patterns: centralize timing in tick(); remove selected-delay coupling; update self-test to use per-config durations

This commit is contained in:
2025-09-15 12:56:57 +12:00
parent 44cb35d1aa
commit 80d5a66fab
2 changed files with 326 additions and 286 deletions

View File

@@ -1,178 +1,79 @@
from machine import Pin
from neopixel import NeoPixel
import utime import utime
import random import random
from patterns_base import PatternBase # Import PatternBase
class Patterns: class Patterns(PatternBase): # Inherit from PatternBase
def __init__(self, pin, num_leds, color1=(0,0,0), color2=(0,0,0), brightness=127, selected="rainbow_cycle", delay=100): def __init__(self, pin, num_leds, color1=(0,0,0), color2=(0,0,0), brightness=127, selected="rainbow_cycle", delay=100):
self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds) super().__init__(pin, num_leds, color1, color2, brightness, selected, delay) # Call parent constructor
self.num_leds = num_leds
self.pattern_step = 0 # Pattern-specific initializations
self.last_update = utime.ticks_ms() self.on_width = 1 # Default on width
self.delay = delay self.off_width = 2 # Default off width (so total segment is 3, matching original behavior)
self.brightness = brightness self.n1 = 0 # Default start of fill range
self.n2 = self.num_leds - 1 # Default end of fill range
self.oneshot = False # New: One-shot flag for patterns like fill_range
self.patterns = { self.patterns = {
"off": self.off, "off": self.off,
"on" : self.on, "on" : self.on,
"color_wipe": self.color_wipe_step, "color_wipe": self.color_wipe,
"rainbow_cycle": self.rainbow_cycle_step, "rainbow_cycle": self.rainbow_cycle,
"theater_chase": self.theater_chase_step, "theater_chase": self.theater_chase,
"blink": self.blink_step, "blink": self.blink,
"color_transition": self.color_transition_step, # Added new pattern "color_transition": self.color_transition, # Added new pattern
"flicker": self.flicker_step, "flicker": self.flicker,
"scanner": self.scanner_step, # New: Single direction scanner "scanner": self.scanner, # New: Single direction scanner
"bidirectional_scanner": self.bidirectional_scanner_step, # New: Bidirectional scanner "bidirectional_scanner": self.bidirectional_scanner, # New: Bidirectional scanner
"fill_range": self.fill_range, # New: Fill from n1 to n2
"n_chase": self.n_chase, # New: N1 on, N2 off repeating chase
"alternating": self.alternating, # New: N1 on/off, N2 off/on alternating chase
"external": None, "external": None,
"pulse": self.pulse "pulse": self.pulse
} }
self.selected = selected # Beat-related functionality removed
# self.selected is already initialized in PatternBase, but we need to ensure it uses our patterns dict
# self.selected = selected # Handled by PatternBase
# Ensure colors list always starts with at least two for robust transition handling # Ensure colors list always starts with at least two for robust transition handling
self.colors = [color1, color2] if color1 != color2 else [color1, (255, 255, 255)] # Fallback if initial colors are same # self.colors handled by PatternBase
if not self.colors: # Ensure at least one color exists
self.colors = [(0, 0, 0)]
self.transition_duration = delay * 50 # Default transition duration # Transition attributes handled by PatternBase
self.hold_duration = delay * 10 # Default hold duration at each color
self.transition_step = 0 # Current step in the transition
self.current_color_idx = 0 # Index of the color currently being held/transitioned from
self.current_color = self.colors[self.current_color_idx] # The actual blended color
self.hold_start_time = utime.ticks_ms() # Time when the current color hold started # Scanner attributes handled by PatternBase
# self.run handled by PatternBase
# New attributes for scanner patterns
self.scanner_direction = 1 # 1 for forward, -1 for backward
self.scanner_tail_length = 3 # Number of trailing pixels
def sync(self): def sync(self):
self.pattern_step=0 super().sync() # Call parent sync
self.last_update = utime.ticks_ms() - self.delay # Reset pattern_step for theater_chase when chase_width changes
if self.selected == "color_transition": if self.selected == "theater_chase" or self.selected == "fill_range" or self.selected == "n_chase" or self.selected == "alternating":
self.transition_step = 0 self.pattern_step = 0
self.current_color_idx = 0
self.current_color = self.colors[self.current_color_idx]
self.hold_start_time = utime.ticks_ms() # Reset hold time
# Reset scanner specific variables
self.scanner_direction = 1
self.tick() self.tick()
def set_pattern_step(self, step): def set_on_width(self, on_width):
self.pattern_step = step self.on_width = on_width
def tick(self): def set_off_width(self, off_width):
if self.patterns[self.selected]: self.off_width = off_width
self.patterns[self.selected]()
def update_num_leds(self, pin, num_leds): def set_on_off_width(self, on_width, off_width):
self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds) self.on_width = on_width
self.num_leds = num_leds self.off_width = off_width
self.sync()
def set_fill_range(self, n1, n2):
self.n1 = n1
self.n2 = n2
self.sync()
def set_oneshot(self, oneshot_value):
self.oneshot = oneshot_value
if self.oneshot: # Reset pattern step if enabling one-shot
self.pattern_step = 0 self.pattern_step = 0
def set_delay(self, delay):
self.delay = delay
# Update transition duration and hold duration when delay changes
self.transition_duration = self.delay * 50
self.hold_duration = self.delay * 10
def set_brightness(self, brightness):
self.brightness = brightness
def set_color1(self, color):
if len(self.colors) > 0:
self.colors[0] = color
if self.selected == "color_transition":
# If the first color is changed, potentially reset transition
# to start from this new color if we were about to transition from it
if self.current_color_idx == 0:
self.transition_step = 0
self.current_color = self.colors[0]
self.hold_start_time = utime.ticks_ms()
else:
self.colors.append(color)
def set_color2(self, color):
if len(self.colors) > 1:
self.colors[1] = color
elif len(self.colors) == 1:
self.colors.append(color)
else: # List is empty
self.colors.append((0,0,0)) # Dummy color
self.colors.append(color)
def set_colors(self, colors):
if colors and len(colors) >= 2:
self.colors = colors
if self.selected == "color_transition":
self.sync() # Reset transition if new color list is provided
elif colors and len(colors) == 1:
self.colors = [colors[0], (255,255,255)] # Add a default second color
if self.selected == "color_transition":
print("Warning: 'color_transition' requires at least two colors. Adding a default second color.")
self.sync() self.sync()
else:
print("Error: set_colors requires a list of at least one color.")
self.colors = [(0,0,0), (255,255,255)] # Fallback
if self.selected == "color_transition":
self.sync()
def set_color(self, num, color):
# Changed: More robust index check
if 0 <= num < len(self.colors):
self.colors[num] = color
# If the changed color is part of the current or next transition,
# restart the transition for smoother updates
if self.selected == "color_transition":
current_from_idx = self.current_color_idx
current_to_idx = (self.current_color_idx + 1) % len(self.colors)
if num == current_from_idx or num == current_to_idx:
# If we change a color involved in the current transition,
# it's best to restart the transition state for smoothness.
self.transition_step = 0
self.current_color_idx = current_from_idx # Stay at the current starting color
self.current_color = self.colors[self.current_color_idx]
self.hold_start_time = utime.ticks_ms() # Reset hold
return True
elif num == len(self.colors): # Allow setting a new color at the end
self.colors.append(color)
return True
return False
def add_color(self, color):
self.colors.append(color)
if self.selected == "color_transition" and len(self.colors) == 2:
# If we just added the second color needed for transition
self.sync()
def del_color(self, num):
# Changed: More robust index check and using del for lists
if 0 <= num < len(self.colors):
del self.colors[num]
# If the color being deleted was part of the current transition,
# re-evaluate the current_color_idx
if self.selected == "color_transition":
if len(self.colors) < 2: # Need at least two colors for transition
print("Warning: Not enough colors for 'color_transition'. Switching to 'on'.")
self.select("on") # Or some other default
else:
# Adjust index if it's out of bounds after deletion or was the one transitioning from
self.current_color_idx %= len(self.colors)
self.transition_step = 0
self.current_color = self.colors[self.current_color_idx]
self.hold_start_time = utime.ticks_ms()
return True
return False
def apply_brightness(self, color, brightness_override=None):
effective_brightness = brightness_override if brightness_override is not None else self.brightness
return tuple(int(c * effective_brightness / 255) for c in color)
def select(self, pattern): def select(self, pattern):
if pattern in self.patterns: if pattern in self.patterns:
self.selected = pattern super().select(pattern) # Use parent select to set self.selected and self.transition_step
self.sync() # Reset pattern state when selecting a new pattern self.run = True # Set run flag
if pattern == "color_transition": if pattern == "color_transition":
if len(self.colors) < 2: if len(self.colors) < 2:
print("Warning: 'color_transition' requires at least two colors. Switching to 'on'.") print("Warning: 'color_transition' requires at least two colors. Switching to 'on'.")
@@ -188,28 +89,15 @@ class Patterns:
return True return True
return False return False
def set(self, i, color):
self.n[i] = color
def write(self):
self.n.write()
def fill(self, color=None):
fill_color = color if color is not None else self.colors[0]
for i in range(self.num_leds):
self.n[i] = fill_color
self.n.write()
def off(self): def off(self):
self.fill((0, 0, 0)) self.fill((0, 0, 0))
def on(self): def on(self):
self.fill(self.apply_brightness(self.colors[0])) self.fill(self.apply_brightness(self.colors[0]))
def color_wipe_step(self): def color_wipe(self):
color = self.apply_brightness(self.colors[0]) color = self.apply_brightness(self.colors[0])
current_time = utime.ticks_ms() current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
if self.pattern_step < self.num_leds: if self.pattern_step < self.num_leds:
for i in range(self.num_leds): for i in range(self.num_leds):
self.n[i] = (0, 0, 0) self.n[i] = (0, 0, 0)
@@ -220,9 +108,8 @@ class Patterns:
self.pattern_step = 0 self.pattern_step = 0
self.last_update = current_time self.last_update = current_time
def rainbow_cycle_step(self): def rainbow_cycle(self):
current_time = utime.ticks_ms() current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, self.last_update) >= self.delay/5:
def wheel(pos): def wheel(pos):
if pos < 85: if pos < 85:
return (pos * 3, 255 - pos * 3, 0) return (pos * 3, 255 - pos * 3, 0)
@@ -240,21 +127,18 @@ class Patterns:
self.pattern_step = (self.pattern_step + 1) % 256 self.pattern_step = (self.pattern_step + 1) % 256
self.last_update = current_time self.last_update = current_time
def theater_chase_step(self): def theater_chase(self):
current_time = utime.ticks_ms() segment_length = self.on_width + self.off_width
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
for i in range(self.num_leds): for i in range(self.num_leds):
if (i + self.pattern_step) % 3 == 0: if (i + self.pattern_step) % segment_length < self.on_width:
self.n[i] = self.apply_brightness(self.colors[0]) self.n[i] = self.apply_brightness(self.colors[0])
else: else:
self.n[i] = (0, 0, 0) self.n[i] = (0, 0, 0)
self.n.write() self.n.write()
self.pattern_step = (self.pattern_step + 1) % 3 self.pattern_step = (self.pattern_step + 1) % segment_length
self.last_update = current_time
def blink_step(self): def blink(self):
current_time = utime.ticks_ms() current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
if self.pattern_step % 2 == 0: if self.pattern_step % 2 == 0:
self.fill(self.apply_brightness(self.colors[0])) self.fill(self.apply_brightness(self.colors[0]))
else: else:
@@ -262,7 +146,7 @@ class Patterns:
self.pattern_step = (self.pattern_step + 1) % 2 self.pattern_step = (self.pattern_step + 1) % 2
self.last_update = current_time self.last_update = current_time
def color_transition_step(self): def color_transition(self):
current_time = utime.ticks_ms() current_time = utime.ticks_ms()
# Check for hold duration first # Check for hold duration first
@@ -310,9 +194,8 @@ class Patterns:
self.last_update = current_time self.last_update = current_time
def flicker_step(self): def flicker(self):
current_time = utime.ticks_ms() current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, self.last_update) >= self.delay/5:
base_color = self.colors[0] base_color = self.colors[0]
# Increase the range for flicker_brightness_offset # Increase the range for flicker_brightness_offset
# Changed from self.brightness // 4 to self.brightness // 2 (or even self.brightness for max intensity) # Changed from self.brightness // 4 to self.brightness // 2 (or even self.brightness for max intensity)
@@ -323,12 +206,11 @@ class Patterns:
self.fill(flicker_color) self.fill(flicker_color)
self.last_update = current_time self.last_update = current_time
def scanner_step(self): def scanner(self):
""" """
Mimics a 'Knight Rider' style scanner, moving in one direction. Mimics a 'Knight Rider' style scanner, moving in one direction.
""" """
current_time = utime.ticks_ms() current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, self.last_update) >= self.delay:
self.fill((0, 0, 0)) # Clear all LEDs self.fill((0, 0, 0)) # Clear all LEDs
# Calculate the head and tail position # Calculate the head and tail position
@@ -357,12 +239,11 @@ class Patterns:
self.last_update = current_time self.last_update = current_time
def bidirectional_scanner_step(self): def bidirectional_scanner(self):
""" """
Mimics a 'Knight Rider' style scanner, moving back and forth. Mimics a 'Knight Rider' style scanner, moving back and forth.
""" """
current_time = utime.ticks_ms() current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, self.last_update) >= self.delay/100:
self.fill((0, 0, 0)) # Clear all LEDs self.fill((0, 0, 0)) # Clear all LEDs
color = self.apply_brightness(self.colors[0]) color = self.apply_brightness(self.colors[0])
@@ -396,22 +277,158 @@ class Patterns:
self.last_update = current_time self.last_update = current_time
def fill_range(self):
"""
Fills a range of LEDs from n1 to n2 with a solid color.
If self.oneshot is True, it fills once and then turns off the LEDs.
"""
current_time = utime.ticks_ms()
if self.oneshot and self.pattern_step >= 1:
self.fill((0, 0, 0)) # Turn off LEDs if one-shot already happened
else:
color = self.apply_brightness(self.colors[0])
for i in range(self.n1, self.n2 + 1):
self.n[i] = color
self.n.write()
if self.oneshot:
self.pattern_step += 1 # Increment only for one-shot
self.last_update = current_time
def n_chase(self):
"""
A theater chase pattern using n1 for on-width and n2 for off-width.
"""
current_time = utime.ticks_ms()
segment_length = self.n1 + self.n2
if segment_length == 0: # Avoid division by zero
self.fill((0,0,0))
self.n.write()
self.last_update = current_time
return
for i in range(self.num_leds):
if (i + self.pattern_step) % segment_length < self.n1:
self.n[i] = self.apply_brightness(self.colors[0])
else:
self.n[i] = (0, 0, 0)
self.n.write()
self.pattern_step = (self.pattern_step + 1) % segment_length
self.last_update = current_time
def alternating(self):
"""
An alternating pattern where n1 LEDs are ON/OFF and n2 LEDs are OFF/ON globally, without moving.
"""
current_time = utime.ticks_ms()
total_segment_length = self.n1 + self.n2
if total_segment_length == 0:
self.fill((0,0,0))
self.n.write()
self.last_update = current_time
return
# current_phase will alternate between 0 and 1
current_phase = self.pattern_step % 2
for i in range(self.num_leds):
# Position within a single repeating segment (n1 + n2)
pos_in_segment = i % total_segment_length
if current_phase == 0: # State 0: n1 ON, n2 OFF
if pos_in_segment < self.n1:
self.n[i] = self.apply_brightness(self.colors[0]) # n1 is ON
else:
self.n[i] = (0, 0, 0) # n2 is OFF
else: # State 1: n1 OFF, n2 ON
if pos_in_segment < self.n1:
self.n[i] = (0, 0, 0) # n1 is OFF
else:
self.n[i] = self.apply_brightness(self.colors[0]) # n2 is ON
self.n.write()
self.pattern_step = (self.pattern_step + 1) % 2 # Toggle between 0 and 1
self.last_update = current_time
def pulse(self): def pulse(self):
if self.pattern_step == 0: if self.pattern_step == 0:
self.fill(self.apply_brightness(self.colors[0])) self.fill(self.apply_brightness(self.colors[0]))
self.pattern_step = 1 self.pattern_step = 1
self.last_update = utime.ticks_ms() self.last_update = utime.ticks_ms()
if utime.ticks_diff(utime.ticks_ms(), self.last_update) > self.delay: if utime.ticks_diff(utime.ticks_ms(), self.last_update) > self.delay:
self.fill((0, 0, 0)) self.fill((0, 0, 0))
print(utime.ticks_diff(utime.ticks_ms(), self.last_update))
self.run = False
if __name__ == "__main__": if __name__ == "__main__":
import time import time
from machine import WDT from machine import WDT
wdt = WDT(timeout=2000) # Enable watchdog with a 2 second timeout wdt = WDT(timeout=2000) # Enable watchdog with a 2 second timeout
p = Patterns(pin=10, num_leds=200, color1=(255,0,0), color2=(0,0,255), brightness=127, selected="bidirectional_scanner", delay=50) p = Patterns(pin=4, num_leds=60, color1=(255,0,0), color2=(0,0,255), brightness=127, selected="off", delay=100)
p.select("pulse")
for i in range(1000): print(p.colors, p.brightness)
p.tick()
# tests = [
# ("off", {"duration_ms": 500}),
# ("on", {"duration_ms": 500}),
# ("color_wipe", {"delay": 200, "duration_ms": 1000}),
# ("rainbow_cycle", {"delay": 100, "duration_ms": 2500}),
# ("theater_chase", {"on_width": 3, "off_width": 3, "delay": 1000, "duration_ms": 2500}),
# ("blink", {"delay": 500, "duration_ms": 2000}),
# ("color_transition", {"delay": 150, "colors": [(255,0,0),(0,255,0),(0,0,255)], "duration_ms": 5000}),
# ("flicker", {"delay": 100, "duration_ms": 2000}),
# ("scanner", {"delay": 150, "duration_ms": 2500}),
# ("bidirectional_scanner", {"delay": 50, "duration_ms": 2500}),
# ("fill_range", {"n1": 10, "n2": 20, "delay": 500, "duration_ms": 2000}),
# ("n_chase", {"n1": 5, "n2": 5, "delay": 1000, "duration_ms": 2500}),
# ("alternating", {"n1": 5, "n2": 5, "delay": 500, "duration_ms": 2500}),
# ("pulse", {"delay": 100, "duration_ms": 700}),
# ]
tests = [
("theater_chase", {"on_width": 3, "off_width": 3, "delay": 10000, "duration_ms": 2500}),
("blink", {"delay": 500, "duration_ms": 2000}),
("color_transition", {"delay": 150, "colors": [(255,0,0),(0,255,0),(0,0,255)], "duration_ms": 5000}),
("flicker", {"delay": 100, "duration_ms": 2000}),
("scanner", {"delay": 150, "duration_ms": 2500}),
("bidirectional_scanner", {"delay": 50, "duration_ms": 2500}),
("fill_range", {"n1": 10, "n2": 20, "delay": 500, "duration_ms": 2000}),
("n_chase", {"n1": 5, "n2": 5, "delay": 1000, "duration_ms": 2500}),
("alternating", {"n1": 5, "n2": 5, "delay": 500, "duration_ms": 2500}),
("pulse", {"delay": 100, "duration_ms": 700}),
]
print("\n--- Running pattern self-test ---")
for name, cfg in tests:
print(f"\nPattern: {name}")
# apply simple config helpers
if "delay" in cfg:
p.set_delay(cfg["delay"])
if "on_width" in cfg:
p.set_on_width(cfg["on_width"])
if "off_width" in cfg:
p.set_off_width(cfg["off_width"])
if "n1" in cfg and "n2" in cfg:
p.set_fill_range(cfg["n1"], cfg["n2"])
if "colors" in cfg:
p.set_colors(cfg["colors"])
p.select(name)
# run per configured or computed duration
start = utime.ticks_ms()
duration_ms = cfg["duration_ms"]
while utime.ticks_diff(utime.ticks_ms(), start) < duration_ms:
interval = p.tick()
wdt.feed() wdt.feed()
time.sleep_ms(1) if isinstance(interval, int) and interval > 0:
# sleep a small fraction to reduce busy loop while keeping responsiveness
time.sleep_ms(max(1, interval // 10))
else:
time.sleep_ms(5)
print("\n--- Test routine finished ---")

View File

@@ -13,6 +13,7 @@ class PatternBase:
self.brightness = brightness self.brightness = brightness
self.patterns = {} self.patterns = {}
self.selected = selected self.selected = selected
self.run = True
# Ensure colors list always starts with at least two for robust transition handling # Ensure colors list always starts with at least two for robust transition handling
self.colors = [color1, color2] if color1 != color2 else [color1, (255, 255, 255)] # Fallback if initial colors are same self.colors = [color1, color2] if color1 != color2 else [color1, (255, 255, 255)] # Fallback if initial colors are same
if not self.colors: # Ensure at least one color exists if not self.colors: # Ensure at least one color exists
@@ -26,10 +27,12 @@ class PatternBase:
self.hold_start_time = utime.ticks_ms() # Time when the current color hold started self.hold_start_time = utime.ticks_ms() # Time when the current color hold started
# New attributes for scanner patterns # New attributes for scanner patterns (moved from Patterns to PatternBase as they are generic enough)
self.scanner_direction = 1 # 1 for forward, -1 for backward self.scanner_direction = 1 # 1 for forward, -1 for backward
self.scanner_tail_length = 3 # Number of trailing pixels self.scanner_tail_length = 3 # Number of trailing pixels
# Removed: selected_delay caching
def sync(self): def sync(self):
self.pattern_step=0 self.pattern_step=0
self.last_update = utime.ticks_ms() - self.delay self.last_update = utime.ticks_ms() - self.delay
@@ -40,14 +43,32 @@ class PatternBase:
self.hold_start_time = utime.ticks_ms() # Reset hold time self.hold_start_time = utime.ticks_ms() # Reset hold time
# Reset scanner specific variables # Reset scanner specific variables
self.scanner_direction = 1 self.scanner_direction = 1
self.tick() # self.tick() # Tick moved to Patterns, as patterns dict is there
def set_pattern_step(self, step): def set_pattern_step(self, step):
self.pattern_step = step self.pattern_step = step
def tick(self): def tick(self):
if self.patterns[self.selected]: if self.patterns.get(self.selected) and self.run:
# Compute gating interval per pattern based on current delay
interval = None
if self.selected in ("color_wipe", "theater_chase", "blink", "scanner", "fill_range", "n_chase", "alternating"):
interval = self.delay
elif self.selected == "rainbow_cycle":
interval = max(1, int(self.delay // 5))
elif self.selected == "flicker":
interval = max(1, int(self.delay // 5))
elif self.selected == "bidirectional_scanner":
interval = max(1, int(self.delay // 100))
# Patterns intentionally not gated here: off, on, external, pulse, color_transition
if interval is not None:
current_time = utime.ticks_ms()
if utime.ticks_diff(current_time, self.last_update) < interval:
return interval
self.patterns[self.selected]() self.patterns[self.selected]()
return interval
return None
def update_num_leds(self, pin, num_leds): def update_num_leds(self, pin, num_leds):
self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds) self.n = NeoPixel(Pin(pin, Pin.OUT), num_leds)
@@ -59,6 +80,7 @@ class PatternBase:
# Update transition duration and hold duration when delay changes # Update transition duration and hold duration when delay changes
self.transition_duration = self.delay * 50 self.transition_duration = self.delay * 50
self.hold_duration = self.delay * 10 self.hold_duration = self.delay * 10
# No cached interval
def set_brightness(self, brightness): def set_brightness(self, brightness):
@@ -157,6 +179,7 @@ class PatternBase:
return tuple(int(c * effective_brightness / 255) for c in color) return tuple(int(c * effective_brightness / 255) for c in color)
def select(self, pattern): def select(self, pattern):
# Removed self.run = True here. It should be handled by Patterns class.
if pattern in self.patterns: if pattern in self.patterns:
self.selected = pattern self.selected = pattern
self.sync() # Reset pattern state when selecting a new pattern self.sync() # Reset pattern state when selecting a new pattern