1724 lines
94 KiB
Plaintext
1724 lines
94 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "t9DPiP5BgqfF"
|
||
},
|
||
"source": [
|
||
"# Instructions\n",
|
||
"### 0) [optional]: change the model type in the cell below, and BYO-ckpt.\n",
|
||
"### 1) hit the white play button below \n",
|
||
"### 2) grab yourself a coffee 🍹 (10min wait) \n",
|
||
"### 3) scroll all the way to bottom of output and open link \"Running on public URL: https://xxxxxxxxx.gradio.live\" \n",
|
||
"### 4) there are many parameters, read here what they mean: https://github.com/lunarring/latentblending/blob/main/parameters.md\n",
|
||
"👇 (start here, move cursor below finger and play button will appear)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"cellView": "form",
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 1000,
|
||
"referenced_widgets": [
|
||
"341059598bb54246ad013a06228104a4",
|
||
"1ab78359663e42be979657d5fc5d6219",
|
||
"f99ee65269614dc1ab794e4b669ba17e",
|
||
"1316532bb31e4b13a79af8bcbf06d646",
|
||
"128efcd179fe430195be3065d96998bb",
|
||
"76bc701a660d46079b28b16b15d2e8e1",
|
||
"e1b429046ead49fa93500211ef09f4c6",
|
||
"38b7d3452c2a4fd58509f857a6f678b9",
|
||
"919cd507a0744e89b6d289f633e420fd",
|
||
"ac31a161b6a542c79b12d940e570b5e1",
|
||
"0b87e9c86694421e9c980cabf0ad6000",
|
||
"65415aaafdac4b48b69ad524a6cd6450",
|
||
"58e31ecfa254438589a048c01fdf9557",
|
||
"258106bbf2094f10b70f98c0f399ac11",
|
||
"53d20e434e2b4f6c8cab12882eaed1c3",
|
||
"2c3acf3296fd4205bbb7f8af047de104",
|
||
"1974e3d2b5e84ef6834fa2930be83e82",
|
||
"16f60055f74442e2b910ec73d12eca97",
|
||
"8e4f1e942dfe4e1ca233bfaa07eee10a",
|
||
"222befb69330421aa839bea35a125039",
|
||
"cdef154a0c4d4eaea3dbeec02af41897",
|
||
"8234b932853445e19699a9026668dd06",
|
||
"a658eabcd03b4f28913e51f0f6aba716",
|
||
"48d59773d9654912be56ca4b3bd00937",
|
||
"12ee22cd996049ed97fdba99fef238ce",
|
||
"da4c9da1490a458e80a3418709b76253",
|
||
"4fee8311391c4b4d82162ffdc1d9e96e",
|
||
"30ca0cf01a4443049a16ef13ddfa56cc",
|
||
"e32a38e4ff534c9f98c2d4fded8941d7",
|
||
"d5c15b9adc9b43568b2024e857f5d943",
|
||
"4640a0426a21443a97c4cec0f4851864",
|
||
"c40a78115f5444cda7930c00f0449d7f",
|
||
"1595284570a3466d825bb04abce5f2b3"
|
||
]
|
||
},
|
||
"collapsed": true,
|
||
"id": "jgZQj-tE6GWW",
|
||
"outputId": "04e7e6f8-4569-462b-83e8-05eb26159e73"
|
||
},
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
||
"Collecting open-clip-torch\n",
|
||
" Downloading open_clip_torch-2.9.3-py3-none-any.whl (1.4 MB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.4/1.4 MB\u001b[0m \u001b[31m28.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hCollecting huggingface-hub\n",
|
||
" Downloading huggingface_hub-0.11.1-py3-none-any.whl (182 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m182.4/182.4 KB\u001b[0m \u001b[31m12.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hRequirement already satisfied: torchvision in /usr/local/lib/python3.8/dist-packages (from open-clip-torch) (0.14.0+cu116)\n",
|
||
"Requirement already satisfied: torch>=1.9.0 in /usr/local/lib/python3.8/dist-packages (from open-clip-torch) (1.13.0+cu116)\n",
|
||
"Requirement already satisfied: regex in /usr/local/lib/python3.8/dist-packages (from open-clip-torch) (2022.6.2)\n",
|
||
"Collecting protobuf==3.20.*\n",
|
||
" Downloading protobuf-3.20.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.0 MB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.0/1.0 MB\u001b[0m \u001b[31m28.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hCollecting sentencepiece\n",
|
||
" Downloading sentencepiece-0.1.97-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m34.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hRequirement already satisfied: tqdm in /usr/local/lib/python3.8/dist-packages (from open-clip-torch) (4.64.1)\n",
|
||
"Collecting ftfy\n",
|
||
" Downloading ftfy-6.1.1-py3-none-any.whl (53 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m53.1/53.1 KB\u001b[0m \u001b[31m2.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hRequirement already satisfied: typing-extensions in /usr/local/lib/python3.8/dist-packages (from torch>=1.9.0->open-clip-torch) (4.4.0)\n",
|
||
"Requirement already satisfied: wcwidth>=0.2.5 in /usr/local/lib/python3.8/dist-packages (from ftfy->open-clip-torch) (0.2.5)\n",
|
||
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.8/dist-packages (from huggingface-hub->open-clip-torch) (6.0)\n",
|
||
"Requirement already satisfied: filelock in /usr/local/lib/python3.8/dist-packages (from huggingface-hub->open-clip-torch) (3.9.0)\n",
|
||
"Requirement already satisfied: requests in /usr/local/lib/python3.8/dist-packages (from huggingface-hub->open-clip-torch) (2.25.1)\n",
|
||
"Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.8/dist-packages (from huggingface-hub->open-clip-torch) (21.3)\n",
|
||
"Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.8/dist-packages (from torchvision->open-clip-torch) (7.1.2)\n",
|
||
"Requirement already satisfied: numpy in /usr/local/lib/python3.8/dist-packages (from torchvision->open-clip-torch) (1.21.6)\n",
|
||
"Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging>=20.9->huggingface-hub->open-clip-torch) (3.0.9)\n",
|
||
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests->huggingface-hub->open-clip-torch) (2022.12.7)\n",
|
||
"Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests->huggingface-hub->open-clip-torch) (4.0.0)\n",
|
||
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests->huggingface-hub->open-clip-torch) (2.10)\n",
|
||
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests->huggingface-hub->open-clip-torch) (1.24.3)\n",
|
||
"Installing collected packages: sentencepiece, protobuf, ftfy, huggingface-hub, open-clip-torch\n",
|
||
" Attempting uninstall: protobuf\n",
|
||
" Found existing installation: protobuf 3.19.6\n",
|
||
" Uninstalling protobuf-3.19.6:\n",
|
||
" Successfully uninstalled protobuf-3.19.6\n",
|
||
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
|
||
"tensorflow 2.9.2 requires protobuf<3.20,>=3.9.2, but you have protobuf 3.20.3 which is incompatible.\n",
|
||
"tensorboard 2.9.1 requires protobuf<3.20,>=3.9.2, but you have protobuf 3.20.3 which is incompatible.\u001b[0m\u001b[31m\n",
|
||
"\u001b[0mSuccessfully installed ftfy-6.1.1 huggingface-hub-0.11.1 open-clip-torch-2.9.3 protobuf-3.20.3 sentencepiece-0.1.97\n",
|
||
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
||
"Collecting omegaconf\n",
|
||
" Downloading omegaconf-2.3.0-py3-none-any.whl (79 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m79.5/79.5 KB\u001b[0m \u001b[31m8.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hCollecting antlr4-python3-runtime==4.9.*\n",
|
||
" Downloading antlr4-python3-runtime-4.9.3.tar.gz (117 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m117.0/117.0 KB\u001b[0m \u001b[31m13.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
||
"Requirement already satisfied: PyYAML>=5.1.0 in /usr/local/lib/python3.8/dist-packages (from omegaconf) (6.0)\n",
|
||
"Building wheels for collected packages: antlr4-python3-runtime\n",
|
||
" Building wheel for antlr4-python3-runtime (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
||
" Created wheel for antlr4-python3-runtime: filename=antlr4_python3_runtime-4.9.3-py3-none-any.whl size=144575 sha256=4c3089a5fd2660cf8938916989dc92d95679df79fa60107c725ce9d597b5561c\n",
|
||
" Stored in directory: /root/.cache/pip/wheels/b1/a3/c2/6df046c09459b73cc9bb6c4401b0be6c47048baf9a1617c485\n",
|
||
"Successfully built antlr4-python3-runtime\n",
|
||
"Installing collected packages: antlr4-python3-runtime, omegaconf\n",
|
||
"Successfully installed antlr4-python3-runtime-4.9.3 omegaconf-2.3.0\n"
|
||
]
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"application/vnd.colab-display-data+json": {
|
||
"pip_warning": {
|
||
"packages": [
|
||
"pydevd_plugins"
|
||
]
|
||
}
|
||
}
|
||
},
|
||
"metadata": {}
|
||
},
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
||
"Requirement already satisfied: fastcore in /usr/local/lib/python3.8/dist-packages (1.5.27)\n",
|
||
"Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from fastcore) (21.3)\n",
|
||
"Requirement already satisfied: pip in /usr/local/lib/python3.8/dist-packages (from fastcore) (22.0.4)\n",
|
||
"Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->fastcore) (3.0.9)\n",
|
||
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
||
"Requirement already satisfied: Pillow in /usr/local/lib/python3.8/dist-packages (7.1.2)\n",
|
||
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
||
"Collecting ffmpeg-python\n",
|
||
" Downloading ffmpeg_python-0.2.0-py3-none-any.whl (25 kB)\n",
|
||
"Requirement already satisfied: future in /usr/local/lib/python3.8/dist-packages (from ffmpeg-python) (0.16.0)\n",
|
||
"Installing collected packages: ffmpeg-python\n",
|
||
"Successfully installed ffmpeg-python-0.2.0\n",
|
||
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
||
"Collecting einops\n",
|
||
" Downloading einops-0.6.0-py3-none-any.whl (41 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m41.6/41.6 KB\u001b[0m \u001b[31m4.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hInstalling collected packages: einops\n",
|
||
"Successfully installed einops-0.6.0\n",
|
||
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
||
"Collecting gradio\n",
|
||
" Downloading gradio-3.16.1-py3-none-any.whl (14.2 MB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m14.2/14.2 MB\u001b[0m \u001b[31m74.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hRequirement already satisfied: matplotlib in /usr/local/lib/python3.8/dist-packages (from gradio) (3.2.2)\n",
|
||
"Collecting ffmpy\n",
|
||
" Downloading ffmpy-0.3.0.tar.gz (4.8 kB)\n",
|
||
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
||
"Requirement already satisfied: pyyaml in /usr/local/lib/python3.8/dist-packages (from gradio) (6.0)\n",
|
||
"Collecting fastapi\n",
|
||
" Downloading fastapi-0.89.1-py3-none-any.whl (55 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m55.8/55.8 KB\u001b[0m \u001b[31m6.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hRequirement already satisfied: typing-extensions in /usr/local/lib/python3.8/dist-packages (from gradio) (4.4.0)\n",
|
||
"Requirement already satisfied: fsspec in /usr/local/lib/python3.8/dist-packages (from gradio) (2022.11.0)\n",
|
||
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.8/dist-packages (from gradio) (3.8.3)\n",
|
||
"Collecting pydub\n",
|
||
" Downloading pydub-0.25.1-py2.py3-none-any.whl (32 kB)\n",
|
||
"Requirement already satisfied: pillow in /usr/local/lib/python3.8/dist-packages (from gradio) (7.1.2)\n",
|
||
"Requirement already satisfied: markupsafe in /usr/local/lib/python3.8/dist-packages (from gradio) (2.0.1)\n",
|
||
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from gradio) (2.11.3)\n",
|
||
"Requirement already satisfied: pydantic in /usr/local/lib/python3.8/dist-packages (from gradio) (1.10.4)\n",
|
||
"Collecting markdown-it-py[linkify,plugins]\n",
|
||
" Downloading markdown_it_py-2.1.0-py3-none-any.whl (84 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.5/84.5 KB\u001b[0m \u001b[31m10.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hCollecting python-multipart\n",
|
||
" Downloading python-multipart-0.0.5.tar.gz (32 kB)\n",
|
||
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
||
"Requirement already satisfied: requests in /usr/local/lib/python3.8/dist-packages (from gradio) (2.25.1)\n",
|
||
"Collecting orjson\n",
|
||
" Downloading orjson-3.8.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (270 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m270.5/270.5 KB\u001b[0m \u001b[31m27.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.8/dist-packages (from gradio) (1.3.5)\n",
|
||
"Requirement already satisfied: numpy in /usr/local/lib/python3.8/dist-packages (from gradio) (1.21.6)\n",
|
||
"Collecting pycryptodome\n",
|
||
" Downloading pycryptodome-3.16.0-cp35-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.3 MB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.3/2.3 MB\u001b[0m \u001b[31m85.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hCollecting websockets>=10.0\n",
|
||
" Downloading websockets-10.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (106 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m107.0/107.0 KB\u001b[0m \u001b[31m14.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hCollecting httpx\n",
|
||
" Downloading httpx-0.23.3-py3-none-any.whl (71 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m71.5/71.5 KB\u001b[0m \u001b[31m9.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hCollecting uvicorn\n",
|
||
" Downloading uvicorn-0.20.0-py3-none-any.whl (56 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.9/56.9 KB\u001b[0m \u001b[31m7.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hRequirement already satisfied: altair>=4.2.0 in /usr/local/lib/python3.8/dist-packages (from gradio) (4.2.0)\n",
|
||
"Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from altair>=4.2.0->gradio) (0.4)\n",
|
||
"Requirement already satisfied: jsonschema>=3.0 in /usr/local/lib/python3.8/dist-packages (from altair>=4.2.0->gradio) (4.3.3)\n",
|
||
"Requirement already satisfied: toolz in /usr/local/lib/python3.8/dist-packages (from altair>=4.2.0->gradio) (0.12.0)\n",
|
||
"Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas->gradio) (2.8.2)\n",
|
||
"Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas->gradio) (2022.7)\n",
|
||
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from aiohttp->gradio) (1.3.3)\n",
|
||
"Requirement already satisfied: charset-normalizer<3.0,>=2.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->gradio) (2.1.1)\n",
|
||
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.8/dist-packages (from aiohttp->gradio) (6.0.4)\n",
|
||
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.8/dist-packages (from aiohttp->gradio) (1.3.1)\n",
|
||
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->gradio) (22.2.0)\n",
|
||
"Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.8/dist-packages (from aiohttp->gradio) (4.0.2)\n",
|
||
"Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->gradio) (1.8.2)\n",
|
||
"Collecting starlette==0.22.0\n",
|
||
" Downloading starlette-0.22.0-py3-none-any.whl (64 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m64.3/64.3 KB\u001b[0m \u001b[31m8.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hCollecting anyio<5,>=3.4.0\n",
|
||
" Downloading anyio-3.6.2-py3-none-any.whl (80 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m80.6/80.6 KB\u001b[0m \u001b[31m10.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hCollecting httpcore<0.17.0,>=0.15.0\n",
|
||
" Downloading httpcore-0.16.3-py3-none-any.whl (69 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m69.6/69.6 KB\u001b[0m \u001b[31m9.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hCollecting rfc3986[idna2008]<2,>=1.3\n",
|
||
" Downloading rfc3986-1.5.0-py2.py3-none-any.whl (31 kB)\n",
|
||
"Requirement already satisfied: certifi in /usr/local/lib/python3.8/dist-packages (from httpx->gradio) (2022.12.7)\n",
|
||
"Collecting sniffio\n",
|
||
" Downloading sniffio-1.3.0-py3-none-any.whl (10 kB)\n",
|
||
"Collecting mdurl~=0.1\n",
|
||
" Downloading mdurl-0.1.2-py3-none-any.whl (10.0 kB)\n",
|
||
"Collecting linkify-it-py~=1.0\n",
|
||
" Downloading linkify_it_py-1.0.3-py3-none-any.whl (19 kB)\n",
|
||
"Collecting mdit-py-plugins\n",
|
||
" Downloading mdit_py_plugins-0.3.3-py3-none-any.whl (50 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.5/50.5 KB\u001b[0m \u001b[31m6.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hRequirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.8/dist-packages (from matplotlib->gradio) (1.4.4)\n",
|
||
"Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.8/dist-packages (from matplotlib->gradio) (3.0.9)\n",
|
||
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.8/dist-packages (from matplotlib->gradio) (0.11.0)\n",
|
||
"Requirement already satisfied: six>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from python-multipart->gradio) (1.15.0)\n",
|
||
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests->gradio) (2.10)\n",
|
||
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests->gradio) (1.24.3)\n",
|
||
"Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests->gradio) (4.0.0)\n",
|
||
"Requirement already satisfied: click>=7.0 in /usr/local/lib/python3.8/dist-packages (from uvicorn->gradio) (7.1.2)\n",
|
||
"Collecting h11>=0.8\n",
|
||
" Downloading h11-0.14.0-py3-none-any.whl (58 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 KB\u001b[0m \u001b[31m7.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hRequirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=3.0->altair>=4.2.0->gradio) (5.10.2)\n",
|
||
"Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=3.0->altair>=4.2.0->gradio) (0.19.3)\n",
|
||
"Collecting uc-micro-py\n",
|
||
" Downloading uc_micro_py-1.0.1-py3-none-any.whl (6.2 kB)\n",
|
||
"Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=3.0->altair>=4.2.0->gradio) (3.11.0)\n",
|
||
"Building wheels for collected packages: ffmpy, python-multipart\n",
|
||
" Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
||
" Created wheel for ffmpy: filename=ffmpy-0.3.0-py3-none-any.whl size=4711 sha256=e6f285734c2d220275fd83d619b53eff12a63a51db2207d308d8e4aaeb0aefd1\n",
|
||
" Stored in directory: /root/.cache/pip/wheels/ff/5b/59/913b443e7369dc04b61f607a746b6f7d83fb65e2e19fcc958d\n",
|
||
" Building wheel for python-multipart (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
||
" Created wheel for python-multipart: filename=python_multipart-0.0.5-py3-none-any.whl size=31678 sha256=a1da63cd4efc2c72da5c43f3d5f62f57ad40c86b3898ea9c392a508753533fca\n",
|
||
" Stored in directory: /root/.cache/pip/wheels/9e/fc/1c/cf980e6413d3ee8e70cd8f39e2366b0f487e3e221aeb452eb0\n",
|
||
"Successfully built ffmpy python-multipart\n",
|
||
"Installing collected packages: rfc3986, pydub, ffmpy, websockets, uc-micro-py, sniffio, python-multipart, pycryptodome, orjson, mdurl, h11, uvicorn, markdown-it-py, linkify-it-py, anyio, starlette, mdit-py-plugins, httpcore, httpx, fastapi, gradio\n",
|
||
"Successfully installed anyio-3.6.2 fastapi-0.89.1 ffmpy-0.3.0 gradio-3.16.1 h11-0.14.0 httpcore-0.16.3 httpx-0.23.3 linkify-it-py-1.0.3 markdown-it-py-2.1.0 mdit-py-plugins-0.3.3 mdurl-0.1.2 orjson-3.8.5 pycryptodome-3.16.0 pydub-0.25.1 python-multipart-0.0.5 rfc3986-1.5.0 sniffio-1.3.0 starlette-0.22.0 uc-micro-py-1.0.1 uvicorn-0.20.0 websockets-10.4\n",
|
||
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
||
"Collecting pytorch_lightning\n",
|
||
" Downloading pytorch_lightning-1.8.6-py3-none-any.whl (800 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m800.3/800.3 KB\u001b[0m \u001b[31m48.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hCollecting torchmetrics>=0.7.0\n",
|
||
" Downloading torchmetrics-0.11.0-py3-none-any.whl (512 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m512.4/512.4 KB\u001b[0m \u001b[31m46.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hCollecting lightning-utilities!=0.4.0,>=0.3.0\n",
|
||
" Downloading lightning_utilities-0.5.0-py3-none-any.whl (18 kB)\n",
|
||
"Requirement already satisfied: fsspec[http]>2021.06.0 in /usr/local/lib/python3.8/dist-packages (from pytorch_lightning) (2022.11.0)\n",
|
||
"Requirement already satisfied: typing-extensions>=4.0.0 in /usr/local/lib/python3.8/dist-packages (from pytorch_lightning) (4.4.0)\n",
|
||
"Collecting tensorboardX>=2.2\n",
|
||
" Downloading tensorboardX-2.5.1-py2.py3-none-any.whl (125 kB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m125.4/125.4 KB\u001b[0m \u001b[31m15.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hRequirement already satisfied: numpy>=1.17.2 in /usr/local/lib/python3.8/dist-packages (from pytorch_lightning) (1.21.6)\n",
|
||
"Requirement already satisfied: torch>=1.9.0 in /usr/local/lib/python3.8/dist-packages (from pytorch_lightning) (1.12.1+cu113)\n",
|
||
"Requirement already satisfied: packaging>=17.0 in /usr/local/lib/python3.8/dist-packages (from pytorch_lightning) (21.3)\n",
|
||
"Requirement already satisfied: PyYAML>=5.4 in /usr/local/lib/python3.8/dist-packages (from pytorch_lightning) (6.0)\n",
|
||
"Requirement already satisfied: tqdm>=4.57.0 in /usr/local/lib/python3.8/dist-packages (from pytorch_lightning) (4.64.1)\n",
|
||
"Requirement already satisfied: aiohttp!=4.0.0a0,!=4.0.0a1 in /usr/local/lib/python3.8/dist-packages (from fsspec[http]>2021.06.0->pytorch_lightning) (3.8.3)\n",
|
||
"Requirement already satisfied: requests in /usr/local/lib/python3.8/dist-packages (from fsspec[http]>2021.06.0->pytorch_lightning) (2.25.1)\n",
|
||
"Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging>=17.0->pytorch_lightning) (3.0.9)\n",
|
||
"Collecting protobuf<=3.20.1,>=3.8.0\n",
|
||
" Downloading protobuf-3.20.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.0 MB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.0/1.0 MB\u001b[0m \u001b[31m66.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hRequirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.8/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]>2021.06.0->pytorch_lightning) (1.3.1)\n",
|
||
"Requirement already satisfied: charset-normalizer<3.0,>=2.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]>2021.06.0->pytorch_lightning) (2.1.1)\n",
|
||
"Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.8/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]>2021.06.0->pytorch_lightning) (4.0.2)\n",
|
||
"Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]>2021.06.0->pytorch_lightning) (1.8.2)\n",
|
||
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.8/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]>2021.06.0->pytorch_lightning) (6.0.4)\n",
|
||
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]>2021.06.0->pytorch_lightning) (1.3.3)\n",
|
||
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]>2021.06.0->pytorch_lightning) (22.2.0)\n",
|
||
"Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests->fsspec[http]>2021.06.0->pytorch_lightning) (4.0.0)\n",
|
||
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests->fsspec[http]>2021.06.0->pytorch_lightning) (1.24.3)\n",
|
||
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests->fsspec[http]>2021.06.0->pytorch_lightning) (2022.12.7)\n",
|
||
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests->fsspec[http]>2021.06.0->pytorch_lightning) (2.10)\n",
|
||
"Installing collected packages: protobuf, torchmetrics, tensorboardX, lightning-utilities, pytorch_lightning\n",
|
||
" Attempting uninstall: protobuf\n",
|
||
" Found existing installation: protobuf 3.20.3\n",
|
||
" Uninstalling protobuf-3.20.3:\n",
|
||
" Successfully uninstalled protobuf-3.20.3\n",
|
||
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
|
||
"tensorflow 2.9.2 requires protobuf<3.20,>=3.9.2, but you have protobuf 3.20.1 which is incompatible.\n",
|
||
"tensorboard 2.9.1 requires protobuf<3.20,>=3.9.2, but you have protobuf 3.20.1 which is incompatible.\n",
|
||
"googleapis-common-protos 1.57.1 requires protobuf!=3.20.0,!=3.20.1,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.19.5, but you have protobuf 3.20.1 which is incompatible.\n",
|
||
"google-cloud-translate 3.8.4 requires protobuf!=3.20.0,!=3.20.1,!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.19.5, but you have protobuf 3.20.1 which is incompatible.\n",
|
||
"google-cloud-language 2.6.1 requires protobuf!=3.20.0,!=3.20.1,!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.19.5, but you have protobuf 3.20.1 which is incompatible.\n",
|
||
"google-cloud-firestore 2.7.3 requires protobuf!=3.20.0,!=3.20.1,!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.19.5, but you have protobuf 3.20.1 which is incompatible.\n",
|
||
"google-cloud-datastore 2.11.1 requires protobuf!=3.20.0,!=3.20.1,!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.19.5, but you have protobuf 3.20.1 which is incompatible.\n",
|
||
"google-cloud-bigquery 3.4.1 requires protobuf!=3.20.0,!=3.20.1,!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.19.5, but you have protobuf 3.20.1 which is incompatible.\n",
|
||
"google-cloud-bigquery-storage 2.17.0 requires protobuf!=3.20.0,!=3.20.1,!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.19.5, but you have protobuf 3.20.1 which is incompatible.\n",
|
||
"google-api-core 2.11.0 requires protobuf!=3.20.0,!=3.20.1,!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.19.5, but you have protobuf 3.20.1 which is incompatible.\u001b[0m\u001b[31m\n",
|
||
"\u001b[0mSuccessfully installed lightning-utilities-0.5.0 protobuf-3.20.1 pytorch_lightning-1.8.6 tensorboardX-2.5.1 torchmetrics-0.11.0\n",
|
||
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
||
"Collecting transformers\n",
|
||
" Downloading transformers-4.25.1-py3-none-any.whl (5.8 MB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.8/5.8 MB\u001b[0m \u001b[31m92.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hCollecting tokenizers!=0.11.3,<0.14,>=0.11.1\n",
|
||
" Downloading tokenizers-0.13.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.6 MB)\n",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.6/7.6 MB\u001b[0m \u001b[31m82.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25hRequirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.8/dist-packages (from transformers) (2022.6.2)\n",
|
||
"Requirement already satisfied: filelock in /usr/local/lib/python3.8/dist-packages (from transformers) (3.9.0)\n",
|
||
"Requirement already satisfied: huggingface-hub<1.0,>=0.10.0 in /usr/local/lib/python3.8/dist-packages (from transformers) (0.11.1)\n",
|
||
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.8/dist-packages (from transformers) (1.21.6)\n",
|
||
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.8/dist-packages (from transformers) (6.0)\n",
|
||
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.8/dist-packages (from transformers) (4.64.1)\n",
|
||
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.8/dist-packages (from transformers) (21.3)\n",
|
||
"Requirement already satisfied: requests in /usr/local/lib/python3.8/dist-packages (from transformers) (2.25.1)\n",
|
||
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.8/dist-packages (from huggingface-hub<1.0,>=0.10.0->transformers) (4.4.0)\n",
|
||
"Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging>=20.0->transformers) (3.0.9)\n",
|
||
"Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (4.0.0)\n",
|
||
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (2.10)\n",
|
||
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (1.24.3)\n",
|
||
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (2022.12.7)\n",
|
||
"Installing collected packages: tokenizers, transformers\n",
|
||
"Successfully installed tokenizers-0.13.2 transformers-4.25.1\n",
|
||
"Cloning into 'latentblending'...\n",
|
||
"remote: Enumerating objects: 530, done.\u001b[K\n",
|
||
"remote: Counting objects: 100% (50/50), done.\u001b[K\n",
|
||
"remote: Compressing objects: 100% (37/37), done.\u001b[K\n",
|
||
"remote: Total 530 (delta 24), reused 29 (delta 13), pack-reused 480\u001b[K\n",
|
||
"Receiving objects: 100% (530/530), 8.36 MiB | 6.82 MiB/s, done.\n",
|
||
"Resolving deltas: 100% (301/301), done.\n",
|
||
"Already up to date.\n"
|
||
]
|
||
},
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stderr",
|
||
"text": [
|
||
"/usr/local/lib/python3.8/dist-packages/pytorch_lightning/utilities/distributed.py:258: LightningDeprecationWarning: `pytorch_lightning.utilities.distributed.rank_zero_only` has been deprecated in v1.8.1 and will be removed in v1.10.0. You can import it from `pytorch_lightning.utilities` instead.\n",
|
||
" rank_zero_deprecation(\n"
|
||
]
|
||
},
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"--2023-01-15 16:09:49-- https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.ckpt\n",
|
||
"Resolving huggingface.co (huggingface.co)... 54.235.118.239, 3.231.67.228, 2600:1f18:147f:e850:e203:c458:10cd:fc3c, ...\n",
|
||
"Connecting to huggingface.co (huggingface.co)|54.235.118.239|:443... connected.\n",
|
||
"HTTP request sent, awaiting response... 302 Found\n",
|
||
"Location: https://cdn-lfs.huggingface.co/repos/24/cb/24cbc2f7542236eb613b4f16b6802d7c2bef443e86cf9d076719733866e66c3a/88ecb782561455673c4b78d05093494b9c539fc6bfc08f3a9a4a0dd7b0b10f36?response-content-disposition=attachment%3B%20filename%3D%22v2-1_512-ema-pruned.ckpt%22&Expires=1674051670&Policy=eyJTdGF0ZW1lbnQiOlt7IlJlc291cmNlIjoiaHR0cHM6Ly9jZG4tbGZzLmh1Z2dpbmdmYWNlLmNvL3JlcG9zLzI0L2NiLzI0Y2JjMmY3NTQyMjM2ZWI2MTNiNGYxNmI2ODAyZDdjMmJlZjQ0M2U4NmNmOWQwNzY3MTk3MzM4NjZlNjZjM2EvODhlY2I3ODI1NjE0NTU2NzNjNGI3OGQwNTA5MzQ5NGI5YzUzOWZjNmJmYzA4ZjNhOWE0YTBkZDdiMGIxMGYzNj9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPWF0dGFjaG1lbnQlM0IlMjBmaWxlbmFtZSUzRCUyMnYyLTFfNTEyLWVtYS1wcnVuZWQuY2twdCUyMiIsIkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTY3NDA1MTY3MH19fV19&Signature=kJC8WBl81~MjK7xt5NvRbmwoUiAw5bvjbeFBCgrGaEkKtZs9ufJDDcTdTH9N7DHR8IviAK14FAfn9XouLcmaGYMhclnLkdWbNPavOMF9gNmqjWvaTeUfslV9XHr~D8rb4Mn~ppw5B2P~3OkzKTEBVtuMXyH-71I38wwxbfCk4WQiHmRlpxAPA9Uq-R8erBTtK26FkJJCYpivHhdPZvoVhsMquvflplZYn-x1-LPxfdD5W-Hf8SvGi6N0iX-r6GnHfjUBzKK09znQ0nv73KRnus1fg-ayl3u20TKPJ~MufcItn8GmJJxVTFOR-2V8oVf29e~OQmYxPnfMXWYfs3lw0A__&Key-Pair-Id=KVTP0A1DKRTAX [following]\n",
|
||
"--2023-01-15 16:09:50-- https://cdn-lfs.huggingface.co/repos/24/cb/24cbc2f7542236eb613b4f16b6802d7c2bef443e86cf9d076719733866e66c3a/88ecb782561455673c4b78d05093494b9c539fc6bfc08f3a9a4a0dd7b0b10f36?response-content-disposition=attachment%3B%20filename%3D%22v2-1_512-ema-pruned.ckpt%22&Expires=1674051670&Policy=eyJTdGF0ZW1lbnQiOlt7IlJlc291cmNlIjoiaHR0cHM6Ly9jZG4tbGZzLmh1Z2dpbmdmYWNlLmNvL3JlcG9zLzI0L2NiLzI0Y2JjMmY3NTQyMjM2ZWI2MTNiNGYxNmI2ODAyZDdjMmJlZjQ0M2U4NmNmOWQwNzY3MTk3MzM4NjZlNjZjM2EvODhlY2I3ODI1NjE0NTU2NzNjNGI3OGQwNTA5MzQ5NGI5YzUzOWZjNmJmYzA4ZjNhOWE0YTBkZDdiMGIxMGYzNj9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPWF0dGFjaG1lbnQlM0IlMjBmaWxlbmFtZSUzRCUyMnYyLTFfNTEyLWVtYS1wcnVuZWQuY2twdCUyMiIsIkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTY3NDA1MTY3MH19fV19&Signature=kJC8WBl81~MjK7xt5NvRbmwoUiAw5bvjbeFBCgrGaEkKtZs9ufJDDcTdTH9N7DHR8IviAK14FAfn9XouLcmaGYMhclnLkdWbNPavOMF9gNmqjWvaTeUfslV9XHr~D8rb4Mn~ppw5B2P~3OkzKTEBVtuMXyH-71I38wwxbfCk4WQiHmRlpxAPA9Uq-R8erBTtK26FkJJCYpivHhdPZvoVhsMquvflplZYn-x1-LPxfdD5W-Hf8SvGi6N0iX-r6GnHfjUBzKK09znQ0nv73KRnus1fg-ayl3u20TKPJ~MufcItn8GmJJxVTFOR-2V8oVf29e~OQmYxPnfMXWYfs3lw0A__&Key-Pair-Id=KVTP0A1DKRTAX\n",
|
||
"Resolving cdn-lfs.huggingface.co (cdn-lfs.huggingface.co)... 13.227.254.33, 13.227.254.123, 13.227.254.52, ...\n",
|
||
"Connecting to cdn-lfs.huggingface.co (cdn-lfs.huggingface.co)|13.227.254.33|:443... connected.\n",
|
||
"HTTP request sent, awaiting response... 200 OK\n",
|
||
"Length: 5214865159 (4.9G) [binary/octet-stream]\n",
|
||
"Saving to: ‘v2-1_512-ema-pruned.ckpt’\n",
|
||
"\n",
|
||
"v2-1_512-ema-pruned 100%[===================>] 4.86G 184MB/s in 30s \n",
|
||
"\n",
|
||
"2023-01-15 16:10:20 (166 MB/s) - ‘v2-1_512-ema-pruned.ckpt’ saved [5214865159/5214865159]\n",
|
||
"\n",
|
||
"--2023-01-15 16:10:20-- http://v2-1_512-ema-pruned.ckpt/\n",
|
||
"Resolving v2-1_512-ema-pruned.ckpt (v2-1_512-ema-pruned.ckpt)... failed: Name or service not known.\n",
|
||
"wget: unable to resolve host address ‘v2-1_512-ema-pruned.ckpt’\n",
|
||
"FINISHED --2023-01-15 16:10:20--\n",
|
||
"Total wall clock time: 31s\n",
|
||
"Downloaded: 1 files, 4.9G in 30s (166 MB/s)\n",
|
||
"LatentDiffusion: Running in eps-prediction mode\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\n",
|
||
"Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\n",
|
||
"DiffusionWrapper has 865.91 M params.\n",
|
||
"making attention of type 'vanilla-xformers' with 512 in_channels\n",
|
||
"building MemoryEfficientAttnBlock with 512 in_channels...\n",
|
||
"Working with z of shape (1, 4, 32, 32) = 4096 dimensions.\n",
|
||
"making attention of type 'vanilla-xformers' with 512 in_channels\n",
|
||
"building MemoryEfficientAttnBlock with 512 in_channels...\n"
|
||
]
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"text/plain": [
|
||
"Downloading: 0%| | 0.00/3.94G [00:00<?, ?B/s]"
|
||
],
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"version_major": 2,
|
||
"version_minor": 0,
|
||
"model_id": "341059598bb54246ad013a06228104a4"
|
||
}
|
||
},
|
||
"metadata": {}
|
||
},
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"Colab notebook detected. This cell will run indefinitely so that you can see errors and logs. To turn off, set debug=False in launch().\n",
|
||
"Running on public URL: https://3e25df32-cc36-4745.gradio.live\n",
|
||
"\n",
|
||
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades (NEW!), check out Spaces: https://huggingface.co/spaces\n",
|
||
"STARTING DIFFUSION!\n",
|
||
"autosetup_branching: num_inference_steps: 20 list_nmb_branches: [2, 3, 5, 9] list_injection_idx: [0, 5, 11, 17]\n"
|
||
]
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"text/plain": [
|
||
"computing transition: 0%| | 0/21 [00:00<?, ?it/s]"
|
||
],
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"version_major": 2,
|
||
"version_minor": 0,
|
||
"model_id": "65415aaafdac4b48b69ad524a6cd6450"
|
||
}
|
||
},
|
||
"metadata": {}
|
||
},
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"Latent Blending pass finished. Resulted in 9 images\n",
|
||
"MovieSaver initialized. fps=30 crf=24 pix_fmt=yuv420p codec=libx264 preset=fast\n"
|
||
]
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"text/plain": [
|
||
" 0%| | 0/300 [00:00<?, ?it/s]"
|
||
],
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"version_major": 2,
|
||
"version_minor": 0,
|
||
"model_id": "a658eabcd03b4f28913e51f0f6aba716"
|
||
}
|
||
},
|
||
"metadata": {}
|
||
},
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"Initialization done. Movie shape: (512, 512, 3)\n",
|
||
"Movie saved, 10s playtime, watch here: \n",
|
||
"movie_230115_161425.mp4\n",
|
||
"DONE SAVING MOVIE! SENDING BACK...\n",
|
||
"Keyboard interruption in main thread... closing server.\n",
|
||
"Killing tunnel 127.0.0.1:7860 <> https://3e25df32-cc36-4745.gradio.live\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"!pip install wget\n",
|
||
"import wget\n",
|
||
"import os\n",
|
||
"\n",
|
||
"import requests\n",
|
||
"model = 'v2-1_512-ema-pruned' #@param [\"v2-1_512-ema-pruned\", \"v2-1_768-ema-pruned\", \"v1.5\"]\n",
|
||
"#@markdown Optionally, specify your own checkpoint below. Make sure to select the correct model above.\n",
|
||
"url_ckpt = \"\" #@param {type:\"string\"}\n",
|
||
"\n",
|
||
"if len(url_ckpt) < 1:\n",
|
||
" if model == \"v2-1_512-ema-pruned\":\n",
|
||
" url_ckpt = \"https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.ckpt\"\n",
|
||
" fp_config = 'latentblending/configs/v2-inference.yaml'\n",
|
||
" elif model == \"v2-1_768-ema-pruned\":\n",
|
||
" url_ckpt = \"https://huggingface.co/stabilityai/stable-diffusion-2-1/resolve/main/v2-1_768-ema-pruned.ckpt\"\n",
|
||
" fp_config = 'latentblending/configs/v2-inference-v.yaml'\n",
|
||
"\n",
|
||
"# Check that the supplied URLs exist.\n",
|
||
"response = requests.head(url_ckpt)\n",
|
||
"if response.status_code != 200 and response.status_code != 302:\n",
|
||
" raise ValueError(f\"url_ckpt could not be downloaded: {url_ckpt} gives {response.status_code}\")\n",
|
||
"fp_ckpt = 'model.ckpt'\n",
|
||
"wget.download(url_ckpt, fp_ckpt)\n",
|
||
"assert os.path.isfile(fp_ckpt), \"model download has failed.\"\n",
|
||
"\n",
|
||
"\n",
|
||
"if model == \"v2-1_512-ema-pruned\":\n",
|
||
" fp_config = 'latentblending/configs/v2-inference.yaml'\n",
|
||
"elif model == \"v2-1_768-ema-pruned\":\n",
|
||
" fp_config = 'latentblending/configs/v2-inference-v.yaml'\n",
|
||
"elif model == 'v1.5':\n",
|
||
" fp_config = 'latentblending/configs/v1-inference.yaml'\n",
|
||
"\n",
|
||
"print(f\"url_ckpt: {url_ckpt} fp_config {fp_config}\")\n",
|
||
"\n",
|
||
"\n",
|
||
"# installs\n",
|
||
"!pip install open-clip-torch\n",
|
||
"!pip install omegaconf\n",
|
||
"!pip install fastcore -U\n",
|
||
"!pip install Pillow\n",
|
||
"!pip install ffmpeg-python\n",
|
||
"!pip install einops\n",
|
||
"!pip install gradio\n",
|
||
"\n",
|
||
"import os, sys\n",
|
||
"from subprocess import getoutput\n",
|
||
"\n",
|
||
"# Xformers\n",
|
||
"os.system(\"pip install --extra-index-url https://download.pytorch.org/whl/cu113 torch torchvision==0.13.1+cu113\")\n",
|
||
"os.system(\"pip install triton==2.0.0.dev20220701\")\n",
|
||
"gpu_info = getoutput('nvidia-smi')\n",
|
||
"if(\"A10G\" in gpu_info):\n",
|
||
" os.system(f\"pip install -q https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.15/xformers-0.0.15.dev0+4c06c79.d20221205-cp38-cp38-linux_x86_64.whl\")\n",
|
||
"elif(\"T4\" in gpu_info):\n",
|
||
" os.system(f\"pip install -q https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.15/xformers-0.0.15.dev0+1515f77.d20221130-cp38-cp38-linux_x86_64.whl\")\n",
|
||
"\n",
|
||
"!pip install pytorch_lightning\n",
|
||
"!pip install transformers\n",
|
||
"\n",
|
||
"# Get Latent Blending from git / pull \n",
|
||
"!git clone https://github.com/lunarring/latentblending\n",
|
||
"!cd latentblending; git pull; cd ..\n",
|
||
"sys.path.append(\"/content/latentblending\")\n",
|
||
"\n",
|
||
"\n",
|
||
"\n",
|
||
"\n",
|
||
"# Imports\n",
|
||
"import torch\n",
|
||
"import numpy as np\n",
|
||
"import warnings\n",
|
||
"warnings.filterwarnings('ignore')\n",
|
||
"import warnings\n",
|
||
"import torch\n",
|
||
"from tqdm.auto import tqdm\n",
|
||
"from PIL import Image\n",
|
||
"import torch\n",
|
||
"from typing import Callable, List, Optional, Union\n",
|
||
"from latent_blending import LatentBlending, add_frames_linear_interp, get_time, yml_save, LatentBlending, compare_dicts\n",
|
||
"from stable_diffusion_holder import StableDiffusionHolder\n",
|
||
"from gradio_ui import BlendingFrontend\n",
|
||
"import gradio as gr\n",
|
||
"\n",
|
||
"torch.set_grad_enabled(False)\n",
|
||
"torch.backends.cudnn.benchmark = False\n",
|
||
"\n",
|
||
"\n",
|
||
"#%% First let us spawn a stable diffusion holder\n",
|
||
"device = \"cuda\" \n",
|
||
"\n",
|
||
"\n",
|
||
"sdh = StableDiffusionHolder(fp_ckpt, fp_config, device) \n",
|
||
"\n",
|
||
"from latent_blending import get_time, yml_save, LatentBlending, add_frames_linear_interp, compare_dicts\n",
|
||
"from gradio_ui import BlendingFrontend\n",
|
||
"\n",
|
||
"import gradio as gr\n",
|
||
"\n",
|
||
"if __name__ == \"__main__\": \n",
|
||
" \n",
|
||
" self = BlendingFrontend(sdh) # Yes this is possible in python and yes it is an awesome trick\n",
|
||
" \n",
|
||
" with gr.Blocks() as demo:\n",
|
||
" with gr.Row():\n",
|
||
" prompt1 = gr.Textbox(label=\"prompt 1\")\n",
|
||
" prompt2 = gr.Textbox(label=\"prompt 2\")\n",
|
||
" negative_prompt = gr.Textbox(label=\"negative prompt\") \n",
|
||
" \n",
|
||
" with gr.Row():\n",
|
||
" nmb_branches_final = gr.Slider(5, 125, self.nmb_branches_final, step=4, label='nmb trans images', interactive=True) \n",
|
||
" height = gr.Slider(256, 2048, self.height, step=128, label='height', interactive=True)\n",
|
||
" width = gr.Slider(256, 2048, self.width, step=128, label='width', interactive=True) \n",
|
||
" \n",
|
||
" with gr.Row():\n",
|
||
" num_inference_steps = gr.Slider(5, 100, self.num_inference_steps, step=1, label='num_inference_steps', interactive=True)\n",
|
||
" branch1_influence = gr.Slider(0.0, 1.0, self.branch1_influence, step=0.01, label='branch1_influence', interactive=True) \n",
|
||
" guidance_scale = gr.Slider(1, 25, self.guidance_scale, step=0.1, label='guidance_scale', interactive=True) \n",
|
||
" \n",
|
||
" with gr.Row():\n",
|
||
" depth_strength = gr.Slider(0.01, 0.99, self.depth_strength, step=0.01, label='depth_strength', interactive=True) \n",
|
||
" duration = gr.Slider(0.1, 30, self.duration, step=0.1, label='video duration', interactive=True) \n",
|
||
" guidance_scale_mid_damper = gr.Slider(0.01, 2.0, self.guidance_scale_mid_damper, step=0.01, label='guidance_scale_mid_damper', interactive=True) \n",
|
||
" \n",
|
||
" with gr.Row():\n",
|
||
" seed1 = gr.Number(42, label=\"seed 1\", interactive=True)\n",
|
||
" b_newseed1 = gr.Button(\"randomize seed 1\", variant='secondary')\n",
|
||
" seed2 = gr.Number(420, label=\"seed 2\", interactive=True)\n",
|
||
" b_newseed2 = gr.Button(\"randomize seed 2\", variant='secondary')\n",
|
||
" with gr.Row():\n",
|
||
" b_compute_transition = gr.Button('compute transition', variant='primary')\n",
|
||
" \n",
|
||
" with gr.Row():\n",
|
||
" img1 = gr.Image(label=\"1/5\")\n",
|
||
" img2 = gr.Image(label=\"2/5\")\n",
|
||
" img3 = gr.Image(label=\"3/5\")\n",
|
||
" img4 = gr.Image(label=\"4/5\")\n",
|
||
" img5 = gr.Image(label=\"5/5\")\n",
|
||
" \n",
|
||
" with gr.Row():\n",
|
||
" vid_transition = gr.Video()\n",
|
||
" \n",
|
||
" # Bind the on-change methods\n",
|
||
" depth_strength.change(fn=self.change_depth_strength, inputs=depth_strength)\n",
|
||
" num_inference_steps.change(fn=self.change_num_inference_steps, inputs=num_inference_steps)\n",
|
||
" nmb_branches_final.change(fn=self.change_nmb_branches_final, inputs=nmb_branches_final)\n",
|
||
" \n",
|
||
" guidance_scale.change(fn=self.change_guidance_scale, inputs=guidance_scale)\n",
|
||
" guidance_scale_mid_damper.change(fn=self.change_guidance_scale_mid_damper, inputs=guidance_scale_mid_damper)\n",
|
||
" \n",
|
||
" height.change(fn=self.change_height, inputs=height)\n",
|
||
" width.change(fn=self.change_width, inputs=width)\n",
|
||
" negative_prompt.change(fn=self.change_negative_prompt, inputs=negative_prompt)\n",
|
||
" seed1.change(fn=self.change_seed1, inputs=seed1)\n",
|
||
" seed2.change(fn=self.change_seed2, inputs=seed2)\n",
|
||
" duration.change(fn=self.change_duration, inputs=duration)\n",
|
||
" branch1_influence.change(fn=self.change_branch1_influence, inputs=branch1_influence)\n",
|
||
" \n",
|
||
" b_newseed1.click(self.randomize_seed1, outputs=seed1)\n",
|
||
" b_newseed2.click(self.randomize_seed2, outputs=seed2)\n",
|
||
" b_compute_transition.click(self.compute_transition, \n",
|
||
" inputs=[prompt1, prompt2],\n",
|
||
" outputs=[img1, img2, img3, img4, img5, vid_transition])\n",
|
||
" \n",
|
||
" demo.launch(share=self.share, inbrowser=True, inline=False, debug=True)\n"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"accelerator": "GPU",
|
||
"colab": {
|
||
"machine_shape": "hm",
|
||
"provenance": []
|
||
},
|
||
"gpuClass": "standard",
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"name": "python"
|
||
},
|
||
"widgets": {
|
||
"application/vnd.jupyter.widget-state+json": {
|
||
"341059598bb54246ad013a06228104a4": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_1ab78359663e42be979657d5fc5d6219",
|
||
"IPY_MODEL_f99ee65269614dc1ab794e4b669ba17e",
|
||
"IPY_MODEL_1316532bb31e4b13a79af8bcbf06d646"
|
||
],
|
||
"layout": "IPY_MODEL_128efcd179fe430195be3065d96998bb"
|
||
}
|
||
},
|
||
"1ab78359663e42be979657d5fc5d6219": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_76bc701a660d46079b28b16b15d2e8e1",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_e1b429046ead49fa93500211ef09f4c6",
|
||
"value": "Downloading: 100%"
|
||
}
|
||
},
|
||
"f99ee65269614dc1ab794e4b669ba17e": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_38b7d3452c2a4fd58509f857a6f678b9",
|
||
"max": 3944692325,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_919cd507a0744e89b6d289f633e420fd",
|
||
"value": 3944692325
|
||
}
|
||
},
|
||
"1316532bb31e4b13a79af8bcbf06d646": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_ac31a161b6a542c79b12d940e570b5e1",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_0b87e9c86694421e9c980cabf0ad6000",
|
||
"value": " 3.94G/3.94G [00:52<00:00, 85.6MB/s]"
|
||
}
|
||
},
|
||
"128efcd179fe430195be3065d96998bb": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"76bc701a660d46079b28b16b15d2e8e1": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"e1b429046ead49fa93500211ef09f4c6": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"38b7d3452c2a4fd58509f857a6f678b9": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"919cd507a0744e89b6d289f633e420fd": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"ac31a161b6a542c79b12d940e570b5e1": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"0b87e9c86694421e9c980cabf0ad6000": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"65415aaafdac4b48b69ad524a6cd6450": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_58e31ecfa254438589a048c01fdf9557",
|
||
"IPY_MODEL_258106bbf2094f10b70f98c0f399ac11",
|
||
"IPY_MODEL_53d20e434e2b4f6c8cab12882eaed1c3"
|
||
],
|
||
"layout": "IPY_MODEL_2c3acf3296fd4205bbb7f8af047de104"
|
||
}
|
||
},
|
||
"58e31ecfa254438589a048c01fdf9557": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_1974e3d2b5e84ef6834fa2930be83e82",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_16f60055f74442e2b910ec73d12eca97",
|
||
"value": "computing transition: 100%"
|
||
}
|
||
},
|
||
"258106bbf2094f10b70f98c0f399ac11": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_8e4f1e942dfe4e1ca233bfaa07eee10a",
|
||
"max": 21,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_222befb69330421aa839bea35a125039",
|
||
"value": 21
|
||
}
|
||
},
|
||
"53d20e434e2b4f6c8cab12882eaed1c3": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_cdef154a0c4d4eaea3dbeec02af41897",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_8234b932853445e19699a9026668dd06",
|
||
"value": " 21/21 [00:23<00:00, 1.09s/it]"
|
||
}
|
||
},
|
||
"2c3acf3296fd4205bbb7f8af047de104": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"1974e3d2b5e84ef6834fa2930be83e82": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"16f60055f74442e2b910ec73d12eca97": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"8e4f1e942dfe4e1ca233bfaa07eee10a": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"222befb69330421aa839bea35a125039": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"cdef154a0c4d4eaea3dbeec02af41897": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"8234b932853445e19699a9026668dd06": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"a658eabcd03b4f28913e51f0f6aba716": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_48d59773d9654912be56ca4b3bd00937",
|
||
"IPY_MODEL_12ee22cd996049ed97fdba99fef238ce",
|
||
"IPY_MODEL_da4c9da1490a458e80a3418709b76253"
|
||
],
|
||
"layout": "IPY_MODEL_4fee8311391c4b4d82162ffdc1d9e96e"
|
||
}
|
||
},
|
||
"48d59773d9654912be56ca4b3bd00937": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_30ca0cf01a4443049a16ef13ddfa56cc",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_e32a38e4ff534c9f98c2d4fded8941d7",
|
||
"value": "100%"
|
||
}
|
||
},
|
||
"12ee22cd996049ed97fdba99fef238ce": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_d5c15b9adc9b43568b2024e857f5d943",
|
||
"max": 300,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_4640a0426a21443a97c4cec0f4851864",
|
||
"value": 300
|
||
}
|
||
},
|
||
"da4c9da1490a458e80a3418709b76253": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_c40a78115f5444cda7930c00f0449d7f",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_1595284570a3466d825bb04abce5f2b3",
|
||
"value": " 300/300 [00:03<00:00, 146.93it/s]"
|
||
}
|
||
},
|
||
"4fee8311391c4b4d82162ffdc1d9e96e": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"30ca0cf01a4443049a16ef13ddfa56cc": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"e32a38e4ff534c9f98c2d4fded8941d7": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"d5c15b9adc9b43568b2024e857f5d943": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"4640a0426a21443a97c4cec0f4851864": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"c40a78115f5444cda7930c00f0449d7f": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"model_module_version": "1.2.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"1595284570a3466d825bb04abce5f2b3": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"model_module_version": "1.5.0",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
}
|
||
}
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 0
|
||
} |