latentblending/cherry_picknick.py

103 lines
3.3 KiB
Python

# Copyright 2022 Lunar Ring. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os, sys
import torch
torch.backends.cudnn.benchmark = False
import numpy as np
import warnings
warnings.filterwarnings('ignore')
import warnings
import torch
from tqdm.auto import tqdm
from diffusers import StableDiffusionPipeline
from diffusers.schedulers import DDIMScheduler
from PIL import Image
import matplotlib.pyplot as plt
import torch
from movie_util import MovieSaver
from typing import Callable, List, Optional, Union
from latent_blending import LatentBlending, add_frames_linear_interp
torch.set_grad_enabled(False)
#%% First let us spawn a diffusers pipe using DDIMScheduler
device = "cuda:0"
model_path = "../stable_diffusion_models/stable-diffusion-v1-5"
scheduler = DDIMScheduler(beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False)
pipe = StableDiffusionPipeline.from_pretrained(
model_path,
revision="fp16",
torch_dtype=torch.float16,
scheduler=scheduler,
use_auth_token=True
)
pipe = pipe.to(device)
#%% Next let's set up all parameters
num_inference_steps = 30 # Number of diffusion interations
list_nmb_branches = [2, 3, 10, 24]#, 50] # Branching structure: how many branches
list_injection_strength = [0.0, 0.6, 0.8, 0.9]#, 0.95] # Branching structure: how deep is the blending
width = 512
height = 512
guidance_scale = 5
fps = 30
duration_target = 10
width = 512
height = 512
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale)
list_prompts = []
list_prompts.append("surrealistic statue made of glitter and dirt, standing in a lake, atmospheric light, strange glow")
list_prompts.append("weird statue of a frog monkey, many colors, standing next to the ruins of an ancient city")
list_prompts.append("statue of a mix between a tree and human, made of marble, incredibly detailed")
list_prompts.append("statue made of hot metal, bizzarre, dark clouds in the sky")
list_prompts.append("statue of a spider that looked like a human")
list_prompts.append("statue of a bird that looked like a scorpion")
list_prompts.append("statue of an ancient cybernetic messenger annoucing good news, golden, futuristic")
k = 6
prompt = list_prompts[k]
for i in range(4):
lb.set_prompt1(prompt)
seed = np.random.randint(999999999)
lb.set_seed(seed)
plt.imshow(lb.run_diffusion(lb.text_embedding1, return_image=True))
plt.title(f"{i} seed {seed}")
plt.show()
print(f"prompt {k} seed {seed} trial {i}")
#%%
"""
prompt 3 seed 28652396 trial 2
prompt 4 seed 783279867 trial 3
prompt 5 seed 831049796 trial 3
prompt 6 seed 798876383 trial 2
prompt 6 seed 750494819 trial 2
prompt 6 seed 416472011 trial 1
"""