latentblending/latent_blending.py

834 lines
35 KiB
Python

# Copyright 2022 Lunar Ring. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os, sys
dp_git = "/home/lugo/git/"
sys.path.append(os.path.join(dp_git,'garden4'))
sys.path.append('util')
import torch
torch.backends.cudnn.benchmark = False
import numpy as np
import warnings
warnings.filterwarnings('ignore')
import time
import subprocess
import warnings
import torch
from tqdm.auto import tqdm
from PIL import Image
import matplotlib.pyplot as plt
import torch
from movie_util import MovieSaver
import datetime
from typing import Callable, List, Optional, Union
import inspect
from threading import Thread
torch.set_grad_enabled(False)
from omegaconf import OmegaConf
from torch import autocast
from contextlib import nullcontext
sys.path.append('../stablediffusion/ldm')
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from stable_diffusion_holder import StableDiffusionHolder
#%%
class LatentBlending():
def __init__(
self,
sdh: None,
guidance_scale: float = 7.5,
):
r"""
Initializes the latent blending class.
Args:
FIXME XXX
height: int
Height of the desired output image. The model was trained on 512.
width: int
Width of the desired output image. The model was trained on 512.
guidance_scale: float
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
seed: int
Random seed.
"""
self.sdh = sdh
self.device = self.sdh.device
self.width = self.sdh.width
self.height = self.sdh.height
self.seed = 420 #use self.set_seed or fixed_seeds argument in run_transition
# Initialize vars
self.prompt1 = ""
self.prompt2 = ""
self.tree_latents = []
self.tree_fracts = []
self.tree_status = []
self.tree_final_imgs = []
self.list_nmb_branches_prev = []
self.list_injection_idx_prev = []
self.text_embedding1 = None
self.text_embedding2 = None
self.stop_diffusion = False
self.negative_prompt = None
self.num_inference_steps = -1
self.list_injection_idx = None
self.list_nmb_branches = None
self.set_guidance_scale(guidance_scale)
self.init_mode()
def init_mode(self, mode='standard'):
r"""
Automatically sets the mode of this class, depending on the supplied pipeline.
FIXME XXX
"""
if mode == 'inpaint':
self.sdh.image_source = None
self.sdh.mask_image = None
self.mode = 'inpaint'
else:
self.mode = 'standard'
def set_guidance_scale(self, guidance_scale):
r"""
sets the guidance scale.
"""
self.guidance_scale = guidance_scale
self.sdh.guidance_scale = guidance_scale
def set_prompt1(self, prompt: str):
r"""
Sets the first prompt (for the first keyframe) including text embeddings.
Args:
prompt: str
ABC trending on artstation painted by Greg Rutkowski
"""
prompt = prompt.replace("_", " ")
self.prompt1 = prompt
self.text_embedding1 = self.get_text_embeddings(self.prompt1)
def set_prompt2(self, prompt: str):
r"""
Sets the second prompt (for the second keyframe) including text embeddings.
Args:
prompt: str
XYZ trending on artstation painted by Greg Rutkowski
"""
prompt = prompt.replace("_", " ")
self.prompt2 = prompt
self.text_embedding2 = self.get_text_embeddings(self.prompt2)
def autosetup_branching(
self,
quality: str = 'medium',
deepth_strength: float = 0.65,
nmb_frames: int = 360,
nmb_mindist: int = 3,
):
r"""
Helper function to set up the branching structure automatically.
Args:
quality: str
Determines how many diffusion steps are being made + how many branches in total.
Tradeoff between quality and speed of computation.
Choose: lowest, low, medium, high, ultra
deepth_strength: float = 0.65,
Determines how deep the first injection will happen.
Deeper injections will cause (unwanted) formation of new structures,
more shallow values will go into alpha-blendy land.
nmb_frames: int = 360,
total number of frames
nmb_mindist: int = 3
minimum distance in terms of diffusion iteratinos between subsequent injections
"""
if quality == 'lowest':
num_inference_steps = 12
nmb_branches_final = 5
elif quality == 'low':
num_inference_steps = 15
nmb_branches_final = nmb_frames//16
elif quality == 'medium':
num_inference_steps = 30
nmb_branches_final = nmb_frames//8
elif quality == 'high':
num_inference_steps = 60
nmb_branches_final = nmb_frames//4
elif quality == 'ultra':
num_inference_steps = 100
nmb_branches_final = nmb_frames//2
else:
raise ValueError("quality = '{quality}' not supported")
idx_injection_first = int(np.round(num_inference_steps*deepth_strength))
idx_injection_last = num_inference_steps - 3
nmb_injections = int(np.floor(num_inference_steps/5)) - 1
list_injection_idx = [0]
list_injection_idx.extend(np.linspace(idx_injection_first, idx_injection_last, nmb_injections).astype(int))
list_nmb_branches = np.round(np.logspace(np.log10(2), np.log10(nmb_branches_final), nmb_injections+1)).astype(int)
# Cleanup. There should be at least 3 diffusion steps between each injection
list_injection_idx_clean = [list_injection_idx[0]]
list_nmb_branches_clean = [list_nmb_branches[0]]
idx_last_check = 0
for i in range(len(list_injection_idx)-1):
if list_injection_idx[i+1] - list_injection_idx_clean[idx_last_check] >= nmb_mindist:
list_injection_idx_clean.append(list_injection_idx[i+1])
list_nmb_branches_clean.append(list_nmb_branches[i+1])
idx_last_check +=1
list_injection_idx_clean = [int(l) for l in list_injection_idx_clean]
list_nmb_branches_clean = [int(l) for l in list_nmb_branches_clean]
list_injection_idx = list_injection_idx_clean
list_nmb_branches = list_nmb_branches_clean
print(f"num_inference_steps: {num_inference_steps}")
print(f"list_injection_idx: {list_injection_idx}")
print(f"list_nmb_branches: {list_nmb_branches}")
self.num_inference_steps = num_inference_steps
self.list_injection_idx = list_injection_idx
self.list_nmb_branches = list_nmb_branches
def setup_branching(self,
num_inference_steps: int =30,
list_nmb_branches: List[int] = None,
list_injection_strength: List[float] = None,
list_injection_idx: List[int] = None,
guidance_downscale: float = 1.0,
):
r"""
Sets the branching structure for making transitions.
num_inference_steps: int
Number of diffusion steps. Larger values will take more compute time.
list_nmb_branches: List[int]:
list of the number of branches for each injection.
list_injection_strength: List[float]:
list of injection strengths within interval [0, 1), values need to be increasing.
Alternatively you can direclty specify the list_injection_idx.
list_injection_idx: List[int]:
list of injection strengths within interval [0, 1), values need to be increasing.
Alternatively you can specify the list_injection_strength.
guidance_downscale: float = 1.0
reduces the guidance scale towards the middle of the transition
"""
# Assert
assert guidance_downscale>0 and guidance_downscale<=1.0, "guidance_downscale neees to be in interval (0,1]"
assert not((list_injection_strength is not None) and (list_injection_idx is not None)), "suppyl either list_injection_strength or list_injection_idx"
if list_injection_strength is None:
assert list_injection_idx is not None, "Supply either list_injection_idx or list_injection_strength"
assert isinstance(list_injection_idx[0], int) or isinstance(list_injection_idx[0], np.int) , "Need to supply integers for list_injection_idx"
if list_injection_idx is None:
assert list_injection_strength is not None, "Supply either list_injection_idx or list_injection_strength"
# Create the injection indexes
list_injection_idx = [int(round(x*num_inference_steps)) for x in list_injection_strength]
assert min(np.diff(list_injection_idx)) > 0, 'Injection idx needs to be increasing'
if min(np.diff(list_injection_idx)) < 2:
print("Warning: your injection spacing is very tight. consider increasing the distances")
assert isinstance(list_injection_strength[1], np.floating) or isinstance(list_injection_strength[1], float), "Need to supply floats for list_injection_strength"
# we are checking element 1 in list_injection_strength because "0" is an int... [0, 0.5]
assert max(list_injection_idx) < num_inference_steps, "Decrease the injection index or strength"
assert len(list_injection_idx) == len(list_nmb_branches), "Need to have same length"
assert max(list_injection_idx) < num_inference_steps,"Injection index cannot happen after last diffusion step! Decrease list_injection_idx or list_injection_strength[-1]"
# Set attributes
self.num_inference_steps = num_inference_steps
self.sdh.num_inference_steps = num_inference_steps
self.list_nmb_branches = list_nmb_branches
self.list_injection_idx = list_injection_idx
def run_transition(
self,
recycle_img1: Optional[bool] = False,
recycle_img2: Optional[bool] = False,
fixed_seeds: Optional[List[int]] = None,
):
r"""
Returns a list of transition images using spherical latent blending.
Args:
recycle_img1: Optional[bool]:
Don't recompute the latents for the first keyframe (purely prompt1). Saves compute.
recycle_img2: Optional[bool]:
Don't recompute the latents for the second keyframe (purely prompt2). Saves compute.
fixed_seeds: Optional[List[int)]:
You can supply two seeds that are used for the first and second keyframe (prompt1 and prompt2).
Otherwise random seeds will be taken.
"""
# Sanity checks first
assert self.text_embedding1 is not None, 'Set the first text embedding with .set_prompt1(...) before'
assert self.text_embedding2 is not None, 'Set the second text embedding with .set_prompt2(...) before'
assert self.list_injection_idx is not None, 'Set the branching structure before, by calling autosetup_branching or setup_branching'
if fixed_seeds is not None:
if fixed_seeds == 'randomize':
fixed_seeds = list(np.random.randint(0, 1000000, 2).astype(np.int32))
else:
assert len(fixed_seeds)==2, "Supply a list with len = 2"
# Process interruption variable
self.stop_diffusion = False
# Ensure correct num_inference_steps in holder
self.sdh.num_inference_steps = self.num_inference_steps
# Recycling? There are requirements
if recycle_img1 or recycle_img2:
if self.list_nmb_branches_prev == []:
print("Warning. You want to recycle but there is nothing here. Disabling recycling.")
recycle_img1 = False
recycle_img2 = False
elif self.list_nmb_branches_prev != self.list_nmb_branches:
print("Warning. Cannot change list_nmb_branches if recycling latent. Disabling recycling.")
recycle_img1 = False
recycle_img2 = False
elif self.list_injection_idx_prev != self.list_injection_idx:
print("Warning. Cannot change list_nmb_branches if recycling latent. Disabling recycling.")
recycle_img1 = False
recycle_img2 = False
# Make a backup for future reference
self.list_nmb_branches_prev = self.list_nmb_branches[:]
self.list_injection_idx_prev = self.list_injection_idx[:]
# Auto inits
list_injection_idx_ext = self.list_injection_idx[:]
list_nmb_branches = self.list_nmb_branches[:]
list_injection_idx_ext.append(self.num_inference_steps)
# If injection at depth 0 not specified, we will start out with 2 branches
if list_injection_idx_ext[0] != 0:
list_injection_idx_ext.insert(0,0)
list_nmb_branches.insert(0,2)
assert list_nmb_branches[0] == 2, "Need to start with 2 branches. set list_nmb_branches[0]=2"
# Pre-define entire branching tree structures
if not recycle_img1 and not recycle_img2:
self.tree_latents = []
self.tree_fracts = []
self.tree_status = []
self.tree_final_imgs = [None]*list_nmb_branches[-1]
self.tree_final_imgs_timing = [0]*list_nmb_branches[-1]
nmb_blocks_time = len(list_injection_idx_ext)-1
for t_block in range(nmb_blocks_time):
nmb_branches = list_nmb_branches[t_block]
list_fract_mixing_current = np.linspace(0, 1, nmb_branches)
self.tree_fracts.append(list_fract_mixing_current)
self.tree_latents.append([None]*nmb_branches)
self.tree_status.append(['untouched']*nmb_branches)
else:
self.tree_final_imgs = [None]*list_nmb_branches[-1]
nmb_blocks_time = len(list_injection_idx_ext)-1
for t_block in range(nmb_blocks_time):
nmb_branches = list_nmb_branches[t_block]
for idx_branch in range(nmb_branches):
self.tree_status[t_block][idx_branch] = 'untouched'
if recycle_img1:
self.tree_status[t_block][0] = 'computed'
self.tree_final_imgs[0] = self.sdh.latent2image(self.tree_latents[-1][0][-1])
self.tree_final_imgs_timing[0] = 0
if recycle_img2:
self.tree_status[t_block][-1] = 'computed'
self.tree_final_imgs[-1] = self.sdh.latent2image(self.tree_latents[-1][-1][-1])
self.tree_final_imgs_timing[-1] = 0
# setup compute order: goal: try to get last branch computed asap.
# first compute the right keyframe. needs to be there in any case
list_compute = []
list_local_stem = []
for t_block in range(nmb_blocks_time - 1, -1, -1):
if self.tree_status[t_block][0] == 'untouched':
self.tree_status[t_block][0] = 'prefetched'
list_local_stem.append([t_block, 0])
list_compute.extend(list_local_stem[::-1])
# setup compute order: start from last leafs (the final transition images) and work way down. what parents do they need?
for idx_leaf in range(1, list_nmb_branches[-1]):
list_local_stem = []
t_block = nmb_blocks_time - 1
t_block_prev = t_block - 1
self.tree_status[t_block][idx_leaf] = 'prefetched'
list_local_stem.append([t_block, idx_leaf])
idx_leaf_deep = idx_leaf
for t_block in range(nmb_blocks_time-1, 0, -1):
t_block_prev = t_block - 1
fract_mixing = self.tree_fracts[t_block][idx_leaf_deep]
list_fract_mixing_prev = self.tree_fracts[t_block_prev]
b_parent1, b_parent2 = get_closest_idx(fract_mixing, list_fract_mixing_prev)
assert self.tree_status[t_block_prev][b_parent1] != 'untouched', 'Branch destruction??? This should never happen!'
if self.tree_status[t_block_prev][b_parent2] == 'untouched':
self.tree_status[t_block_prev][b_parent2] = 'prefetched'
list_local_stem.append([t_block_prev, b_parent2])
idx_leaf_deep = b_parent2
list_compute.extend(list_local_stem[::-1])
# Diffusion computations start here
time_start = time.time()
for t_block, idx_branch in tqdm(list_compute, desc="computing transition", smoothing=-1):
if self.stop_diffusion:
print("run_transition: process interrupted")
return self.tree_final_imgs
# print(f"computing t_block {t_block} idx_branch {idx_branch}")
idx_stop = list_injection_idx_ext[t_block+1]
fract_mixing = self.tree_fracts[t_block][idx_branch]
text_embeddings_mix = interpolate_linear(self.text_embedding1, self.text_embedding2, fract_mixing)
if t_block == 0:
if fixed_seeds is not None:
if idx_branch == 0:
self.set_seed(fixed_seeds[0])
elif idx_branch == list_nmb_branches[0] -1:
self.set_seed(fixed_seeds[1])
list_latents = self.run_diffusion(text_embeddings_mix, idx_stop=idx_stop)
else:
# find parents latents
b_parent1, b_parent2 = get_closest_idx(fract_mixing, self.tree_fracts[t_block-1])
latents1 = self.tree_latents[t_block-1][b_parent1][-1]
if fract_mixing == 0:
latents2 = latents1
else:
latents2 = self.tree_latents[t_block-1][b_parent2][-1]
idx_start = list_injection_idx_ext[t_block]
fract_mixing_parental = (fract_mixing - self.tree_fracts[t_block-1][b_parent1]) / (self.tree_fracts[t_block-1][b_parent2] - self.tree_fracts[t_block-1][b_parent1])
latents_for_injection = interpolate_spherical(latents1, latents2, fract_mixing_parental)
list_latents = self.run_diffusion(text_embeddings_mix, latents_for_injection, idx_start=idx_start, idx_stop=idx_stop)
self.tree_latents[t_block][idx_branch] = list_latents
self.tree_status[t_block][idx_branch] = 'computed'
# Convert latents to image directly for the last t_block
if t_block == nmb_blocks_time-1:
self.tree_final_imgs[idx_branch] = self.sdh.latent2image(list_latents[-1])
self.tree_final_imgs_timing[idx_branch] = time.time() - time_start
return self.tree_final_imgs
def run_multi_transition(
self,
list_prompts: List[str],
list_seeds: List[int] = None,
list_nmb_branches: List[int] = None,
list_injection_strength: List[float] = None,
list_injection_idx: List[int] = None,
ms: MovieSaver = None,
fps: float = 24,
duration_single_trans: float = 15,
):
r"""
Runs multiple transitions and stitches them together. You can supply the seeds for each prompt.
Args:
list_prompts: List[float]:
list of the prompts. There will be a transition starting from the first to the last.
list_seeds: List[int] = None:
Random Seeds for each prompt.
list_nmb_branches: List[int]:
list of the number of branches for each injection.
list_injection_strength: List[float]:
list of injection strengths within interval [0, 1), values need to be increasing.
Alternatively you can direclty specify the list_injection_idx.
list_injection_idx: List[int]:
list of injection strengths within interval [0, 1), values need to be increasing.
Alternatively you can specify the list_injection_strength.
ms: MovieSaver
You need to spawn a moviesaver instance.
fps: float:
frames per second
duration_single_trans: float:
The duration of a single transition prompt[i] -> prompt[i+1].
The duration of your movie will be duration_single_trans * len(list_prompts)
"""
assert len(list_prompts) == len(list_seeds), "Supply the same number of prompts and seeds"
if list_seeds is None:
list_seeds = list(np.random.randint(0, 10e10, len(list_prompts)))
for i in range(len(list_prompts)-1):
print(f"Starting movie segment {i+1}/{len(list_prompts)-1}")
if i==0:
self.set_prompt1(list_prompts[i])
self.set_prompt2(list_prompts[i+1])
recycle_img1 = False
else:
self.swap_forward()
self.set_prompt2(list_prompts[i+1])
recycle_img1 = True
local_seeds = [list_seeds[i], list_seeds[i+1]]
list_imgs = self.run_transition(list_nmb_branches, list_injection_strength=list_injection_strength, list_injection_idx=list_injection_idx, recycle_img1=recycle_img1, fixed_seeds=local_seeds)
list_imgs_interp = add_frames_linear_interp(list_imgs, fps, duration_single_trans)
# Save movie frame
for img in list_imgs_interp:
ms.write_frame(img)
ms.finalize()
print("run_multi_transition: All completed.")
@torch.no_grad()
def run_diffusion(
self,
text_embeddings: torch.FloatTensor,
latents_for_injection: torch.FloatTensor = None,
idx_start: int = -1,
idx_stop: int = -1,
return_image: Optional[bool] = False
):
r"""
Wrapper function for run_diffusion_standard and run_diffusion_inpaint.
Depending on the mode, the correct one will be executed.
Args:
text_embeddings: torch.FloatTensor
Text embeddings used for diffusion
latents_for_injection: torch.FloatTensor
Latents that are used for injection
idx_start: int
Index of the diffusion process start and where the latents_for_injection are injected
idx_stop: int
Index of the diffusion process end.
return_image: Optional[bool]
Optionally return image directly
"""
# Ensure correct num_inference_steps in Holder
self.sdh.num_inference_steps = self.num_inference_steps
if self.mode == 'standard':
return self.sdh.run_diffusion_standard(text_embeddings, latents_for_injection=latents_for_injection, idx_start=idx_start, idx_stop=idx_stop, return_image=return_image)
elif self.mode == 'inpaint':
assert self.sdh.image_source is not None, "image_source is None. Please run init_inpainting first."
assert self.sdh.mask_image is not None, "image_source is None. Please run init_inpainting first."
return self.sdh.run_diffusion_inpaint(text_embeddings, latents_for_injection=latents_for_injection, idx_start=idx_start, idx_stop=idx_stop, return_image=return_image)
def init_inpainting(
self,
image_source: Union[Image.Image, np.ndarray] = None,
mask_image: Union[Image.Image, np.ndarray] = None,
init_empty: Optional[bool] = False,
):
r"""
Initializes inpainting with a source and maks image.
Args:
image_source: Union[Image.Image, np.ndarray]
Source image onto which the mask will be applied.
mask_image: Union[Image.Image, np.ndarray]
Mask image, value = 0 will stay untouched, value = 255 subjet to diffusion
init_empty: Optional[bool]:
Initialize inpainting with an empty image and mask, effectively disabling inpainting,
useful for generating a first image for transitions using diffusion.
"""
self.init_mode('inpaint')
self.sdh.init_inpainting(image_source, mask_image, init_empty)
@torch.no_grad()
def get_text_embeddings(
self,
prompt: str
):
r"""
Computes the text embeddings provided a string with a prompts.
Adapted from stable diffusion repo
Args:
prompt: str
ABC trending on artstation painted by Old Greg.
"""
return self.sdh.get_text_embedding(prompt)
def randomize_seed(self):
r"""
Set a random seed for a fresh start.
"""
seed = np.random.randint(999999999)
self.set_seed(seed)
def set_seed(self, seed: int):
r"""
Set a the seed for a fresh start.
"""
self.seed = seed
self.sdh.seed = seed
def swap_forward(self):
r"""
Moves over keyframe two -> keyframe one. Useful for making a sequence of transitions
as in run_multi_transition()
"""
# Move over all latents
for t_block in range(len(self.tree_latents)):
self.tree_latents[t_block][0] = self.tree_latents[t_block][-1]
# Move over prompts and text embeddings
self.prompt1 = self.prompt2
self.text_embedding1 = self.text_embedding2
# Final cleanup for extra sanity
self.tree_final_imgs = []
# Auxiliary functions
def get_closest_idx(
fract_mixing: float,
list_fract_mixing_prev: List[float],
):
r"""
Helper function to retrieve the parents for any given mixing.
Example: fract_mixing = 0.4 and list_fract_mixing_prev = [0, 0.3, 0.6, 1.0]
Will return the two closest values from list_fract_mixing_prev, i.e. [1, 2]
"""
pdist = fract_mixing - np.asarray(list_fract_mixing_prev)
pdist_pos = pdist.copy()
pdist_pos[pdist_pos<0] = np.inf
b_parent1 = np.argmin(pdist_pos)
pdist_neg = -pdist.copy()
pdist_neg[pdist_neg<=0] = np.inf
b_parent2= np.argmin(pdist_neg)
if b_parent1 > b_parent2:
tmp = b_parent2
b_parent2 = b_parent1
b_parent1 = tmp
return b_parent1, b_parent2
@torch.no_grad()
def interpolate_spherical(p0, p1, fract_mixing: float):
r"""
Helper function to correctly mix two random variables using spherical interpolation.
See https://en.wikipedia.org/wiki/Slerp
The function will always cast up to float64 for sake of extra 4.
Args:
p0:
First tensor for interpolation
p1:
Second tensor for interpolation
fract_mixing: float
Mixing coefficient of interval [0, 1].
0 will return in p0
1 will return in p1
0.x will return a mix between both preserving angular velocity.
"""
if p0.dtype == torch.float16:
recast_to = 'fp16'
else:
recast_to = 'fp32'
p0 = p0.double()
p1 = p1.double()
norm = torch.linalg.norm(p0) * torch.linalg.norm(p1)
epsilon = 1e-7
dot = torch.sum(p0 * p1) / norm
dot = dot.clamp(-1+epsilon, 1-epsilon)
theta_0 = torch.arccos(dot)
sin_theta_0 = torch.sin(theta_0)
theta_t = theta_0 * fract_mixing
s0 = torch.sin(theta_0 - theta_t) / sin_theta_0
s1 = torch.sin(theta_t) / sin_theta_0
interp = p0*s0 + p1*s1
if recast_to == 'fp16':
interp = interp.half()
elif recast_to == 'fp32':
interp = interp.float()
return interp
def interpolate_linear(p0, p1, fract_mixing):
r"""
Helper function to mix two variables using standard linear interpolation.
Args:
p0:
First tensor / np.ndarray for interpolation
p1:
Second tensor / np.ndarray for interpolation
fract_mixing: float
Mixing coefficient of interval [0, 1].
0 will return in p0
1 will return in p1
0.x will return a linear mix between both.
"""
reconvert_uint8 = False
if type(p0) is np.ndarray and p0.dtype == 'uint8':
reconvert_uint8 = True
p0 = p0.astype(np.float64)
if type(p1) is np.ndarray and p1.dtype == 'uint8':
reconvert_uint8 = True
p1 = p1.astype(np.float64)
interp = (1-fract_mixing) * p0 + fract_mixing * p1
if reconvert_uint8:
interp = np.clip(interp, 0, 255).astype(np.uint8)
return interp
def add_frames_linear_interp(
list_imgs: List[np.ndarray],
fps_target: Union[float, int] = None,
duration_target: Union[float, int] = None,
nmb_frames_target: int=None,
):
r"""
Helper function to cheaply increase the number of frames given a list of images,
by virtue of standard linear interpolation.
The number of inserted frames will be automatically adjusted so that the total of number
of frames can be fixed precisely, using a random shuffling technique.
The function allows 1:1 comparisons between transitions as videos.
Args:
list_imgs: List[np.ndarray)
List of images, between each image new frames will be inserted via linear interpolation.
fps_target:
OptionA: specify here the desired frames per second.
duration_target:
OptionA: specify here the desired duration of the transition in seconds.
nmb_frames_target:
OptionB: directly fix the total number of frames of the output.
"""
# Sanity
if nmb_frames_target is not None and fps_target is not None:
raise ValueError("You cannot specify both fps_target and nmb_frames_target")
if fps_target is None:
assert nmb_frames_target is not None, "Either specify nmb_frames_target or nmb_frames_target"
if nmb_frames_target is None:
assert fps_target is not None, "Either specify duration_target and fps_target OR nmb_frames_target"
assert duration_target is not None, "Either specify duration_target and fps_target OR nmb_frames_target"
nmb_frames_target = fps_target*duration_target
# Get number of frames that are missing
nmb_frames_diff = len(list_imgs)-1
nmb_frames_missing = nmb_frames_target - nmb_frames_diff - 1
if nmb_frames_missing < 1:
return list_imgs
list_imgs_float = [img.astype(np.float32) for img in list_imgs]
# Distribute missing frames, append nmb_frames_to_insert(i) frames for each frame
mean_nmb_frames_insert = nmb_frames_missing/nmb_frames_diff
constfact = np.floor(mean_nmb_frames_insert)
remainder_x = 1-(mean_nmb_frames_insert - constfact)
nmb_iter = 0
while True:
nmb_frames_to_insert = np.random.rand(nmb_frames_diff)
nmb_frames_to_insert[nmb_frames_to_insert<=remainder_x] = 0
nmb_frames_to_insert[nmb_frames_to_insert>remainder_x] = 1
nmb_frames_to_insert += constfact
if np.sum(nmb_frames_to_insert) == nmb_frames_missing:
break
nmb_iter += 1
if nmb_iter > 100000:
print("add_frames_linear_interp: issue with inserting the right number of frames")
break
nmb_frames_to_insert = nmb_frames_to_insert.astype(np.int32)
list_imgs_interp = []
for i in range(len(list_imgs_float)-1):#, desc="STAGE linear interp"):
img0 = list_imgs_float[i]
img1 = list_imgs_float[i+1]
list_imgs_interp.append(img0.astype(np.uint8))
list_fracts_linblend = np.linspace(0, 1, nmb_frames_to_insert[i]+2)[1:-1]
for fract_linblend in list_fracts_linblend:
img_blend = interpolate_linear(img0, img1, fract_linblend).astype(np.uint8)
list_imgs_interp.append(img_blend.astype(np.uint8))
if i==len(list_imgs_float)-2:
list_imgs_interp.append(img1.astype(np.uint8))
return list_imgs_interp
def get_time(resolution=None):
"""
Helper function returning an nicely formatted time string, e.g. 221117_1620
"""
if resolution==None:
resolution="second"
if resolution == "day":
t = time.strftime('%y%m%d', time.localtime())
elif resolution == "minute":
t = time.strftime('%y%m%d_%H%M', time.localtime())
elif resolution == "second":
t = time.strftime('%y%m%d_%H%M%S', time.localtime())
elif resolution == "millisecond":
t = time.strftime('%y%m%d_%H%M%S', time.localtime())
t += "_"
t += str("{:03d}".format(int(int(datetime.utcnow().strftime('%f'))/1000)))
else:
raise ValueError("bad resolution provided: %s" %resolution)
return t
#%% le main
if __name__ == "__main__":
pass
#%%
"""
TODO Coding:
RUNNING WITHOUT PROMPT!
save value ranges, can it be trashed?
in the middle: have more branches + lower guidance scale
TODO Other:
github
write text
requirements
make graphic explaining
make colab
license
twitter et al
"""