latentblending/latent_blending.py

1453 lines
60 KiB
Python

# Copyright 2022 Lunar Ring. All rights reserved.
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os, sys
dp_git = "/home/lugo/git/"
sys.path.append('util')
# sys.path.append('../stablediffusion/ldm')
import torch
torch.backends.cudnn.benchmark = False
import numpy as np
import warnings
warnings.filterwarnings('ignore')
import time
import subprocess
import warnings
import torch
from tqdm.auto import tqdm
from PIL import Image
# import matplotlib.pyplot as plt
import torch
from movie_util import MovieSaver
import datetime
from typing import Callable, List, Optional, Union
import inspect
from threading import Thread
torch.set_grad_enabled(False)
from omegaconf import OmegaConf
from torch import autocast
from contextlib import nullcontext
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddpm import LatentUpscaleDiffusion, LatentInpaintDiffusion
from stable_diffusion_holder import StableDiffusionHolder
import yaml
import lpips
#%%
class LatentBlending():
def __init__(
self,
sdh: None,
guidance_scale: float = 4,
guidance_scale_mid_damper: float = 0.5,
mid_compression_scaler: float = 1.2,
):
r"""
Initializes the latent blending class.
Args:
guidance_scale: float
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
guidance_scale_mid_damper: float = 0.5
Reduces the guidance scale towards the middle of the transition.
A value of 0.5 would decrease the guidance_scale towards the middle linearly by 0.5.
mid_compression_scaler: float = 2.0
Increases the sampling density in the middle (where most changes happen). Higher value
imply more values in the middle. However the inflection point can occur outside the middle,
thus high values can give rough transitions. Values around 2 should be fine.
"""
assert guidance_scale_mid_damper>0 and guidance_scale_mid_damper<=1.0, f"guidance_scale_mid_damper neees to be in interval (0,1], you provided {guidance_scale_mid_damper}"
self.sdh = sdh
self.device = self.sdh.device
self.width = self.sdh.width
self.height = self.sdh.height
self.guidance_scale_mid_damper = guidance_scale_mid_damper
self.mid_compression_scaler = mid_compression_scaler
self.seed1 = 0
self.seed2 = 0
# Initialize vars
self.prompt1 = ""
self.prompt2 = ""
self.negative_prompt = ""
self.tree_latents = [None, None]
self.tree_fracts = None
self.idx_injection = []
self.tree_status = None
self.tree_final_imgs = []
self.list_nmb_branches_prev = []
self.list_injection_idx_prev = []
self.text_embedding1 = None
self.text_embedding2 = None
self.image1_lowres = None
self.image2_lowres = None
self.stop_diffusion = False
self.negative_prompt = None
self.num_inference_steps = self.sdh.num_inference_steps
self.noise_level_upscaling = 20
self.list_injection_idx = None
self.list_nmb_branches = None
# Mixing parameters
self.branch1_influence = 0.0
self.branch1_max_depth_influence = 0.65
self.branch1_influence_decay = 0.8
self.parental_influence = 0.0
self.parental_max_depth_influence = 1.0
self.parental_influence_decay = 1.0
self.branch1_insertion_completed = False
self.set_guidance_scale(guidance_scale)
self.init_mode()
self.multi_transition_img_first = None
self.multi_transition_img_last = None
self.dt_per_diff = 0
self.lpips = lpips.LPIPS(net='alex').cuda(self.device)
def init_mode(self):
r"""
Sets the operational mode. Currently supported are standard, inpainting and x4 upscaling.
"""
if isinstance(self.sdh.model, LatentUpscaleDiffusion):
self.mode = 'upscale'
elif isinstance(self.sdh.model, LatentInpaintDiffusion):
self.sdh.image_source = None
self.sdh.mask_image = None
self.mode = 'inpaint'
else:
self.mode = 'standard'
def set_guidance_scale(self, guidance_scale):
r"""
sets the guidance scale.
"""
self.guidance_scale_base = guidance_scale
self.guidance_scale = guidance_scale
self.sdh.guidance_scale = guidance_scale
def set_negative_prompt(self, negative_prompt):
r"""Set the negative prompt. Currenty only one negative prompt is supported
"""
self.negative_prompt = negative_prompt
self.sdh.set_negative_prompt(negative_prompt)
def set_guidance_mid_dampening(self, fract_mixing):
r"""
Tunes the guidance scale down as a linear function of fract_mixing,
towards 0.5 the minimum will be reached.
"""
mid_factor = 1 - np.abs(fract_mixing - 0.5)/ 0.5
max_guidance_reduction = self.guidance_scale_base * (1-self.guidance_scale_mid_damper) - 1
guidance_scale_effective = self.guidance_scale_base - max_guidance_reduction*mid_factor
self.guidance_scale = guidance_scale_effective
self.sdh.guidance_scale = guidance_scale_effective
def set_prompt1(self, prompt: str):
r"""
Sets the first prompt (for the first keyframe) including text embeddings.
Args:
prompt: str
ABC trending on artstation painted by Greg Rutkowski
"""
prompt = prompt.replace("_", " ")
self.prompt1 = prompt
self.text_embedding1 = self.get_text_embeddings(self.prompt1)
def set_prompt2(self, prompt: str):
r"""
Sets the second prompt (for the second keyframe) including text embeddings.
Args:
prompt: str
XYZ trending on artstation painted by Greg Rutkowski
"""
prompt = prompt.replace("_", " ")
self.prompt2 = prompt
self.text_embedding2 = self.get_text_embeddings(self.prompt2)
def set_image1(self, image: Image):
r"""
Sets the first image (keyframe), relevant for the upscaling model transitions.
Args:
image: Image
"""
self.image1_lowres = image
def set_image2(self, image: Image):
r"""
Sets the second image (keyframe), relevant for the upscaling model transitions.
Args:
image: Image
"""
self.image2_lowres = image
def load_branching_profile(
self,
quality: str = 'medium',
depth_strength: float = 0.65,
nmb_frames: int = 100,
nmb_mindist: int = 3,
):
r"""
Helper function to set up the branching structure automatically.
Args:
quality: str
Determines how many diffusion steps are being made + how many branches in total.
Tradeoff between quality and speed of computation.
Choose: lowest, low, medium, high, ultra
depth_strength: float = 0.65,
Determines how deep the first injection will happen.
Deeper injections will cause (unwanted) formation of new structures,
more shallow values will go into alpha-blendy land.
nmb_frames: int = 360,
total number of frames
nmb_mindist: int = 3
minimum distance in terms of diffusion iteratinos between subsequent injections
"""
if quality == 'lowest':
num_inference_steps = 12
nmb_max_branches = 5
elif quality == 'low':
num_inference_steps = 15
nmb_max_branches = nmb_frames//16
elif quality == 'medium':
num_inference_steps = 30
nmb_max_branches = nmb_frames//8
elif quality == 'high':
num_inference_steps = 60
nmb_max_branches = nmb_frames//4
elif quality == 'ultra':
num_inference_steps = 100
nmb_max_branches = nmb_frames//2
elif quality == 'upscaling_step1':
num_inference_steps = 40
nmb_max_branches = 12
elif quality == 'upscaling_step2':
num_inference_steps = 100
nmb_max_branches = 6
else:
raise ValueError(f"quality = '{quality}' not supported")
self.autosetup_branching(depth_strength, num_inference_steps, nmb_max_branches)
def autosetup_branching(
self,
depth_strength: float = 0.65,
num_inference_steps: int = 30,
nmb_max_branches: int = 20,
nmb_mindist: int = 3,
):
r"""
Automatically sets up the branching schedule.
Args:
depth_strength: float = 0.65,
Determines how deep the first injection will happen.
Deeper injections will cause (unwanted) formation of new structures,
more shallow values will go into alpha-blendy land.
num_inference_steps: int
Number of diffusion steps. Higher values will take more compute time.
nmb_max_branches (int): The number of diffusion-generated images
at the end of the inference.
nmb_mindist (int): The minimum number of diffusion steps
between two injections.
"""
idx_injection_first = int(np.round(num_inference_steps*depth_strength))
idx_injection_last = num_inference_steps - nmb_mindist
nmb_injections = int(np.floor(num_inference_steps/5)) - 1
list_injection_idx = [0]
list_injection_idx.extend(np.linspace(idx_injection_first, idx_injection_last, nmb_injections).astype(int))
list_nmb_branches = np.round(np.logspace(np.log10(2), np.log10(nmb_max_branches), nmb_injections+1)).astype(int)
# Cleanup. There should be at least nmb_mindist diffusion steps between each injection and list_nmb_branches increases
list_nmb_branches_clean = [list_nmb_branches[0]]
list_injection_idx_clean = [list_injection_idx[0]]
for idx_injection, nmb_branches in zip(list_injection_idx[1:], list_nmb_branches[1:]):
if idx_injection - list_injection_idx_clean[-1] >= nmb_mindist and nmb_branches > list_nmb_branches_clean[-1]:
list_nmb_branches_clean.append(nmb_branches)
list_injection_idx_clean.append(idx_injection)
list_nmb_branches_clean[-1] = nmb_max_branches
list_injection_idx_clean = [int(l) for l in list_injection_idx_clean]
list_nmb_branches_clean = [int(l) for l in list_nmb_branches_clean]
list_injection_idx = list_injection_idx_clean
list_nmb_branches = list_nmb_branches_clean
list_nmb_branches = list_nmb_branches
list_injection_idx = list_injection_idx
print(f"autosetup_branching: num_inference_steps: {num_inference_steps} list_nmb_branches: {list_nmb_branches} list_injection_idx: {list_injection_idx}")
self.setup_branching(num_inference_steps, list_nmb_branches=list_nmb_branches, list_injection_idx=list_injection_idx)
def setup_branching(self,
num_inference_steps: int =30,
list_nmb_branches: List[int] = None,
list_injection_strength: List[float] = None,
list_injection_idx: List[int] = None,
):
r"""
Sets the branching structure for making transitions.
num_inference_steps: int
Number of diffusion steps. Larger values will take more compute time.
list_nmb_branches: List[int]:
list of the number of branches for each injection.
list_injection_strength: List[float]:
list of injection strengths within interval [0, 1), values need to be increasing.
Alternatively you can direclty specify the list_injection_idx.
list_injection_idx: List[int]:
list of injection strengths within interval [0, 1), values need to be increasing.
Alternatively you can specify the list_injection_strength.
"""
# Assert
assert not((list_injection_strength is not None) and (list_injection_idx is not None)), "suppyl either list_injection_strength or list_injection_idx"
if list_injection_strength is None:
assert list_injection_idx is not None, "Supply either list_injection_idx or list_injection_strength"
assert isinstance(list_injection_idx[0], int) or isinstance(list_injection_idx[0], np.int) , "Need to supply integers for list_injection_idx"
if list_injection_idx is None:
assert list_injection_strength is not None, "Supply either list_injection_idx or list_injection_strength"
# Create the injection indexes
list_injection_idx = [int(round(x*num_inference_steps)) for x in list_injection_strength]
assert min(np.diff(list_injection_idx)) > 0, 'Injection idx needs to be increasing'
if min(np.diff(list_injection_idx)) < 2:
print("Warning: your injection spacing is very tight. consider increasing the distances")
assert isinstance(list_injection_strength[1], np.floating) or isinstance(list_injection_strength[1], float), "Need to supply floats for list_injection_strength"
# we are checking element 1 in list_injection_strength because "0" is an int... [0, 0.5]
assert max(list_injection_idx) < num_inference_steps, "Decrease the injection index or strength"
assert len(list_injection_idx) == len(list_nmb_branches), "Need to have same length"
assert max(list_injection_idx) < num_inference_steps,"Injection index cannot happen after last diffusion step! Decrease list_injection_idx or list_injection_strength[-1]"
# Auto inits
list_injection_idx_ext = list_injection_idx[:]
list_injection_idx_ext.append(num_inference_steps)
# If injection at depth 0 not specified, we will start out with 2 branches
if list_injection_idx_ext[0] != 0:
list_injection_idx_ext.insert(0,0)
list_nmb_branches.insert(0,2)
assert list_nmb_branches[0] == 2, "Need to start with 2 branches. set list_nmb_branches[0]=2"
# Set attributes
self.num_inference_steps = num_inference_steps
self.sdh.num_inference_steps = num_inference_steps
self.list_nmb_branches = list_nmb_branches
self.list_injection_idx = list_injection_idx
self.list_injection_idx_ext = list_injection_idx_ext
self.init_tree_struct()
def init_tree_struct(self):
r"""
Initializes tree variables for holding latents etc.
"""
self.tree_latents = []
self.tree_fracts = []
self.tree_status = []
self.tree_final_imgs_timing = [0]*self.list_nmb_branches[-1]
nmb_blocks_time = len(self.list_injection_idx_ext)-1
for t_block in range(nmb_blocks_time):
nmb_branches = self.list_nmb_branches[t_block]
list_fract_mixing_current = get_spacing(nmb_branches, self.mid_compression_scaler)
self.tree_fracts.append(list_fract_mixing_current)
self.tree_latents.append([None]*nmb_branches)
self.tree_status.append(['untouched']*nmb_branches)
def run_transition(
self,
recycle_img1: Optional[bool] = False,
recycle_img2: Optional[bool] = False,
num_inference_steps: Optional[int] = 30,
depth_strength: Optional[float] = 0.3,
t_compute_max_allowed: Optional[float] = None,
nmb_max_branches: Optional[int] = None,
fixed_seeds: Optional[List[int]] = None,
):
r"""
Function for computing transitions.
Returns a list of transition images using spherical latent blending.
Args:
recycle_img1: Optional[bool]:
Don't recompute the latents for the first keyframe (purely prompt1). Saves compute.
recycle_img2: Optional[bool]:
Don't recompute the latents for the second keyframe (purely prompt2). Saves compute.
num_inference_steps:
Number of diffusion steps. Higher values will take more compute time.
depth_strength:
Determines how deep the first injection will happen.
Deeper injections will cause (unwanted) formation of new structures,
more shallow values will go into alpha-blendy land.
t_compute_max_allowed:
Either provide t_compute_max_allowed or nmb_max_branches.
The maximum time allowed for computation. Higher values give better results but take longer.
nmb_max_branches: int
Either provide t_compute_max_allowed or nmb_max_branches. The maximum number of branches to be computed. Higher values give better
results. Use this if you want to have controllable results independent
of your computer.
fixed_seeds: Optional[List[int)]:
You can supply two seeds that are used for the first and second keyframe (prompt1 and prompt2).
Otherwise random seeds will be taken.
"""
# Sanity checks first
assert self.text_embedding1 is not None, 'Set the first text embedding with .set_prompt1(...) before'
assert self.text_embedding2 is not None, 'Set the second text embedding with .set_prompt2(...) before'
# Random seeds
if fixed_seeds is not None:
if fixed_seeds == 'randomize':
fixed_seeds = list(np.random.randint(0, 1000000, 2).astype(np.int32))
else:
assert len(fixed_seeds)==2, "Supply a list with len = 2"
self.seed1 = fixed_seeds[0]
self.seed2 = fixed_seeds[1]
# Ensure correct num_inference_steps in holder
self.num_inference_steps = num_inference_steps
self.sdh.num_inference_steps = num_inference_steps
# Compute / Recycle first image
if not recycle_img1 or len(self.tree_latents[0]) != self.num_inference_steps:
list_latents1 = self.compute_latents1()
else:
list_latents1 = self.tree_latents[0]
# Compute / Recycle first image
if not recycle_img2 or len(self.tree_latents[-1]) != self.num_inference_steps:
list_latents2 = self.compute_latents2()
else:
list_latents2 = self.tree_latents[-1]
# Reset the tree, injecting the edge latents1/2 we just generated/recycled
self.tree_latents = [list_latents1, list_latents2]
self.tree_fracts = [0.0, 1.0]
self.tree_final_imgs = [self.sdh.latent2image((self.tree_latents[0][-1])), self.sdh.latent2image((self.tree_latents[-1][-1]))]
self.tree_idx_injection = [0, 0]
# Set up branching scheme (dependent on provided compute time)
list_idx_injection, list_nmb_stems = self.get_time_based_branching(depth_strength, t_compute_max_allowed, nmb_max_branches)
# Run iteratively, starting with the longest trajectory.
# Always inserting new branches where they are needed most according to image similarity
for s_idx in tqdm(range(len(list_idx_injection))):
nmb_stems = list_nmb_stems[s_idx]
idx_injection = list_idx_injection[s_idx]
for i in range(nmb_stems):
fract_mixing, b_parent1, b_parent2 = self.get_mixing_parameters(idx_injection)
self.set_guidance_mid_dampening(fract_mixing)
list_latents = self.compute_latents_mix(fract_mixing, b_parent1, b_parent2, idx_injection)
self.insert_into_tree(fract_mixing, idx_injection, list_latents)
# print(f"fract_mixing: {fract_mixing} idx_injection {idx_injection}")
return self.tree_final_imgs
def get_time_based_branching(self, depth_strength, t_compute_max_allowed=None, nmb_max_branches=None):
r"""
Sets up the branching scheme dependent on the time that is granted for compute.
The scheme uses an estimation derived from the first image's computation speed.
Either provide t_compute_max_allowed or nmb_max_branches
Args:
depth_strength:
Determines how deep the first injection will happen.
Deeper injections will cause (unwanted) formation of new structures,
more shallow values will go into alpha-blendy land.
t_compute_max_allowed: float
The maximum time allowed for computation. Higher values give better results
but take longer. Use this if you want to fix your waiting time for the results.
nmb_max_branches: int
The maximum number of branches to be computed. Higher values give better
results. Use this if you want to have controllable results independent
of your computer.
"""
idx_injection_base = int(round(self.num_inference_steps*depth_strength))
list_idx_injection = np.arange(idx_injection_base, self.num_inference_steps-1, 3)
list_nmb_stems = np.ones(len(list_idx_injection), dtype=np.int32)
t_compute = 0
if nmb_max_branches is None:
assert t_compute_max_allowed is not None, "Either specify t_compute_max_allowed or nmb_max_branches"
stop_criterion = "t_compute_max_allowed"
elif t_compute_max_allowed is None:
assert nmb_max_branches is not None, "Either specify t_compute_max_allowed or nmb_max_branches"
stop_criterion = "nmb_max_branches"
nmb_max_branches -= 2 # discounting the outer frames
else:
raise ValueError("Either specify t_compute_max_allowed or nmb_max_branches")
stop_criterion_reached = False
is_first_iteration = True
while not stop_criterion_reached:
list_compute_steps = self.num_inference_steps - list_idx_injection
list_compute_steps *= list_nmb_stems
t_compute = np.sum(list_compute_steps) * self.dt_per_diff + 0.15*np.sum(list_nmb_stems)
increase_done = False
for s_idx in range(len(list_nmb_stems)-1):
if list_nmb_stems[s_idx+1] / list_nmb_stems[s_idx] >= 2:
list_nmb_stems[s_idx] += 1
increase_done = True
break
if not increase_done:
list_nmb_stems[-1] += 1
if stop_criterion == "t_compute_max_allowed" and t_compute > t_compute_max_allowed:
stop_criterion_reached = True
# FIXME: also undersample here... but how... maybe drop them iteratively?
elif stop_criterion == "nmb_max_branches" and np.sum(list_nmb_stems) >= nmb_max_branches:
stop_criterion_reached = True
if is_first_iteration:
# Need to undersample.
list_idx_injection = np.linspace(list_idx_injection[0], list_idx_injection[-1], nmb_max_branches).astype(np.int32)
list_nmb_stems = np.ones(len(list_idx_injection), dtype=np.int32)
else:
is_first_iteration = False
# print(f"t_compute {t_compute} list_nmb_stems {list_nmb_stems}")
return list_idx_injection, list_nmb_stems
def get_mixing_parameters(self, idx_injection):
r"""
Computes which parental latents should be mixed together to achieve a smooth blend.
As metric, we are using lpips image similarity. The insertion takes place
where the metric is maximal.
Args:
idx_injection: int
the index in terms of diffusion steps, where the next insertion will start.
"""
# get_lpips_similarity
similarities = []
for i in range(len(self.tree_final_imgs)-1):
similarities.append(self.get_lpips_similarity(self.tree_final_imgs[i], self.tree_final_imgs[i+1]))
b_closest1 = np.argmax(similarities)
b_closest2 = b_closest1+1
fract_closest1 = self.tree_fracts[b_closest1]
fract_closest2 = self.tree_fracts[b_closest2]
# Ensure that the parents are indeed older!
b_parent1 = b_closest1
while True:
if self.tree_idx_injection[b_parent1] < idx_injection:
break
else:
b_parent1 -= 1
b_parent2 = b_closest2
while True:
if self.tree_idx_injection[b_parent2] < idx_injection:
break
else:
b_parent2 += 1
# print(f"\n\nb_closest: {b_closest1} {b_closest2} fract_closest1 {fract_closest1} fract_closest2 {fract_closest2}")
# print(f"b_parent: {b_parent1} {b_parent2}")
# print(f"similarities {similarities}")
# print(f"idx_injection {idx_injection} tree_idx_injection {self.tree_idx_injection}")
fract_mixing = (fract_closest1 + fract_closest2) /2
return fract_mixing, b_parent1, b_parent2
def insert_into_tree(self, fract_mixing, idx_injection, list_latents):
r"""
Inserts all necessary parameters into the trajectory tree.
Args:
fract_mixing: float
the fraction along the transition axis [0, 1]
idx_injection: int
the index in terms of diffusion steps, where the next insertion will start.
list_latents: list
list of the latents to be inserted
"""
b_parent1, b_parent2 = get_closest_idx(fract_mixing, self.tree_fracts)
self.tree_latents.insert(b_parent1+1, list_latents)
self.tree_final_imgs.insert(b_parent1+1, self.sdh.latent2image(list_latents[-1]))
self.tree_fracts.insert(b_parent1+1, fract_mixing)
self.tree_idx_injection.insert(b_parent1+1, idx_injection)
def compute_latents_mix(self, fract_mixing, b_parent1, b_parent2, idx_injection):
r"""
Runs a diffusion trajectory, using the latents from the respective parents
Args:
fract_mixing: float
the fraction along the transition axis [0, 1]
b_parent1: int
index of parent1 to be used
b_parent2: int
index of parent2 to be used
idx_injection: int
the index in terms of diffusion steps, where the next insertion will start.
"""
list_conditionings = self.get_mixed_conditioning(fract_mixing)
fract_mixing_parental = (fract_mixing - self.tree_fracts[b_parent1]) / (self.tree_fracts[b_parent2] - self.tree_fracts[b_parent1])
# idx_reversed = self.num_inference_steps - idx_injection
list_latents_parental_mix = []
for i in range(self.num_inference_steps):
latents_p1 = self.tree_latents[b_parent1][i]
latents_p2 = self.tree_latents[b_parent2][i]
if latents_p1 is None or latents_p2 is None:
latents_parental = None
else:
latents_parental = interpolate_spherical(latents_p1, latents_p2, fract_mixing_parental)
list_latents_parental_mix.append(latents_parental)
idx_mixing_stop = int(round(self.num_inference_steps*self.parental_max_depth_influence))
mixing_coeffs = idx_injection*[self.parental_influence]
nmb_mixing = idx_mixing_stop - idx_injection
if nmb_mixing > 0:
mixing_coeffs.extend(list(np.linspace(self.parental_influence, self.parental_influence*self.parental_influence_decay, nmb_mixing)))
mixing_coeffs.extend((self.num_inference_steps-len(mixing_coeffs))*[0])
latents_start = list_latents_parental_mix[idx_injection-1]
list_latents = self.run_diffusion(
list_conditionings,
latents_start = latents_start,
idx_start = idx_injection,
list_latents_mixing = list_latents_parental_mix,
mixing_coeffs = mixing_coeffs
)
return list_latents
def compute_latents1(self, return_image=False):
r"""
Runs a diffusion trajectory for the first image
Args:
return_image: bool
whether to return an image or the list of latents
"""
print("starting compute_latents1")
list_conditionings = self.get_mixed_conditioning(0)
t0 = time.time()
latents_start = self.get_noise(self.seed1)
list_latents1 = self.run_diffusion(
list_conditionings,
latents_start = latents_start,
idx_start = 0
)
t1 = time.time()
self.dt_per_diff = (t1-t0) / self.num_inference_steps
self.tree_latents[0] = list_latents1
if return_image:
return self.sdh.latent2image(list_latents1[-1])
else:
return list_latents1
def compute_latents2(self, return_image=False):
r"""
Runs a diffusion trajectory for the last image, which may be affected by the first image's trajectory.
Args:
return_image: bool
whether to return an image or the list of latents
"""
print("starting compute_latents2")
list_conditionings = self.get_mixed_conditioning(1)
latents_start = self.get_noise(self.seed2)
# Influence from branch1
if self.branch1_influence > 0.0:
# Set up the mixing_coeffs
idx_mixing_stop = int(round(self.num_inference_steps*self.branch1_max_depth_influence))
mixing_coeffs = list(np.linspace(self.branch1_influence, self.branch1_influence*self.branch1_influence_decay, idx_mixing_stop))
mixing_coeffs.extend((self.num_inference_steps-idx_mixing_stop)*[0])
list_latents_mixing = self.tree_latents[0]
list_latents2 = self.run_diffusion(
list_conditionings,
latents_start = latents_start,
idx_start = 0,
list_latents_mixing = list_latents_mixing,
mixing_coeffs = mixing_coeffs
)
else:
list_latents2 = self.run_diffusion(list_conditionings, latents_start)
self.tree_latents[-1] = list_latents2
if return_image:
return self.sdh.latent2image(list_latents2[-1])
else:
return list_latents2
def get_noise(self, seed):
r"""
Helper function to get noise given seed.
Args:
seed: int
"""
generator = torch.Generator(device=self.sdh.device).manual_seed(int(seed))
if self.mode == 'standard':
shape_latents = [self.sdh.C, self.sdh.height // self.sdh.f, self.sdh.width // self.sdh.f]
C, H, W = shape_latents
elif self.mode == 'upscale':
w = self.image1_lowres.size[0]
h = self.image1_lowres.size[1]
shape_latents = [self.sdh.model.channels, h, w]
C, H, W = shape_latents
return torch.randn((1, C, H, W), generator=generator, device=self.sdh.device)
def run_multi_transition(
self,
fp_movie: str,
list_prompts: List[str],
list_seeds: List[int] = None,
fps: float = 24,
duration_single_trans: float = 15,
):
r"""
Runs multiple transitions and stitches them together. You can supply the seeds for each prompt.
Args:
fp_movie: file path for movie saving
list_prompts: List[float]:
list of the prompts. There will be a transition starting from the first to the last.
list_seeds: List[int] = None:
Random Seeds for each prompt.
fps: float:
frames per second
duration_single_trans: float:
The duration of a single transition prompt[i] -> prompt[i+1].
The duration of your movie will be duration_single_trans * len(list_prompts)
"""
if list_seeds is None:
list_seeds = list(np.random.randint(0, 10e10, len(list_prompts)))
assert len(list_prompts) == len(list_seeds), "Supply the same number of prompts and seeds"
ms = MovieSaver(fp_movie, fps=fps)
for i in range(len(list_prompts)-1):
print(f"Starting movie segment {i+1}/{len(list_prompts)-1}")
if i==0:
self.set_prompt1(list_prompts[i])
self.set_prompt2(list_prompts[i+1])
recycle_img1 = False
else:
self.swap_forward()
self.set_prompt2(list_prompts[i+1])
recycle_img1 = True
local_seeds = [list_seeds[i], list_seeds[i+1]]
list_imgs = self.run_transition(recycle_img1=recycle_img1, fixed_seeds=local_seeds)
list_imgs_interp = add_frames_linear_interp(list_imgs, fps, duration_single_trans)
if i==0:
self.multi_transition_img_first = list_imgs[0]
# Save movie frame
for img in list_imgs_interp:
ms.write_frame(img)
ms.finalize()
self.multi_transition_img_last = list_imgs[-1]
print("run_multi_transition: All completed.")
@torch.no_grad()
def run_diffusion(
self,
list_conditionings,
latents_start: torch.FloatTensor = None,
idx_start: int = 0,
list_latents_mixing = None,
mixing_coeffs = 0.0,
return_image: Optional[bool] = False
):
r"""
Wrapper function for diffusion runners.
Depending on the mode, the correct one will be executed.
Args:
list_conditionings: List of all conditionings for the diffusion model.
latents_start: torch.FloatTensor
Latents that are used for injection
idx_start: int
Index of the diffusion process start and where the latents_for_injection are injected
list_latents_mixing: torch.FloatTensor
List of latents (latent trajectories) that are used for mixing
mixing_coeffs: float or list
Coefficients, how strong each element of list_latents_mixing will be mixed in.
return_image: Optional[bool]
Optionally return image directly
"""
# Ensure correct num_inference_steps in Holder
self.sdh.num_inference_steps = self.num_inference_steps
assert type(list_conditionings) is list, "list_conditionings need to be a list"
if self.mode == 'standard':
text_embeddings = list_conditionings[0]
return self.sdh.run_diffusion_standard(
text_embeddings = text_embeddings,
latents_start = latents_start,
idx_start = idx_start,
list_latents_mixing = list_latents_mixing,
mixing_coeffs = mixing_coeffs,
return_image = return_image,
)
elif self.mode == 'upscale':
cond = list_conditionings[0]
uc_full = list_conditionings[1]
return self.sdh.run_diffusion_upscaling(
cond,
uc_full,
latents_start=latents_start,
idx_start=idx_start,
list_latents_mixing = list_latents_mixing,
mixing_coeffs = mixing_coeffs,
return_image=return_image)
# elif self.mode == 'inpaint':
# text_embeddings = list_conditionings[0]
# assert self.sdh.image_source is not None, "image_source is None. Please run init_inpainting first."
# assert self.sdh.mask_image is not None, "image_source is None. Please run init_inpainting first."
# return self.sdh.run_diffusion_inpaint(text_embeddings, latents_for_injection=latents_for_injection, idx_start=idx_start, idx_stop=idx_stop, return_image=return_image)
# FIXME. new transition engine
def run_upscaling_step1(
self,
dp_img: str,
depth_strength: float = 0.65,
num_inference_steps: int = 30,
nmb_max_branches: int = 10,
fixed_seeds: Optional[List[int]] = None,
):
r"""
Initializes inpainting with a source and maks image.
Args:
dp_img:
Path to directory where the low-res images and yaml will be saved to.
This directory cannot exist and will be created here.
FIXME
quality: str
Determines how many diffusion steps are being made + how many branches in total.
We suggest to leave it with upscaling_step1 which has 10 final branches.
depth_strength: float = 0.65,
Determines how deep the first injection will happen.
Deeper injections will cause (unwanted) formation of new structures,
more shallow values will go into alpha-blendy land.
fixed_seeds: Optional[List[int)]:
You can supply two seeds that are used for the first and second keyframe (prompt1 and prompt2).
Otherwise random seeds will be taken.
"""
assert self.text_embedding1 is not None, 'run set_prompt1(yourprompt1) first'
assert self.text_embedding2 is not None, 'run set_prompt2(yourprompt2) first'
assert not os.path.isdir(dp_img), f"directory already exists: {dp_img}"
if fixed_seeds is None:
fixed_seeds = list(np.random.randint(0, 1000000, 2).astype(np.int32))
# Run latent blending
imgs_transition = self.run_transition(fixed_seeds=fixed_seeds)
self.write_imgs_transition(dp_img, imgs_transition)
print(f"run_upscaling_step1: completed! {dp_img}")
def run_upscaling_step2(
self,
dp_img: str,
depth_strength: float = 0.65,
num_inference_steps: int = 100,
nmb_max_branches_highres: int = 5,
nmb_max_branches_lowres: int = 6,
fixed_seeds: Optional[List[int]] = None,
):
fp_yml = os.path.join(dp_img, "lowres.yaml")
fp_movie = os.path.join(dp_img, "movie_highres.mp4")
fps = 24
ms = MovieSaver(fp_movie, fps=fps)
assert os.path.isfile(fp_yml), "lowres.yaml does not exist. did you forget run_upscaling_step1?"
dict_stuff = yml_load(fp_yml)
# load lowres images
nmb_images_lowres = dict_stuff['nmb_images']
prompt1 = dict_stuff['prompt1']
prompt2 = dict_stuff['prompt2']
idx_img_lowres = np.round(np.linspace(0, nmb_images_lowres-1, nmb_max_branches_lowres)).astype(np.int32)
imgs_lowres = []
for i in idx_img_lowres:
fp_img_lowres = os.path.join(dp_img, f"lowres_img_{str(i).zfill(4)}.jpg")
assert os.path.isfile(fp_img_lowres), f"{fp_img_lowres} does not exist. did you forget run_upscaling_step1?"
imgs_lowres.append(Image.open(fp_img_lowres))
# set up upscaling
text_embeddingA = self.sdh.get_text_embedding(prompt1)
text_embeddingB = self.sdh.get_text_embedding(prompt2)
#FIXME: have a total length for the whole video section
duration_single_trans = 3
list_fract_mixing = np.linspace(0, 1, nmb_max_branches_lowres-1)
for i in range(nmb_max_branches_lowres-1):
print(f"Starting movie segment {i+1}/{nmb_max_branches_lowres-1}")
self.text_embedding1 = interpolate_linear(text_embeddingA, text_embeddingB, list_fract_mixing[i])
self.text_embedding2 = interpolate_linear(text_embeddingA, text_embeddingB, 1-list_fract_mixing[i])
if i==0:
recycle_img1 = False
else:
self.swap_forward()
recycle_img1 = True
self.set_image1(imgs_lowres[i])
self.set_image2(imgs_lowres[i+1])
list_imgs = self.run_transition(
recycle_img1 = recycle_img1,
recycle_img2 = False,
num_inference_steps = num_inference_steps,
depth_strength = depth_strength,
nmb_max_branches = nmb_max_branches_highres,
)
list_imgs_interp = add_frames_linear_interp(list_imgs, fps, duration_single_trans)
# Save movie frame
for img in list_imgs_interp:
ms.write_frame(img)
ms.finalize()
def init_inpainting(
self,
image_source: Union[Image.Image, np.ndarray] = None,
mask_image: Union[Image.Image, np.ndarray] = None,
init_empty: Optional[bool] = False,
):
r"""
Initializes inpainting with a source and maks image.
Args:
image_source: Union[Image.Image, np.ndarray]
Source image onto which the mask will be applied.
mask_image: Union[Image.Image, np.ndarray]
Mask image, value = 0 will stay untouched, value = 255 subjet to diffusion
init_empty: Optional[bool]:
Initialize inpainting with an empty image and mask, effectively disabling inpainting,
useful for generating a first image for transitions using diffusion.
"""
self.init_mode()
self.sdh.init_inpainting(image_source, mask_image, init_empty)
@torch.no_grad()
def get_mixed_conditioning(self, fract_mixing):
if self.mode == 'standard':
text_embeddings_mix = interpolate_linear(self.text_embedding1, self.text_embedding2, fract_mixing)
list_conditionings = [text_embeddings_mix]
elif self.mode == 'inpaint':
text_embeddings_mix = interpolate_linear(self.text_embedding1, self.text_embedding2, fract_mixing)
list_conditionings = [text_embeddings_mix]
elif self.mode == 'upscale':
text_embeddings_mix = interpolate_linear(self.text_embedding1, self.text_embedding2, fract_mixing)
cond, uc_full = self.sdh.get_cond_upscaling(self.image1_lowres, text_embeddings_mix, self.noise_level_upscaling)
condB, uc_fullB = self.sdh.get_cond_upscaling(self.image2_lowres, text_embeddings_mix, self.noise_level_upscaling)
cond['c_concat'][0] = interpolate_spherical(cond['c_concat'][0], condB['c_concat'][0], fract_mixing)
uc_full['c_concat'][0] = interpolate_spherical(uc_full['c_concat'][0], uc_fullB['c_concat'][0], fract_mixing)
list_conditionings = [cond, uc_full]
else:
raise ValueError(f"mix_conditioning: unknown mode {self.mode}")
return list_conditionings
@torch.no_grad()
def get_text_embeddings(
self,
prompt: str
):
r"""
Computes the text embeddings provided a string with a prompts.
Adapted from stable diffusion repo
Args:
prompt: str
ABC trending on artstation painted by Old Greg.
"""
return self.sdh.get_text_embedding(prompt)
def write_imgs_transition(self, dp_img):
r"""
Writes the transition images into the folder dp_img.
"""
imgs_transition = self.tree_final_imgs
os.makedirs(dp_img, exist_ok=True)
for i, img in enumerate(imgs_transition):
img_leaf = Image.fromarray(img)
img_leaf.save(os.path.join(dp_img, f"lowres_img_{str(i).zfill(4)}.jpg"))
fp_yml = os.path.join(dp_img, "lowres.yaml")
self.save_statedict(fp_yml)
def save_statedict(self, fp_yml):
# Dump everything relevant into yaml
imgs_transition = self.tree_final_imgs
state_dict = self.get_state_dict()
state_dict['nmb_images'] = len(imgs_transition)
yml_save(fp_yml, state_dict)
def get_state_dict(self):
state_dict = {}
grab_vars = ['prompt1', 'prompt2', 'seed1', 'seed2', 'height', 'width',
'num_inference_steps', 'depth_strength', 'guidance_scale',
'guidance_scale_mid_damper', 'mid_compression_scaler', 'negative_prompt',
'branch1_influence', 'branch1_max_depth_influence', 'branch1_influence_decay'
'parental_influence', 'parental_max_depth_influence', 'parental_influence_decay']
for v in grab_vars:
if hasattr(self, v):
if v == 'seed1' or v == 'seed2':
state_dict[v] = int(getattr(self, v))
elif v == 'guidance_scale':
state_dict[v] = float(getattr(self, v))
else:
try:
state_dict[v] = getattr(self, v)
except Exception as e:
pass
return state_dict
def randomize_seed(self):
r"""
Set a random seed for a fresh start.
"""
seed = np.random.randint(999999999)
self.set_seed(seed)
def set_seed(self, seed: int):
r"""
Set a the seed for a fresh start.
"""
self.seed = seed
self.sdh.seed = seed
def set_width(self, width):
r"""
Set the width of the resulting image.
"""
assert np.mod(width, 64) == 0, "set_width: value needs to be divisible by 64"
self.width = width
self.sdh.width = width
def set_height(self, height):
r"""
Set the height of the resulting image.
"""
assert np.mod(height, 64) == 0, "set_height: value needs to be divisible by 64"
self.height = height
self.sdh.height = height
def inject_latents(self, list_latents, inject_img1=True, inject_img2=False):
r"""
Injects list of latents into tree structure.
"""
assert inject_img1 != inject_img2, "Either inject into img1 or img2"
assert self.tree_latents is not None, "You need to setup the branching beforehand, run autosetup_branching() or setup_branching() before"
for t_block in range(len(self.list_injection_idx)):
if inject_img1:
self.tree_latents[t_block][0] = list_latents[self.list_injection_idx_ext[t_block]:self.list_injection_idx_ext[t_block+1]]
if inject_img2:
self.tree_latents[t_block][-1] = list_latents[self.list_injection_idx_ext[t_block]:self.list_injection_idx_ext[t_block+1]]
def swap_forward(self):
r"""
Moves over keyframe two -> keyframe one. Useful for making a sequence of transitions
as in run_multi_transition()
"""
# Move over all latents
self.tree_latents[0] = self.tree_latents[-1]
# Move over prompts and text embeddings
self.prompt1 = self.prompt2
self.text_embedding1 = self.text_embedding2
# Final cleanup for extra sanity
self.tree_final_imgs = []
def get_lpips_similarity(self, imgA, imgB):
r"""
Computes the image similarity between two images imgA and imgB.
Used to determine the optimal point of insertion to create smooth transitions.
High values indicate low similarity.
"""
tensorA = torch.from_numpy(imgA).float().cuda(self.device)
tensorA = 2*tensorA/255.0 - 1
tensorA = tensorA.permute([2,0,1]).unsqueeze(0)
tensorB = torch.from_numpy(imgB).float().cuda(self.device)
tensorB = 2*tensorB/255.0 - 1
tensorB = tensorB.permute([2,0,1]).unsqueeze(0)
lploss = self.lpips(tensorA, tensorB)
lploss = float(lploss[0][0][0][0])
return lploss
# Auxiliary functions
def get_closest_idx(
fract_mixing: float,
list_fract_mixing_prev: List[float],
):
r"""
Helper function to retrieve the parents for any given mixing.
Example: fract_mixing = 0.4 and list_fract_mixing_prev = [0, 0.3, 0.6, 1.0]
Will return the two closest values from list_fract_mixing_prev, i.e. [1, 2]
"""
pdist = fract_mixing - np.asarray(list_fract_mixing_prev)
pdist_pos = pdist.copy()
pdist_pos[pdist_pos<0] = np.inf
b_parent1 = np.argmin(pdist_pos)
pdist_neg = -pdist.copy()
pdist_neg[pdist_neg<=0] = np.inf
b_parent2= np.argmin(pdist_neg)
if b_parent1 > b_parent2:
tmp = b_parent2
b_parent2 = b_parent1
b_parent1 = tmp
return b_parent1, b_parent2
@torch.no_grad()
def interpolate_spherical(p0, p1, fract_mixing: float):
r"""
Helper function to correctly mix two random variables using spherical interpolation.
See https://en.wikipedia.org/wiki/Slerp
The function will always cast up to float64 for sake of extra 4.
Args:
p0:
First tensor for interpolation
p1:
Second tensor for interpolation
fract_mixing: float
Mixing coefficient of interval [0, 1].
0 will return in p0
1 will return in p1
0.x will return a mix between both preserving angular velocity.
"""
if p0.dtype == torch.float16:
recast_to = 'fp16'
else:
recast_to = 'fp32'
p0 = p0.double()
p1 = p1.double()
norm = torch.linalg.norm(p0) * torch.linalg.norm(p1)
epsilon = 1e-7
dot = torch.sum(p0 * p1) / norm
dot = dot.clamp(-1+epsilon, 1-epsilon)
theta_0 = torch.arccos(dot)
sin_theta_0 = torch.sin(theta_0)
theta_t = theta_0 * fract_mixing
s0 = torch.sin(theta_0 - theta_t) / sin_theta_0
s1 = torch.sin(theta_t) / sin_theta_0
interp = p0*s0 + p1*s1
if recast_to == 'fp16':
interp = interp.half()
elif recast_to == 'fp32':
interp = interp.float()
return interp
def interpolate_linear(p0, p1, fract_mixing):
r"""
Helper function to mix two variables using standard linear interpolation.
Args:
p0:
First tensor / np.ndarray for interpolation
p1:
Second tensor / np.ndarray for interpolation
fract_mixing: float
Mixing coefficient of interval [0, 1].
0 will return in p0
1 will return in p1
0.x will return a linear mix between both.
"""
reconvert_uint8 = False
if type(p0) is np.ndarray and p0.dtype == 'uint8':
reconvert_uint8 = True
p0 = p0.astype(np.float64)
if type(p1) is np.ndarray and p1.dtype == 'uint8':
reconvert_uint8 = True
p1 = p1.astype(np.float64)
interp = (1-fract_mixing) * p0 + fract_mixing * p1
if reconvert_uint8:
interp = np.clip(interp, 0, 255).astype(np.uint8)
return interp
def add_frames_linear_interp(
list_imgs: List[np.ndarray],
fps_target: Union[float, int] = None,
duration_target: Union[float, int] = None,
nmb_frames_target: int=None,
):
r"""
Helper function to cheaply increase the number of frames given a list of images,
by virtue of standard linear interpolation.
The number of inserted frames will be automatically adjusted so that the total of number
of frames can be fixed precisely, using a random shuffling technique.
The function allows 1:1 comparisons between transitions as videos.
Args:
list_imgs: List[np.ndarray)
List of images, between each image new frames will be inserted via linear interpolation.
fps_target:
OptionA: specify here the desired frames per second.
duration_target:
OptionA: specify here the desired duration of the transition in seconds.
nmb_frames_target:
OptionB: directly fix the total number of frames of the output.
"""
# Sanity
if nmb_frames_target is not None and fps_target is not None:
raise ValueError("You cannot specify both fps_target and nmb_frames_target")
if fps_target is None:
assert nmb_frames_target is not None, "Either specify nmb_frames_target or nmb_frames_target"
if nmb_frames_target is None:
assert fps_target is not None, "Either specify duration_target and fps_target OR nmb_frames_target"
assert duration_target is not None, "Either specify duration_target and fps_target OR nmb_frames_target"
nmb_frames_target = fps_target*duration_target
# Get number of frames that are missing
nmb_frames_diff = len(list_imgs)-1
nmb_frames_missing = nmb_frames_target - nmb_frames_diff - 1
if nmb_frames_missing < 1:
return list_imgs
list_imgs_float = [img.astype(np.float32) for img in list_imgs]
# Distribute missing frames, append nmb_frames_to_insert(i) frames for each frame
mean_nmb_frames_insert = nmb_frames_missing/nmb_frames_diff
constfact = np.floor(mean_nmb_frames_insert)
remainder_x = 1-(mean_nmb_frames_insert - constfact)
nmb_iter = 0
while True:
nmb_frames_to_insert = np.random.rand(nmb_frames_diff)
nmb_frames_to_insert[nmb_frames_to_insert<=remainder_x] = 0
nmb_frames_to_insert[nmb_frames_to_insert>remainder_x] = 1
nmb_frames_to_insert += constfact
if np.sum(nmb_frames_to_insert) == nmb_frames_missing:
break
nmb_iter += 1
if nmb_iter > 100000:
print("add_frames_linear_interp: issue with inserting the right number of frames")
break
nmb_frames_to_insert = nmb_frames_to_insert.astype(np.int32)
list_imgs_interp = []
for i in range(len(list_imgs_float)-1):#, desc="STAGE linear interp"):
img0 = list_imgs_float[i]
img1 = list_imgs_float[i+1]
list_imgs_interp.append(img0.astype(np.uint8))
list_fracts_linblend = np.linspace(0, 1, nmb_frames_to_insert[i]+2)[1:-1]
for fract_linblend in list_fracts_linblend:
img_blend = interpolate_linear(img0, img1, fract_linblend).astype(np.uint8)
list_imgs_interp.append(img_blend.astype(np.uint8))
if i==len(list_imgs_float)-2:
list_imgs_interp.append(img1.astype(np.uint8))
return list_imgs_interp
def get_spacing(nmb_points: int, scaling: float):
"""
Helper function for getting nonlinear spacing between 0 and 1, symmetric around 0.5
Args:
nmb_points: int
Number of points between [0, 1]
scaling: float
Higher values will return higher sampling density around 0.5
"""
if scaling < 1.7:
return np.linspace(0, 1, nmb_points)
nmb_points_per_side = nmb_points//2 + 1
if np.mod(nmb_points, 2) != 0: # uneven case
left_side = np.abs(np.linspace(1, 0, nmb_points_per_side)**scaling / 2 - 0.5)
right_side = 1-left_side[::-1][1:]
else:
left_side = np.abs(np.linspace(1, 0, nmb_points_per_side)**scaling / 2 - 0.5)[0:-1]
right_side = 1-left_side[::-1]
all_fracts = np.hstack([left_side, right_side])
return all_fracts
def get_time(resolution=None):
"""
Helper function returning an nicely formatted time string, e.g. 221117_1620
"""
if resolution==None:
resolution="second"
if resolution == "day":
t = time.strftime('%y%m%d', time.localtime())
elif resolution == "minute":
t = time.strftime('%y%m%d_%H%M', time.localtime())
elif resolution == "second":
t = time.strftime('%y%m%d_%H%M%S', time.localtime())
elif resolution == "millisecond":
t = time.strftime('%y%m%d_%H%M%S', time.localtime())
t += "_"
t += str("{:03d}".format(int(int(datetime.utcnow().strftime('%f'))/1000)))
else:
raise ValueError("bad resolution provided: %s" %resolution)
return t
def compare_dicts(a, b):
"""
Compares two dictionaries a and b and returns a dictionary c, with all
keys,values that have shared keys in a and b but same values in a and b.
The values of a and b are stacked together in the output.
Example:
a = {}; a['bobo'] = 4
b = {}; b['bobo'] = 5
c = dict_compare(a,b)
c = {"bobo",[4,5]}
"""
c = {}
for key in a.keys():
if key in b.keys():
val_a = a[key]
val_b = b[key]
if val_a != val_b:
c[key] = [val_a, val_b]
return c
def yml_load(fp_yml, print_fields=False):
"""
Helper function for loading yaml files
"""
with open(fp_yml) as f:
data = yaml.load(f, Loader=yaml.loader.SafeLoader)
dict_data = dict(data)
print("load: loaded {}".format(fp_yml))
return dict_data
def yml_save(fp_yml, dict_stuff):
"""
Helper function for saving yaml files
"""
with open(fp_yml, 'w') as f:
data = yaml.dump(dict_stuff, f, sort_keys=False, default_flow_style=False)
print("yml_save: saved {}".format(fp_yml))
#%% le main
if __name__ == "__main__":
# xxxx
#%% First let us spawn a stable diffusion holder
device = "cuda"
fp_ckpt = "../stable_diffusion_models/ckpt/v2-1_512-ema-pruned.ckpt"
sdh = StableDiffusionHolder(fp_ckpt)
xxx
#%% Next let's set up all parameters
depth_strength = 0.3 # Specifies how deep (in terms of diffusion iterations the first branching happens)
fixed_seeds = [697164, 430214]
prompt1 = "photo of a desert and a sky"
prompt2 = "photo of a tree with a lake"
duration_transition = 12 # In seconds
fps = 30
# Spawn latent blending
self = LatentBlending(sdh)
self.set_prompt1(prompt1)
self.set_prompt2(prompt2)
# Run latent blending
self.branch1_influence = 0.3
self.branch1_max_depth_influence = 0.4
# self.run_transition(depth_strength=depth_strength, fixed_seeds=fixed_seeds)
self.seed1=21312
img1 =self.compute_latents1(True)
#%
self.seed2=1234121
self.branch1_influence = 0.7
self.branch1_max_depth_influence = 0.3
self.branch1_influence_decay = 0.3
img2 =self.compute_latents2(True)
# Image.fromarray(np.concatenate((img1, img2), axis=1))
#%%
t0 = time.time()
self.t_compute_max_allowed = 30
self.parental_max_depth_influence = 1.0
self.parental_influence = 0.0
self.parental_influence_decay = 1.0
imgs_transition = self.run_transition(recycle_img1=True, recycle_img2=True)
t1 = time.time()
print(f"took: {t1-t0}s")