103 lines
3.3 KiB
Python
103 lines
3.3 KiB
Python
# Copyright 2022 Lunar Ring. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os, sys
|
|
import torch
|
|
torch.backends.cudnn.benchmark = False
|
|
import numpy as np
|
|
import warnings
|
|
warnings.filterwarnings('ignore')
|
|
import warnings
|
|
import torch
|
|
from tqdm.auto import tqdm
|
|
from diffusers import StableDiffusionPipeline
|
|
from diffusers.schedulers import DDIMScheduler
|
|
from PIL import Image
|
|
import matplotlib.pyplot as plt
|
|
import torch
|
|
from movie_util import MovieSaver
|
|
from typing import Callable, List, Optional, Union
|
|
from latent_blending import LatentBlending, add_frames_linear_interp
|
|
torch.set_grad_enabled(False)
|
|
|
|
#%% First let us spawn a diffusers pipe using DDIMScheduler
|
|
device = "cuda:0"
|
|
model_path = "../stable_diffusion_models/stable-diffusion-v1-5"
|
|
|
|
scheduler = DDIMScheduler(beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False)
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(
|
|
model_path,
|
|
revision="fp16",
|
|
torch_dtype=torch.float16,
|
|
scheduler=scheduler,
|
|
use_auth_token=True
|
|
)
|
|
pipe = pipe.to(device)
|
|
|
|
#%% Next let's set up all parameters
|
|
num_inference_steps = 30 # Number of diffusion interations
|
|
list_nmb_branches = [2, 3, 10, 24]#, 50] # Branching structure: how many branches
|
|
list_injection_strength = [0.0, 0.6, 0.8, 0.9]#, 0.95] # Branching structure: how deep is the blending
|
|
|
|
width = 512
|
|
height = 512
|
|
guidance_scale = 5
|
|
fps = 30
|
|
duration_target = 10
|
|
width = 512
|
|
height = 512
|
|
|
|
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale)
|
|
|
|
|
|
list_prompts = []
|
|
list_prompts.append("surrealistic statue made of glitter and dirt, standing in a lake, atmospheric light, strange glow")
|
|
list_prompts.append("weird statue of a frog monkey, many colors, standing next to the ruins of an ancient city")
|
|
list_prompts.append("statue of a mix between a tree and human, made of marble, incredibly detailed")
|
|
list_prompts.append("statue made of hot metal, bizzarre, dark clouds in the sky")
|
|
list_prompts.append("statue of a spider that looked like a human")
|
|
list_prompts.append("statue of a bird that looked like a scorpion")
|
|
list_prompts.append("statue of an ancient cybernetic messenger annoucing good news, golden, futuristic")
|
|
|
|
k = 6
|
|
|
|
prompt = list_prompts[k]
|
|
for i in range(4):
|
|
lb.set_prompt1(prompt)
|
|
|
|
seed = np.random.randint(999999999)
|
|
lb.set_seed(seed)
|
|
plt.imshow(lb.run_diffusion(lb.text_embedding1, return_image=True))
|
|
plt.title(f"{i} seed {seed}")
|
|
plt.show()
|
|
print(f"prompt {k} seed {seed} trial {i}")
|
|
|
|
#%%
|
|
|
|
"""
|
|
|
|
prompt 3 seed 28652396 trial 2
|
|
prompt 4 seed 783279867 trial 3
|
|
prompt 5 seed 831049796 trial 3
|
|
|
|
prompt 6 seed 798876383 trial 2
|
|
prompt 6 seed 750494819 trial 2
|
|
prompt 6 seed 416472011 trial 1
|
|
|
|
""" |