128 lines
5.1 KiB
Python
128 lines
5.1 KiB
Python
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
|
This file contains code that is adapted from
|
|
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
|
"""
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from .base_model import BaseModel
|
|
from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
|
|
|
|
|
|
class MidasNet_small(BaseModel):
|
|
"""Network for monocular depth estimation.
|
|
"""
|
|
|
|
def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
|
|
blocks={'expand': True}):
|
|
"""Init.
|
|
|
|
Args:
|
|
path (str, optional): Path to saved model. Defaults to None.
|
|
features (int, optional): Number of features. Defaults to 256.
|
|
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
|
"""
|
|
print("Loading weights: ", path)
|
|
|
|
super(MidasNet_small, self).__init__()
|
|
|
|
use_pretrained = False if path else True
|
|
|
|
self.channels_last = channels_last
|
|
self.blocks = blocks
|
|
self.backbone = backbone
|
|
|
|
self.groups = 1
|
|
|
|
features1=features
|
|
features2=features
|
|
features3=features
|
|
features4=features
|
|
self.expand = False
|
|
if "expand" in self.blocks and self.blocks['expand'] == True:
|
|
self.expand = True
|
|
features1=features
|
|
features2=features*2
|
|
features3=features*4
|
|
features4=features*8
|
|
|
|
self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
|
|
|
|
self.scratch.activation = nn.ReLU(False)
|
|
|
|
self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
|
self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
|
self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
|
self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
|
|
|
|
|
|
self.scratch.output_conv = nn.Sequential(
|
|
nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
|
|
Interpolate(scale_factor=2, mode="bilinear"),
|
|
nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
|
|
self.scratch.activation,
|
|
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
|
nn.ReLU(True) if non_negative else nn.Identity(),
|
|
nn.Identity(),
|
|
)
|
|
|
|
if path:
|
|
self.load(path)
|
|
|
|
|
|
def forward(self, x):
|
|
"""Forward pass.
|
|
|
|
Args:
|
|
x (tensor): input data (image)
|
|
|
|
Returns:
|
|
tensor: depth
|
|
"""
|
|
if self.channels_last==True:
|
|
print("self.channels_last = ", self.channels_last)
|
|
x.contiguous(memory_format=torch.channels_last)
|
|
|
|
|
|
layer_1 = self.pretrained.layer1(x)
|
|
layer_2 = self.pretrained.layer2(layer_1)
|
|
layer_3 = self.pretrained.layer3(layer_2)
|
|
layer_4 = self.pretrained.layer4(layer_3)
|
|
|
|
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
|
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
|
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
|
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
|
|
|
|
|
path_4 = self.scratch.refinenet4(layer_4_rn)
|
|
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
|
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
|
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
|
|
|
out = self.scratch.output_conv(path_1)
|
|
|
|
return torch.squeeze(out, dim=1)
|
|
|
|
|
|
|
|
def fuse_model(m):
|
|
prev_previous_type = nn.Identity()
|
|
prev_previous_name = ''
|
|
previous_type = nn.Identity()
|
|
previous_name = ''
|
|
for name, module in m.named_modules():
|
|
if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
|
|
# print("FUSED ", prev_previous_name, previous_name, name)
|
|
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
|
|
elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
|
|
# print("FUSED ", prev_previous_name, previous_name)
|
|
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
|
|
# elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
|
|
# print("FUSED ", previous_name, name)
|
|
# torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
|
|
|
|
prev_previous_type = previous_type
|
|
prev_previous_name = previous_name
|
|
previous_type = type(module)
|
|
previous_name = name |