patterns: alternating uses n1 (on) and n2 (off); ensure visible ON color; return delay; phase via self.step
test: WS client sends nested {name:{...}}; add iterations and repeat-delay; include n per message; use n1/n2 for alternating
This commit is contained in:
428
patterns.py
Normal file
428
patterns.py
Normal file
@@ -0,0 +1,428 @@
|
||||
|
||||
import utime
|
||||
import random
|
||||
from patterns_base import PatternBase # Import PatternBase
|
||||
|
||||
class Patterns(PatternBase): # Inherit from PatternBase
|
||||
def __init__(self, pin, num_leds, color1=(0,0,0), color2=(0,0,0), brightness=127, selected="rainbow_cycle", delay=100):
|
||||
super().__init__(pin, num_leds, color1, color2, brightness, selected, delay) # Call parent constructor
|
||||
|
||||
# Pattern-specific initializations
|
||||
self.on_width = 1 # Default on width
|
||||
self.off_width = 2 # Default off width (so total segment is 3, matching original behavior)
|
||||
self.n1 = 0 # Default start of fill range
|
||||
self.n2 = self.num_leds - 1 # Default end of fill range
|
||||
self.oneshot = False # New: One-shot flag for patterns like fill_range
|
||||
self.patterns = {
|
||||
"off": self.off,
|
||||
"on" : self.on,
|
||||
"color_wipe": self.color_wipe,
|
||||
"rainbow_cycle": self.rainbow_cycle,
|
||||
"theater_chase": self.theater_chase,
|
||||
"blink": self.blink,
|
||||
"color_transition": self.color_transition, # Added new pattern
|
||||
"flicker": self.flicker,
|
||||
"scanner": self.scanner, # New: Single direction scanner
|
||||
"bidirectional_scanner": self.bidirectional_scanner, # New: Bidirectional scanner
|
||||
"fill_range": self.fill_range, # New: Fill from n1 to n2
|
||||
"n_chase": self.n_chase, # New: N1 on, N2 off repeating chase
|
||||
"alternating": self.alternating, # New: N1 on/off, N2 off/on alternating chase
|
||||
"external": None,
|
||||
"pulse": self.pulse
|
||||
}
|
||||
# Beat-related functionality removed
|
||||
# self.selected is already initialized in PatternBase, but we need to ensure it uses our patterns dict
|
||||
# self.selected = selected # Handled by PatternBase
|
||||
|
||||
# Ensure colors list always starts with at least two for robust transition handling
|
||||
# self.colors handled by PatternBase
|
||||
|
||||
# Transition attributes handled by PatternBase
|
||||
|
||||
# Scanner attributes handled by PatternBase
|
||||
# self.run handled by PatternBase
|
||||
|
||||
def set_on_width(self, on_width):
|
||||
self.on_width = on_width
|
||||
|
||||
def set_off_width(self, off_width):
|
||||
self.off_width = off_width
|
||||
|
||||
def set_on_off_width(self, on_width, off_width):
|
||||
self.on_width = on_width
|
||||
self.off_width = off_width
|
||||
self.sync()
|
||||
|
||||
def set_fill_range(self, n1, n2):
|
||||
self.n1 = n1
|
||||
self.n2 = n2
|
||||
self.sync()
|
||||
|
||||
def set_oneshot(self, oneshot_value):
|
||||
self.oneshot = oneshot_value
|
||||
if self.oneshot: # Reset pattern step if enabling one-shot
|
||||
self.pattern_step = 0
|
||||
self.sync()
|
||||
|
||||
def select(self, pattern):
|
||||
if pattern in self.patterns:
|
||||
super().select(pattern) # Use parent select to set self.selected and self.transition_step
|
||||
self.run = True # Set run flag
|
||||
if pattern == "color_transition":
|
||||
if len(self.colors) < 2:
|
||||
print("Warning: 'color_transition' requires at least two colors. Switching to 'on'.")
|
||||
self.selected = "on" # Fallback if not enough colors
|
||||
self.sync() # Re-sync for the new pattern
|
||||
else:
|
||||
self.transition_step = 0
|
||||
self.current_color_idx = 0 # Start from the first color in the list
|
||||
self.current_color = self.colors[self.current_color_idx]
|
||||
self.hold_start_time = utime.ticks_ms() # Reset hold timer
|
||||
self.transition_duration = self.delay * 50 # Initialize transition duration
|
||||
self.hold_duration = self.delay * 10 # Initialize hold duration
|
||||
return True
|
||||
return False
|
||||
|
||||
def off(self):
|
||||
self.fill((0, 0, 0))
|
||||
return self.delay
|
||||
|
||||
def on(self):
|
||||
self.fill(self.apply_brightness(self.colors[0]))
|
||||
return self.delay
|
||||
|
||||
def color_wipe(self):
|
||||
color = self.apply_brightness(self.colors[0])
|
||||
current_time = utime.ticks_ms()
|
||||
if self.pattern_step < self.num_leds:
|
||||
for i in range(self.num_leds):
|
||||
self.n[i] = (0, 0, 0)
|
||||
self.n[self.pattern_step] = self.apply_brightness(color)
|
||||
self.n.write()
|
||||
self.pattern_step += 1
|
||||
else:
|
||||
self.pattern_step = 0
|
||||
self.last_update = current_time
|
||||
return self.delay
|
||||
|
||||
def rainbow_cycle(self):
|
||||
current_time = utime.ticks_ms()
|
||||
def wheel(pos):
|
||||
if pos < 85:
|
||||
return (pos * 3, 255 - pos * 3, 0)
|
||||
elif pos < 170:
|
||||
pos -= 85
|
||||
return (255 - pos * 3, 0, pos * 3)
|
||||
else:
|
||||
pos -= 170
|
||||
return (0, pos * 3, 255 - pos * 3)
|
||||
|
||||
for i in range(self.num_leds):
|
||||
rc_index = (i * 256 // self.num_leds) + self.pattern_step
|
||||
self.n[i] = self.apply_brightness(wheel(rc_index & 255))
|
||||
self.n.write()
|
||||
self.pattern_step = (self.pattern_step + 1) % 256
|
||||
self.last_update = current_time
|
||||
return max(1, int(self.delay // 5))
|
||||
|
||||
def theater_chase(self):
|
||||
current_time = utime.ticks_ms()
|
||||
segment_length = self.on_width + self.off_width
|
||||
for i in range(self.num_leds):
|
||||
if (i + self.pattern_step) % segment_length < self.on_width:
|
||||
self.n[i] = self.apply_brightness(self.colors[0])
|
||||
else:
|
||||
self.n[i] = (0, 0, 0)
|
||||
self.n.write()
|
||||
self.pattern_step = (self.pattern_step + 1) % segment_length
|
||||
self.last_update = current_time
|
||||
return self.delay
|
||||
|
||||
def blink(self):
|
||||
current_time = utime.ticks_ms()
|
||||
if self.pattern_step % 2 == 0:
|
||||
self.fill(self.apply_brightness(self.colors[0]))
|
||||
else:
|
||||
self.fill((0, 0, 0))
|
||||
self.pattern_step = (self.pattern_step + 1) % 2
|
||||
self.last_update = current_time
|
||||
return self.delay
|
||||
|
||||
def color_transition(self):
|
||||
current_time = utime.ticks_ms()
|
||||
|
||||
# Check for hold duration first
|
||||
if utime.ticks_diff(current_time, self.hold_start_time) < self.hold_duration:
|
||||
# Still in hold phase, just display the current solid color
|
||||
self.fill(self.apply_brightness(self.current_color))
|
||||
self.last_update = current_time # Keep updating last_update to avoid skipping frames
|
||||
return self.delay
|
||||
|
||||
# If hold duration is over, proceed with transition
|
||||
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
|
||||
num_colors = len(self.colors)
|
||||
if num_colors < 2:
|
||||
# Should not happen if select handles it, but as a safeguard
|
||||
self.select("on")
|
||||
return self.delay
|
||||
|
||||
from_color = self.colors[self.current_color_idx]
|
||||
to_color_idx = (self.current_color_idx + 1) % num_colors
|
||||
to_color = self.colors[to_color_idx]
|
||||
|
||||
# Calculate interpolation factor (0.0 to 1.0)
|
||||
# transition_step goes from 0 to transition_duration - 1
|
||||
if self.transition_duration > 0:
|
||||
interp_factor = self.transition_step / self.transition_duration
|
||||
else:
|
||||
interp_factor = 1.0 # Immediately transition if duration is zero
|
||||
|
||||
# Interpolate each color component
|
||||
r = int(from_color[0] + (to_color[0] - from_color[0]) * interp_factor)
|
||||
g = int(from_color[1] + (to_color[1] - from_color[1]) * interp_factor)
|
||||
b = int(from_color[2] + (to_color[2] - from_color[2]) * interp_factor)
|
||||
|
||||
self.current_color = (r, g, b)
|
||||
self.fill(self.apply_brightness(self.current_color))
|
||||
|
||||
self.transition_step += self.delay # Advance the transition step by the delay
|
||||
|
||||
if self.transition_step >= self.transition_duration:
|
||||
# Transition complete, move to the next color and reset for hold phase
|
||||
self.current_color_idx = to_color_idx
|
||||
self.current_color = self.colors[self.current_color_idx] # Ensure current_color is the exact target color
|
||||
self.transition_step = 0 # Reset transition progress
|
||||
self.hold_start_time = current_time # Start hold phase for the new color
|
||||
|
||||
self.last_update = current_time
|
||||
return self.delay
|
||||
|
||||
def flicker(self):
|
||||
current_time = utime.ticks_ms()
|
||||
base_color = self.colors[0]
|
||||
# Increase the range for flicker_brightness_offset
|
||||
# Changed from self.brightness // 4 to self.brightness // 2 (or even self.brightness for max intensity)
|
||||
flicker_brightness_offset = random.randint(-int(self.brightness // 1.5), int(self.brightness // 1.5))
|
||||
flicker_brightness = max(0, min(255, self.brightness + flicker_brightness_offset))
|
||||
|
||||
flicker_color = self.apply_brightness(base_color, brightness_override=flicker_brightness)
|
||||
self.fill(flicker_color)
|
||||
self.last_update = current_time
|
||||
return max(1, int(self.delay // 5))
|
||||
|
||||
def scanner(self):
|
||||
"""
|
||||
Mimics a 'Knight Rider' style scanner, moving in one direction.
|
||||
"""
|
||||
current_time = utime.ticks_ms()
|
||||
self.fill((0, 0, 0)) # Clear all LEDs
|
||||
|
||||
# Calculate the head and tail position
|
||||
head_pos = self.pattern_step
|
||||
color = self.apply_brightness(self.colors[0])
|
||||
|
||||
# Draw the head
|
||||
if 0 <= head_pos < self.num_leds:
|
||||
self.n[head_pos] = color
|
||||
|
||||
# Draw the trailing pixels with decreasing brightness
|
||||
for i in range(1, self.scanner_tail_length + 1):
|
||||
tail_pos = head_pos - i
|
||||
if 0 <= tail_pos < self.num_leds:
|
||||
# Calculate fading color for tail
|
||||
# Example: linear fade from full brightness to off
|
||||
fade_factor = 1.0 - (i / (self.scanner_tail_length + 1))
|
||||
faded_color = tuple(int(c * fade_factor) for c in color)
|
||||
self.n[tail_pos] = faded_color
|
||||
|
||||
self.n.write()
|
||||
|
||||
self.pattern_step += 1
|
||||
if self.pattern_step >= self.num_leds + self.scanner_tail_length:
|
||||
self.pattern_step = 0 # Reset to start
|
||||
|
||||
self.last_update = current_time
|
||||
return self.delay
|
||||
|
||||
def bidirectional_scanner(self):
|
||||
"""
|
||||
Mimics a 'Knight Rider' style scanner, moving back and forth.
|
||||
"""
|
||||
current_time = utime.ticks_ms()
|
||||
self.fill((0, 0, 0)) # Clear all LEDs
|
||||
|
||||
color = self.apply_brightness(self.colors[0])
|
||||
|
||||
# Calculate the head position based on direction
|
||||
head_pos = self.pattern_step
|
||||
|
||||
# Draw the head
|
||||
if 0 <= head_pos < self.num_leds:
|
||||
self.n[head_pos] = color
|
||||
|
||||
# Draw the trailing pixels with decreasing brightness
|
||||
for i in range(1, self.scanner_tail_length + 1):
|
||||
tail_pos = head_pos - (i * self.scanner_direction)
|
||||
if 0 <= tail_pos < self.num_leds:
|
||||
fade_factor = 1.0 - (i / (self.scanner_tail_length + 1))
|
||||
faded_color = tuple(int(c * fade_factor) for c in color)
|
||||
self.n[tail_pos] = faded_color
|
||||
|
||||
self.n.write()
|
||||
|
||||
self.pattern_step += self.scanner_direction
|
||||
|
||||
# Change direction if boundaries are reached
|
||||
if self.scanner_direction == 1 and self.pattern_step >= self.num_leds:
|
||||
self.scanner_direction = -1
|
||||
self.pattern_step = self.num_leds - 1 # Start moving back from the last LED
|
||||
elif self.scanner_direction == -1 and self.pattern_step < 0:
|
||||
self.scanner_direction = 1
|
||||
self.pattern_step = 0 # Start moving forward from the first LED
|
||||
|
||||
self.last_update = current_time
|
||||
return self.delay
|
||||
|
||||
def fill_range(self):
|
||||
"""
|
||||
Fills a range of LEDs from n1 to n2 with a solid color.
|
||||
If self.oneshot is True, it fills once and then turns off the LEDs.
|
||||
"""
|
||||
current_time = utime.ticks_ms()
|
||||
if self.oneshot and self.pattern_step >= 1:
|
||||
self.fill((0, 0, 0)) # Turn off LEDs if one-shot already happened
|
||||
else:
|
||||
color = self.apply_brightness(self.colors[0])
|
||||
for i in range(self.n1, self.n2 + 1):
|
||||
self.n[i] = color
|
||||
self.n.write()
|
||||
self.last_update = current_time
|
||||
return self.delay
|
||||
self.last_update = current_time
|
||||
return self.delay
|
||||
|
||||
def n_chase(self):
|
||||
"""
|
||||
A theater chase pattern using n1 for on-width and n2 for off-width.
|
||||
"""
|
||||
current_time = utime.ticks_ms()
|
||||
segment_length = self.n1 + self.n2
|
||||
if segment_length == 0: # Avoid division by zero
|
||||
self.fill((0,0,0))
|
||||
self.n.write()
|
||||
self.last_update = current_time
|
||||
return self.delay
|
||||
|
||||
for i in range(self.num_leds):
|
||||
if (i + self.pattern_step) % segment_length < self.n1:
|
||||
self.n[i] = self.apply_brightness(self.colors[0])
|
||||
else:
|
||||
self.n[i] = (0, 0, 0)
|
||||
self.n.write()
|
||||
self.pattern_step = (self.pattern_step + 1) % segment_length
|
||||
self.last_update = current_time
|
||||
return self.delay
|
||||
|
||||
def alternating(self):
|
||||
"""
|
||||
An alternating pattern where n1 LEDs are ON/OFF and n2 LEDs are OFF/ON globally, without moving.
|
||||
"""
|
||||
current_time = utime.ticks_ms()
|
||||
total_segment_length = self.n1 + self.n2
|
||||
if total_segment_length == 0:
|
||||
self.fill((0,0,0))
|
||||
self.n.write()
|
||||
self.last_update = current_time
|
||||
return self.delay
|
||||
|
||||
# current_phase will alternate between 0 and 1
|
||||
current_phase = self.pattern_step % 2
|
||||
|
||||
for i in range(self.num_leds):
|
||||
# Position within a single repeating segment (n1 + n2)
|
||||
pos_in_segment = i % total_segment_length
|
||||
|
||||
if current_phase == 0: # State 0: n1 ON, n2 OFF
|
||||
if pos_in_segment < self.n1:
|
||||
self.n[i] = self.apply_brightness(self.colors[0]) # n1 is ON
|
||||
else:
|
||||
self.n[i] = (0, 0, 0) # n2 is OFF
|
||||
else: # State 1: n1 OFF, n2 ON
|
||||
if pos_in_segment < self.n1:
|
||||
self.n[i] = (0, 0, 0) # n1 is OFF
|
||||
else:
|
||||
self.n[i] = self.apply_brightness(self.colors[0]) # n2 is ON
|
||||
|
||||
self.n.write()
|
||||
self.pattern_step = (self.pattern_step + 1) % 2 # Toggle between 0 and 1
|
||||
self.last_update = current_time
|
||||
return self.delay * 2
|
||||
|
||||
def pulse(self):
|
||||
if self.pattern_step == 0:
|
||||
self.fill(self.apply_brightness(self.colors[0]))
|
||||
self.pattern_step = 1
|
||||
|
||||
self.last_update = utime.ticks_ms()
|
||||
if utime.ticks_diff(utime.ticks_ms(), self.last_update) > self.delay:
|
||||
self.fill((0, 0, 0))
|
||||
print(utime.ticks_diff(utime.ticks_ms(), self.last_update))
|
||||
self.run = False
|
||||
return self.delay
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import time
|
||||
from machine import WDT
|
||||
wdt = WDT(timeout=2000) # Enable watchdog with a 2 second timeout
|
||||
p = Patterns(pin=4, num_leds=60, color1=(255,0,0), color2=(0,0,255), brightness=127, selected="off", delay=100)
|
||||
|
||||
print(p.colors, p.brightness)
|
||||
|
||||
tests = [
|
||||
("off", {"duration_ms": 500}),
|
||||
("on", {"duration_ms": 500}),
|
||||
("color_wipe", {"delay": 200, "duration_ms": 1000}),
|
||||
("rainbow_cycle", {"delay": 100, "duration_ms": 2500}),
|
||||
("theater_chase", {"on_width": 3, "off_width": 3, "delay": 1000, "duration_ms": 2500}),
|
||||
("blink", {"delay": 500, "duration_ms": 2000}),
|
||||
("color_transition", {"delay": 150, "colors": [(255,0,0),(0,255,0),(0,0,255)], "duration_ms": 5000}),
|
||||
("flicker", {"delay": 100, "duration_ms": 2000}),
|
||||
("scanner", {"delay": 150, "duration_ms": 2500}),
|
||||
("bidirectional_scanner", {"delay": 50, "duration_ms": 2500}),
|
||||
("fill_range", {"n1": 10, "n2": 20, "delay": 500, "duration_ms": 2000}),
|
||||
("n_chase", {"n1": 5, "n2": 5, "delay": 2000, "duration_ms": 2500}),
|
||||
("alternating", {"n1": 5, "n2": 5, "delay": 500, "duration_ms": 2500}),
|
||||
("pulse", {"delay": 100, "duration_ms": 700}),
|
||||
]
|
||||
|
||||
|
||||
print("\n--- Running pattern self-test ---")
|
||||
for name, cfg in tests:
|
||||
print(f"\nPattern: {name}")
|
||||
# apply simple config helpers
|
||||
if "delay" in cfg:
|
||||
p.set_delay(cfg["delay"])
|
||||
if "on_width" in cfg:
|
||||
p.set_on_width(cfg["on_width"])
|
||||
if "off_width" in cfg:
|
||||
p.set_off_width(cfg["off_width"])
|
||||
if "n1" in cfg and "n2" in cfg:
|
||||
p.set_fill_range(cfg["n1"], cfg["n2"])
|
||||
if "colors" in cfg:
|
||||
p.set_colors(cfg["colors"])
|
||||
|
||||
p.select(name)
|
||||
|
||||
# run per configured duration using absolute-scheduled tick(next_due_ms)
|
||||
start = utime.ticks_ms()
|
||||
duration_ms = cfg["duration_ms"]
|
||||
delay = cfg.get("delay", 0)
|
||||
next_due = utime.ticks_ms() - 1 # force immediate first call
|
||||
while utime.ticks_diff(utime.ticks_ms(), start) < duration_ms:
|
||||
delay = p.tick(delay)
|
||||
wdt.feed()
|
||||
|
||||
print("\n--- Test routine finished ---")
|
||||
|
||||
|
Reference in New Issue
Block a user