94 lines
3.2 KiB
Python
94 lines
3.2 KiB
Python
# Copyright 2022 Lunar Ring. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os, sys
|
|
import torch
|
|
torch.backends.cudnn.benchmark = False
|
|
import numpy as np
|
|
import warnings
|
|
warnings.filterwarnings('ignore')
|
|
import time
|
|
import subprocess
|
|
import warnings
|
|
import torch
|
|
from tqdm.auto import tqdm
|
|
from diffusers import StableDiffusionInpaintPipeline
|
|
from PIL import Image
|
|
import torch
|
|
from movie_util import MovieSaver
|
|
from typing import Callable, List, Optional, Union
|
|
from latent_blending import LatentBlending, add_frames_linear_interp
|
|
from stable_diffusion_holder import StableDiffusionHolder
|
|
torch.set_grad_enabled(False)
|
|
|
|
#%% First let us spawn a stable diffusion holder
|
|
device = "cuda"
|
|
fp_ckpt= "../stable_diffusion_models/ckpt/512-inpainting-ema.ckpt"
|
|
fp_config = '../stablediffusion/configs//stable-diffusion/v2-inpainting-inference.yaml'
|
|
sdh = StableDiffusionHolder(fp_ckpt, fp_config, device)
|
|
|
|
|
|
#%% Let's first make a source image and mask.
|
|
quality = 'medium'
|
|
depth_strength = 0.65 #Specifies how deep (in terms of diffusion iterations the first branching happens)
|
|
duration_transition = 7 # In seconds
|
|
fps = 30
|
|
seed0 = 190791709
|
|
|
|
# Spawn latent blending
|
|
lb = LatentBlending(sdh)
|
|
lb.load_branching_profile(quality=quality, depth_strength=depth_strength)
|
|
prompt1 = "photo of a futuristic alien temple in a desert, mystic, glowing, organic, intricate, sci-fi movie, mesmerizing, scary"
|
|
lb.set_prompt1(prompt1)
|
|
lb.init_inpainting(init_empty=True)
|
|
lb.set_seed(seed0)
|
|
|
|
# Run diffusion
|
|
list_latents = lb.run_diffusion([lb.text_embedding1])
|
|
image_source = lb.sdh.latent2image(list_latents[-1])
|
|
|
|
mask_image = 255*np.ones([512,512], dtype=np.uint8)
|
|
mask_image[340:420, 170:280] = 0
|
|
mask_image = Image.fromarray(mask_image)
|
|
|
|
|
|
#%% Now let us compute a transition video with inpainting
|
|
# First inject back the latents that we already computed for our source image.
|
|
lb.inject_latents(list_latents, inject_img1=True)
|
|
|
|
# Then setup the seeds. Keep the one from the first image
|
|
fixed_seeds = [seed0, 6579436]
|
|
|
|
# Fix the prompts for the target
|
|
prompt2 = "aerial photo of a futuristic alien temple in a blue coastal area, the sun is shining with a bright light"
|
|
lb.set_prompt1(prompt1)
|
|
lb.set_prompt2(prompt2)
|
|
lb.init_inpainting(image_source, mask_image)
|
|
|
|
# Run latent blending
|
|
imgs_transition = lb.run_transition(recycle_img1=True, fixed_seeds=fixed_seeds)
|
|
|
|
# Let's get more cheap frames via linear interpolation (duration_transition*fps frames)
|
|
imgs_transition_ext = add_frames_linear_interp(imgs_transition, duration_transition, fps)
|
|
|
|
# Save as MP4
|
|
fp_movie = "movie_example2.mp4"
|
|
if os.path.isfile(fp_movie):
|
|
os.remove(fp_movie)
|
|
ms = MovieSaver(fp_movie, fps=fps, shape_hw=[lb.height, lb.width])
|
|
for img in tqdm(imgs_transition_ext):
|
|
ms.write_frame(img)
|
|
ms.finalize()
|
|
|