66 lines
2.3 KiB
Python
66 lines
2.3 KiB
Python
# Copyright 2022 Lunar Ring. All rights reserved.
|
|
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import torch
|
|
torch.backends.cudnn.benchmark = False
|
|
torch.set_grad_enabled(False)
|
|
import warnings
|
|
warnings.filterwarnings('ignore')
|
|
import warnings
|
|
from latent_blending import LatentBlending
|
|
from stable_diffusion_holder import StableDiffusionHolder
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
# %% Define vars for low-resoltion pass
|
|
prompt1 = "photo of mount vesuvius erupting a terrifying pyroclastic ash cloud"
|
|
prompt2 = "photo of a inside a building full of ash, fire, death, destruction, explosions"
|
|
fixed_seeds = [5054613, 1168652]
|
|
|
|
width = 512
|
|
height = 384
|
|
num_inference_steps_lores = 40
|
|
nmb_max_branches_lores = 10
|
|
depth_strength_lores = 0.5
|
|
fp_ckpt_lores = hf_hub_download(repo_id="stabilityai/stable-diffusion-2-1-base", filename="v2-1_512-ema-pruned.ckpt")
|
|
|
|
# %% Define vars for high-resoltion pass
|
|
fp_ckpt_hires = hf_hub_download(repo_id="stabilityai/stable-diffusion-x4-upscaler", filename="x4-upscaler-ema.ckpt")
|
|
depth_strength_hires = 0.65
|
|
num_inference_steps_hires = 100
|
|
nmb_branches_final_hires = 6
|
|
dp_imgs = "tmp_transition" # Folder for results and intermediate steps
|
|
|
|
|
|
# %% Run low-res pass
|
|
sdh = StableDiffusionHolder(fp_ckpt_lores)
|
|
lb = LatentBlending(sdh)
|
|
lb.set_prompt1(prompt1)
|
|
lb.set_prompt2(prompt2)
|
|
lb.set_width(width)
|
|
lb.set_height(height)
|
|
|
|
# Run latent blending
|
|
lb.run_transition(
|
|
depth_strength=depth_strength_lores,
|
|
nmb_max_branches=nmb_max_branches_lores,
|
|
fixed_seeds=fixed_seeds)
|
|
|
|
lb.write_imgs_transition(dp_imgs)
|
|
|
|
# %% Run high-res pass
|
|
sdh = StableDiffusionHolder(fp_ckpt_hires)
|
|
lb = LatentBlending(sdh)
|
|
lb.run_upscaling(dp_imgs, depth_strength_hires, num_inference_steps_hires, nmb_branches_final_hires)
|