors[0])
# Calculate the head position based on direction
head_pos = self.pattern_step
# Draw the head
if 0 <= head_pos < self.num_leds:
self.n[head_pos] = color
# Draw the trailing pixels with decreasing brightness
for i in range(1, self.scanner_tail_length + 1):
tail_pos = head_pos - (i * self.scanner_direction)
if 0 <= tail_pos < self.num_leds:
fade_factor = 1.0 - (i / (self.scanner_tail_length + 1))
faded_color = tuple(int(c * fade_factor) for c in color)
self.n[tail_pos] = faded_color
self.n.write()
self.pattern_step += self.scanner_direction
# Change direction if boundaries are reached
if self.scanner_direction == 1 and self.pattern_step >= self.num_leds:
self.scanner_direction = -1
self.pattern_step = self.num_leds - 1 # Start moving back from the last LED
elif self.scanner_direction == -1 and self.pattern_step < 0:
self.scanner_direction = 1
self.pattern_step = 0 # Start moving forward from the first LED
self.last_update = current_time
return self.delay
def fill_range(self):
"""
Fills a range of LEDs from n1 to n2 with a solid color.
If self.oneshot is True, it fills once and then turns off the LEDs.
"""
current_time = utime.ticks_ms()
if self.oneshot and self.pattern_step >= 1:
self.fill((0, 0, 0)) # Turn off LEDs if one-shot already happened
else:
color = self.apply_brightness(self.colors[0])
for i in range(self.n1, self.n2 + 1):
self.n[i] = color
self.n.write()
self.last_update = current_time
return self.delay
self.last_update = current_time
return self.delay
def n_chase(self):
"""
A theater chase pattern using n1 for on-width and n2 for off-width.
"""
current_time = utime.ticks_ms()
segment_length = self.n1 + self.n2
if segment_length == 0: # Avoid division by zero
self.fill((0,0,0))
self.n.write()
self.last_update = current_time
return self.delay
for i in range(self.num_leds):
if (i + self.pattern_step) % segment_length < self.n1:
self.n[i] = self.apply_brightness(self.colors[0])
else:
self.n[i] = (0, 0, 0)
self.n.write()
self.pattern_step = (self.pattern_step + 1) % segment_length
self.last_update = current_time
return self.delay
def alternating(self):
"""
An alternating pattern where n1 LEDs are ON/OFF and n2 LEDs are OFF/ON globally, without moving.
"""
current_time = utime.ticks_ms()
total_segment_length = self.n1 + self.n2
if total_segment_length == 0:
self.fill((0,0,0))
self.n.write()
self.last_update = current_time
return self.delay
# current_phase will alternate between 0 and 1
current_phase = self.pattern_step % 2
for i in range(self.num_leds):
# Position within a single repeating segment (n1 + n2)
pos_in_segment = i % total_segment_length
if current_phase == 0: # State 0: n1 ON, n2 OFF
if pos_in_segment < self.n1:
self.n[i] = self.apply_brightness(self.colors[0]) # n1 is ON
else:
self.n[i] = (0, 0, 0) # n2 is OFF
else: # State 1: n1 OFF, n2 ON
if pos_in_segment < self.n1:
self.n[i] = (0, 0, 0) # n1 is OFF
else:
self.n[i] = self.apply_brightness(self.colors[0]) # n2 is ON
self.n.write()
self.pattern_step = (self.pattern_step + 1) % 2 # Toggle between 0 and 1
self.last_update = current_time
return self.delay * 2
def pulse(self):
if self.pattern_step == 0:
self.fill(self.apply_brightness(self.colors[0]))
self.pattern_step = 1
self.last_update = utime.ticks_ms()
if utime.ticks_diff(utime.ticks_ms(), self.last_update) > self.delay:
self.fill((0, 0, 0))
print(utime.ticks_diff(utime.ticks_ms(), self.last_update))
self.run = False
return self.delay
if __name__ == "__main__":
import time
from machine import WDT
wdt = WDT(timeout=2000) # Enable watchdog with a 2 second timeout
p = Patterns(pin=4, num_leds=60, color1=(255,0,0), color2=(0,0,255), brightness=127, selected="off", delay=100)
print(p.colors, p.brightness)
tests = [
("off", {"duration_ms": 500}),
("on", {"duration_ms": 500}),
("color_wipe", {"delay": 200, "duration_ms": 1000}),
("rainbow_cycle", {"delay": 100, "duration_ms": 2500}),
("theater_chase", {"on_width": 3, "off_width": 3, "delay": 1000, "duration_ms": 2500}),
("blink", {"delay": 500, "duration_ms": 2000}),
("color_transition", {"delay": 150, "colors": [(255,0,0),(0,255,0),(0,0,255)], "duration_ms": 5000}),
("flicker", {"delay": 100, "duration_ms": 2000}),
("scanner", {"delay": 150, "duration_ms": 2500}),
("bidirectional_scanner", {"delay": 50, "duration_ms": 2500}),
("fill_range", {"n1": 10, "n2": 20, "delay": 500, "duration_ms": 2000}),
("n_chase", {"n1": 5, "n2": 5, "delay": 2000, "duration_ms": 2500}),
("alternating", {"n1": 5, "n2": 5, "delay": 500, "duration_ms": 2500}),
("pulse", {"delay": 100, "duration_ms": 700}),
]
print("\n--- Running pattern self-test ---")
for name, cfg in tests:
print(f"\nPattern: {name}")
# apply simple config helpers
if "delay" in cfg:
p.set_delay(cfg["delay"])
if "on_width" in cfg:
p.set_on_width(cfg["on_width"])
if "off_width" in cfg:
p.set_off_width(cfg["off_width"])
if "n1" in cfg and "n2" in cfg:
p.set_fill_range(cfg["n1"], cfg["n2"])
if "colors" in cfg:
p.set_colors(cfg["colors"])
p.select(name)
# run per configured duration using absolute-scheduled tick(next_due_ms)
start = utime.ticks_ms()
duration_ms = cfg["duration_ms"]
delay = cfg.get("delay", 0)
next_due = utime.ticks_ms() - 1 # force immediate first call
while utime.ticks_diff(utime.ticks_ms(), start) < duration_ms:
delay = p.tick(delay)
wdt.feed()
print("\n--- Test routine finished ---")