1132 lines
47 KiB
Python
1132 lines
47 KiB
Python
# Copyright 2022 Lunar Ring. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os, sys
|
|
dp_git = "/home/lugo/git/"
|
|
sys.path.append(os.path.join(dp_git,'garden4'))
|
|
sys.path.append('util')
|
|
import torch
|
|
torch.backends.cudnn.benchmark = False
|
|
import numpy as np
|
|
import warnings
|
|
warnings.filterwarnings('ignore')
|
|
import time
|
|
import subprocess
|
|
import warnings
|
|
import torch
|
|
from tqdm.auto import tqdm
|
|
from diffusers import StableDiffusionInpaintPipeline
|
|
from diffusers import StableDiffusionPipeline
|
|
from diffusers.schedulers import DDIMScheduler
|
|
from PIL import Image
|
|
import matplotlib.pyplot as plt
|
|
import torch
|
|
from movie_util import MovieSaver
|
|
import datetime
|
|
from typing import Callable, List, Optional, Union
|
|
import inspect
|
|
from threading import Thread
|
|
torch.set_grad_enabled(False)
|
|
|
|
#%%
|
|
class LatentBlending():
|
|
def __init__(
|
|
self,
|
|
pipe: Union[StableDiffusionInpaintPipeline, StableDiffusionPipeline],
|
|
device: str,
|
|
height: int = 512,
|
|
width: int = 512,
|
|
num_inference_steps: int = 30,
|
|
guidance_scale: float = 7.5,
|
|
seed: int = 420,
|
|
):
|
|
r"""
|
|
Initializes the latent blending class.
|
|
Args:
|
|
device: str
|
|
Compute device, e.g. cuda:0
|
|
height: int
|
|
Height of the desired output image. The model was trained on 512.
|
|
width: int
|
|
Width of the desired output image. The model was trained on 512.
|
|
num_inference_steps: int
|
|
Number of diffusion steps. Larger values will take more compute time.
|
|
guidance_scale: float
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
usually at the expense of lower image quality.
|
|
seed: int
|
|
Random seed.
|
|
|
|
"""
|
|
|
|
self.pipe = pipe
|
|
self.device = device
|
|
self.guidance_scale = guidance_scale
|
|
self.num_inference_steps = num_inference_steps
|
|
self.width = width
|
|
self.height = height
|
|
self.seed = seed
|
|
|
|
# Inits
|
|
self.check_asserts()
|
|
self.init_mode()
|
|
|
|
# Initialize vars
|
|
self.prompt1 = ""
|
|
self.prompt2 = ""
|
|
self.tree_latents = []
|
|
self.tree_fracts = []
|
|
self.tree_status = []
|
|
self.tree_final_imgs = []
|
|
self.list_nmb_branches_prev = []
|
|
self.list_injection_idx_prev = []
|
|
self.text_embedding1 = None
|
|
self.text_embedding2 = None
|
|
self.stop_diffusion = False
|
|
self.negative_prompt = None
|
|
|
|
|
|
def check_asserts(self):
|
|
r"""
|
|
Runs Minimal set of sanity checks.
|
|
"""
|
|
assert self.pipe.scheduler._class_name == 'DDIMScheduler', 'Currently only the DDIMScheduler is supported.'
|
|
|
|
|
|
def init_mode(self):
|
|
r"""
|
|
Automatically sets the mode of this class, depending on the supplied pipeline.
|
|
"""
|
|
if self.pipe._class_name == 'StableDiffusionInpaintPipeline':
|
|
self.mask_empty = Image.fromarray(255*np.ones([self.width, self.height], dtype=np.uint8))
|
|
self.image_empty = Image.fromarray(np.zeros([self.width, self.height, 3], dtype=np.uint8))
|
|
self.image_source = None
|
|
self.mask_image = None
|
|
self.mode = 'inpaint'
|
|
else:
|
|
self.mode = 'standard'
|
|
|
|
|
|
def init_inpainting(
|
|
self,
|
|
image_source: Union[Image.Image, np.ndarray] = None,
|
|
mask_image: Union[Image.Image, np.ndarray] = None,
|
|
init_empty: Optional[bool] = False,
|
|
):
|
|
r"""
|
|
Initializes inpainting with a source and maks image.
|
|
Args:
|
|
image_source: Union[Image.Image, np.ndarray]
|
|
Source image onto which the mask will be applied.
|
|
mask_image: Union[Image.Image, np.ndarray]
|
|
Mask image, value = 0 will stay untouched, value = 255 subjet to diffusion
|
|
init_empty: Optional[bool]:
|
|
Initialize inpainting with an empty image and mask, effectively disabling inpainting.
|
|
"""
|
|
assert self.mode == 'inpaint', 'Initialize class with an inpainting pipeline!'
|
|
if not init_empty:
|
|
assert image_source is not None, "init_inpainting: you need to provide image_source"
|
|
assert mask_image is not None, "init_inpainting: you need to provide mask_image"
|
|
if type(image_source) == np.ndarray:
|
|
image_source = Image.fromarray(image_source)
|
|
self.image_source = image_source
|
|
|
|
if type(mask_image) == np.ndarray:
|
|
mask_image = Image.fromarray(mask_image)
|
|
self.mask_image = mask_image
|
|
else:
|
|
self.mask_image = self.mask_empty
|
|
self.image_source = self.image_empty
|
|
|
|
|
|
def set_prompt1(self, prompt: str):
|
|
r"""
|
|
Sets the first prompt (for the first keyframe) including text embeddings.
|
|
Args:
|
|
prompt: str
|
|
ABC trending on artstation painted by Greg Rutkowski
|
|
"""
|
|
prompt = prompt.replace("_", " ")
|
|
self.prompt1 = prompt
|
|
self.text_embedding1 = self.get_text_embeddings(self.prompt1)
|
|
|
|
|
|
def set_prompt2(self, prompt: str):
|
|
r"""
|
|
Sets the second prompt (for the second keyframe) including text embeddings.
|
|
Args:
|
|
prompt: str
|
|
XYZ trending on artstation painted by Greg Rutkowski
|
|
"""
|
|
prompt = prompt.replace("_", " ")
|
|
self.prompt2 = prompt
|
|
self.text_embedding2 = self.get_text_embeddings(self.prompt2)
|
|
|
|
|
|
def run_transition(
|
|
self,
|
|
list_nmb_branches: List[int],
|
|
list_injection_strength: List[float] = None,
|
|
list_injection_idx: List[int] = None,
|
|
recycle_img1: Optional[bool] = False,
|
|
recycle_img2: Optional[bool] = False,
|
|
fixed_seeds: Optional[List[int]] = None,
|
|
):
|
|
r"""
|
|
Returns a list of transition images using spherical latent blending.
|
|
Args:
|
|
list_nmb_branches: List[int]:
|
|
list of the number of branches for each injection.
|
|
list_injection_strength: List[float]:
|
|
list of injection strengths within interval [0, 1), values need to be increasing.
|
|
Alternatively you can direclty specify the list_injection_idx.
|
|
list_injection_idx: List[int]:
|
|
list of injection strengths within interval [0, 1), values need to be increasing.
|
|
Alternatively you can specify the list_injection_strength.
|
|
recycle_img1: Optional[bool]:
|
|
Don't recompute the latents for the first keyframe (purely prompt1). Saves compute.
|
|
recycle_img2: Optional[bool]:
|
|
Don't recompute the latents for the second keyframe (purely prompt2). Saves compute.
|
|
fixed_seeds: Optional[List[int)]:
|
|
You can supply two seeds that are used for the first and second keyframe (prompt1 and prompt2).
|
|
Otherwise random seeds will be taken.
|
|
|
|
"""
|
|
# Sanity checks first
|
|
assert self.text_embedding1 is not None, 'Set the first text embedding with .set_prompt1(...) first'
|
|
assert self.text_embedding2 is not None, 'Set the second text embedding with .set_prompt2(...) first'
|
|
assert not((list_injection_strength is not None) and (list_injection_idx is not None)), "suppyl either list_injection_strength or list_injection_idx"
|
|
|
|
if list_injection_strength is None:
|
|
assert list_injection_idx is not None, "Supply either list_injection_idx or list_injection_strength"
|
|
assert isinstance(list_injection_idx[0], int), "Need to supply integers for list_injection_idx"
|
|
|
|
if list_injection_idx is None:
|
|
assert list_injection_strength is not None, "Supply either list_injection_idx or list_injection_strength"
|
|
# Create the injection indexes
|
|
list_injection_idx = [int(round(x*self.num_inference_steps)) for x in list_injection_strength]
|
|
assert min(np.diff(list_injection_idx)) > 0, 'Injection idx needs to be increasing'
|
|
if min(np.diff(list_injection_idx)) < 2:
|
|
print("Warning: your injection spacing is very tight. consider increasing the distances")
|
|
assert isinstance(list_injection_strength[1], np.floating), "Need to supply floats for list_injection_strength"
|
|
# we are checking element 1 in list_injection_strength because "0" is an int... [0, 0.5]
|
|
|
|
assert max(list_injection_idx) < self.num_inference_steps, "Decrease the injection index or strength"
|
|
assert len(list_injection_idx) == len(list_nmb_branches), "Need to have same length"
|
|
assert max(list_injection_idx) < self.num_inference_steps,"Injection index cannot happen after last diffusion step! Decrease list_injection_idx or list_injection_strength[-1]"
|
|
|
|
if fixed_seeds is not None:
|
|
if fixed_seeds == 'randomize':
|
|
fixed_seeds = list(np.random.randint(0, 1000000, 2).astype(np.int32))
|
|
else:
|
|
assert len(fixed_seeds)==2, "Supply a list with len = 2"
|
|
|
|
# Process interruption variable
|
|
self.stop_diffusion = False
|
|
|
|
# Recycling? There are requirements
|
|
if recycle_img1 or recycle_img2:
|
|
if self.list_nmb_branches_prev == []:
|
|
print("Warning. You want to recycle but there is nothing here. Disabling recycling.")
|
|
recycle_img1 = False
|
|
recycle_img2 = False
|
|
elif self.list_nmb_branches_prev != list_nmb_branches:
|
|
print("Warning. Cannot change list_nmb_branches if recycling latent. Disabling recycling.")
|
|
recycle_img1 = False
|
|
recycle_img2 = False
|
|
elif self.list_injection_idx_prev != list_injection_idx:
|
|
print("Warning. Cannot change list_nmb_branches if recycling latent. Disabling recycling.")
|
|
recycle_img1 = False
|
|
recycle_img2 = False
|
|
|
|
# Make a backup for future reference
|
|
self.list_nmb_branches_prev = list_nmb_branches
|
|
self.list_injection_idx_prev = list_injection_idx
|
|
|
|
# Auto inits
|
|
list_injection_idx_ext = list_injection_idx[:]
|
|
list_injection_idx_ext.append(self.num_inference_steps)
|
|
|
|
# If injection at depth 0 not specified, we will start out with 2 branches
|
|
if list_injection_idx_ext[0] != 0:
|
|
list_injection_idx_ext.insert(0,0)
|
|
list_nmb_branches.insert(0,2)
|
|
assert list_nmb_branches[0] == 2, "Need to start with 2 branches. set list_nmb_branches[0]=2"
|
|
|
|
# Pre-define entire branching tree structures
|
|
if not recycle_img1 and not recycle_img2:
|
|
self.tree_latents = []
|
|
self.tree_fracts = []
|
|
self.tree_status = []
|
|
self.tree_final_imgs = [None]*list_nmb_branches[-1]
|
|
self.tree_final_imgs_timing = [0]*list_nmb_branches[-1]
|
|
|
|
nmb_blocks_time = len(list_injection_idx_ext)-1
|
|
for t_block in range(nmb_blocks_time):
|
|
nmb_branches = list_nmb_branches[t_block]
|
|
list_fract_mixing_current = np.linspace(0, 1, nmb_branches)
|
|
self.tree_fracts.append(list_fract_mixing_current)
|
|
self.tree_latents.append([None]*nmb_branches)
|
|
self.tree_status.append(['untouched']*nmb_branches)
|
|
else:
|
|
self.tree_final_imgs = [None]*list_nmb_branches[-1]
|
|
nmb_blocks_time = len(list_injection_idx_ext)-1
|
|
for t_block in range(nmb_blocks_time):
|
|
nmb_branches = list_nmb_branches[t_block]
|
|
for idx_branch in range(nmb_branches):
|
|
self.tree_status[t_block][idx_branch] = 'untouched'
|
|
if recycle_img1:
|
|
self.tree_status[t_block][0] = 'computed'
|
|
self.tree_final_imgs[0] = self.latent2image(self.tree_latents[-1][0][-1])
|
|
self.tree_final_imgs_timing[0] = 0
|
|
if recycle_img2:
|
|
self.tree_status[t_block][-1] = 'computed'
|
|
self.tree_final_imgs[-1] = self.latent2image(self.tree_latents[-1][-1][-1])
|
|
self.tree_final_imgs_timing[-1] = 0
|
|
|
|
# setup compute order: goal: try to get last branch computed asap.
|
|
# first compute the right keyframe. needs to be there in any case
|
|
list_compute = []
|
|
list_local_stem = []
|
|
for t_block in range(nmb_blocks_time - 1, -1, -1):
|
|
if self.tree_status[t_block][0] == 'untouched':
|
|
self.tree_status[t_block][0] = 'prefetched'
|
|
list_local_stem.append([t_block, 0])
|
|
list_compute.extend(list_local_stem[::-1])
|
|
|
|
# setup compute order: start from last leafs (the final transition images) and work way down. what parents do they need?
|
|
for idx_leaf in range(1, list_nmb_branches[-1]):
|
|
list_local_stem = []
|
|
t_block = nmb_blocks_time - 1
|
|
t_block_prev = t_block - 1
|
|
self.tree_status[t_block][idx_leaf] = 'prefetched'
|
|
list_local_stem.append([t_block, idx_leaf])
|
|
idx_leaf_deep = idx_leaf
|
|
|
|
for t_block in range(nmb_blocks_time-1, 0, -1):
|
|
t_block_prev = t_block - 1
|
|
fract_mixing = self.tree_fracts[t_block][idx_leaf_deep]
|
|
list_fract_mixing_prev = self.tree_fracts[t_block_prev]
|
|
b_parent1, b_parent2 = get_closest_idx(fract_mixing, list_fract_mixing_prev)
|
|
assert self.tree_status[t_block_prev][b_parent1] != 'untouched', 'Branch destruction??? This should never happen!'
|
|
if self.tree_status[t_block_prev][b_parent2] == 'untouched':
|
|
self.tree_status[t_block_prev][b_parent2] = 'prefetched'
|
|
list_local_stem.append([t_block_prev, b_parent2])
|
|
idx_leaf_deep = b_parent2
|
|
list_compute.extend(list_local_stem[::-1])
|
|
|
|
# Diffusion computations start here
|
|
time_start = time.time()
|
|
for t_block, idx_branch in tqdm(list_compute, desc="computing transition"):
|
|
if self.stop_diffusion:
|
|
print("run_transition: process interrupted")
|
|
return self.tree_final_imgs
|
|
|
|
# print(f"computing t_block {t_block} idx_branch {idx_branch}")
|
|
idx_stop = list_injection_idx_ext[t_block+1]
|
|
fract_mixing = self.tree_fracts[t_block][idx_branch]
|
|
text_embeddings_mix = interpolate_linear(self.text_embedding1, self.text_embedding2, fract_mixing)
|
|
if t_block == 0:
|
|
if fixed_seeds is not None:
|
|
if idx_branch == 0:
|
|
self.set_seed(fixed_seeds[0])
|
|
elif idx_branch == list_nmb_branches[0] -1:
|
|
self.set_seed(fixed_seeds[1])
|
|
list_latents = self.run_diffusion(text_embeddings_mix, idx_stop=idx_stop)
|
|
else:
|
|
# find parents latents
|
|
b_parent1, b_parent2 = get_closest_idx(fract_mixing, self.tree_fracts[t_block-1])
|
|
latents1 = self.tree_latents[t_block-1][b_parent1][-1]
|
|
if fract_mixing == 0:
|
|
latents2 = latents1
|
|
else:
|
|
latents2 = self.tree_latents[t_block-1][b_parent2][-1]
|
|
idx_start = list_injection_idx_ext[t_block]
|
|
fract_mixing_parental = (fract_mixing - self.tree_fracts[t_block-1][b_parent1]) / (self.tree_fracts[t_block-1][b_parent2] - self.tree_fracts[t_block-1][b_parent1])
|
|
latents_for_injection = interpolate_spherical(latents1, latents2, fract_mixing_parental)
|
|
list_latents = self.run_diffusion(text_embeddings_mix, latents_for_injection, idx_start=idx_start, idx_stop=idx_stop)
|
|
|
|
self.tree_latents[t_block][idx_branch] = list_latents
|
|
self.tree_status[t_block][idx_branch] = 'computed'
|
|
|
|
# Convert latents to image directly for the last t_block
|
|
if t_block == nmb_blocks_time-1:
|
|
self.tree_final_imgs[idx_branch] = self.latent2image(list_latents[-1])
|
|
self.tree_final_imgs_timing[idx_branch] = time.time() - time_start
|
|
|
|
return self.tree_final_imgs
|
|
|
|
|
|
def run_multi_transition(
|
|
self,
|
|
list_prompts: List[str],
|
|
list_seeds: List[int] = None,
|
|
list_nmb_branches: List[int] = None,
|
|
list_injection_strength: List[float] = None,
|
|
list_injection_idx: List[int] = None,
|
|
ms: MovieSaver = None,
|
|
fps: float = 24,
|
|
duration_single_trans: float = 15,
|
|
):
|
|
r"""
|
|
Runs multiple transitions and stitches them together. You can supply the seeds for each prompt.
|
|
Args:
|
|
list_prompts: List[float]:
|
|
list of the prompts. There will be a transition starting from the first to the last.
|
|
list_seeds: List[int] = None:
|
|
Random Seeds for each prompt.
|
|
list_nmb_branches: List[int]:
|
|
list of the number of branches for each injection.
|
|
list_injection_strength: List[float]:
|
|
list of injection strengths within interval [0, 1), values need to be increasing.
|
|
Alternatively you can direclty specify the list_injection_idx.
|
|
list_injection_idx: List[int]:
|
|
list of injection strengths within interval [0, 1), values need to be increasing.
|
|
Alternatively you can specify the list_injection_strength.
|
|
ms: MovieSaver
|
|
You need to spawn a moviesaver instance.
|
|
fps: float:
|
|
frames per second
|
|
duration_single_trans: float:
|
|
The duration of a single transition prompt[i] -> prompt[i+1].
|
|
The duration of your movie will be duration_single_trans * len(list_prompts)
|
|
|
|
"""
|
|
if list_seeds is None:
|
|
list_seeds = list(np.random.randint(0, 10e10, len(list_prompts)))
|
|
|
|
assert len(list_prompts) == len(list_seeds), "Supply the same number of prompts and seeds"
|
|
|
|
for i in range(len(list_prompts)-1):
|
|
print(f"Starting movie segment {i+1}/{len(list_prompts)-1}")
|
|
|
|
if i==0:
|
|
self.set_prompt1(list_prompts[i])
|
|
self.set_prompt2(list_prompts[i+1])
|
|
recycle_img1 = False
|
|
else:
|
|
self.swap_forward()
|
|
self.set_prompt2(list_prompts[i+1])
|
|
recycle_img1 = True
|
|
|
|
local_seeds = [list_seeds[i], list_seeds[i+1]]
|
|
list_imgs = lb.run_transition(list_nmb_branches, list_injection_strength=list_injection_strength, list_injection_idx=list_injection_idx, recycle_img1=recycle_img1, fixed_seeds=local_seeds)
|
|
list_imgs_interp = add_frames_linear_interp(list_imgs, fps, duration_single_trans)
|
|
|
|
# Save movie frame
|
|
for img in list_imgs_interp:
|
|
ms.write_frame(img)
|
|
|
|
ms.finalize()
|
|
|
|
print("run_multi_transition: All completed.")
|
|
|
|
|
|
@torch.no_grad()
|
|
def run_diffusion(
|
|
self,
|
|
text_embeddings: torch.FloatTensor,
|
|
latents_for_injection: torch.FloatTensor = None,
|
|
idx_start: int = -1,
|
|
idx_stop: int = -1,
|
|
return_image: Optional[bool] = False
|
|
):
|
|
r"""
|
|
Wrapper function for run_diffusion_standard and run_diffusion_inpaint.
|
|
Depending on the mode, the correct one will be executed.
|
|
|
|
Args:
|
|
text_embeddings: torch.FloatTensor
|
|
Text embeddings used for diffusion
|
|
latents_for_injection: torch.FloatTensor
|
|
Latents that are used for injection
|
|
idx_start: int
|
|
Index of the diffusion process start and where the latents_for_injection are injected
|
|
idx_stop: int
|
|
Index of the diffusion process end.
|
|
return_image: Optional[bool]
|
|
Optionally return image directly
|
|
"""
|
|
|
|
|
|
if self.mode == 'standard':
|
|
return self.run_diffusion_standard(text_embeddings, latents_for_injection=latents_for_injection, idx_start=idx_start, idx_stop=idx_stop, return_image=return_image)
|
|
|
|
elif self.mode == 'inpaint':
|
|
assert self.image_source is not None, "image_source is None. Please run init_inpainting first."
|
|
assert self.mask_image is not None, "image_source is None. Please run init_inpainting first."
|
|
return self.run_diffusion_inpaint(text_embeddings, latents_for_injection=latents_for_injection, idx_start=idx_start, idx_stop=idx_stop, return_image=return_image)
|
|
|
|
|
|
@torch.no_grad()
|
|
def run_diffusion_standard(
|
|
self,
|
|
text_embeddings: torch.FloatTensor,
|
|
latents_for_injection: torch.FloatTensor = None,
|
|
idx_start: int = -1,
|
|
idx_stop: int = -1,
|
|
return_image: Optional[bool] = False
|
|
):
|
|
r"""
|
|
Runs regular diffusion. Returns a list of latents that were computed.
|
|
Adaptations allow to supply
|
|
a) starting index for diffusion
|
|
b) stopping index for diffusion
|
|
c) latent representations that are injected at the starting index
|
|
Furthermore the intermittent latents are collected and returned.
|
|
Adapted from diffusers (https://github.com/huggingface/diffusers)
|
|
|
|
Args:
|
|
text_embeddings: torch.FloatTensor
|
|
Text embeddings used for diffusion
|
|
latents_for_injection: torch.FloatTensor
|
|
Latents that are used for injection
|
|
idx_start: int
|
|
Index of the diffusion process start and where the latents_for_injection are injected
|
|
idx_stop: int
|
|
Index of the diffusion process end.
|
|
return_image: Optional[bool]
|
|
Optionally return image directly
|
|
|
|
"""
|
|
if latents_for_injection is None:
|
|
do_inject_latents = False
|
|
else:
|
|
do_inject_latents = True
|
|
|
|
generator = torch.Generator(device=self.device).manual_seed(int(self.seed))
|
|
batch_size = 1
|
|
height = self.height
|
|
width = self.width
|
|
num_inference_steps = self.num_inference_steps
|
|
num_images_per_prompt = 1
|
|
do_classifier_free_guidance = True
|
|
|
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
bs_embed, seq_len, _ = text_embeddings.shape
|
|
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
|
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
|
|
# set timesteps
|
|
self.pipe.scheduler.set_timesteps(num_inference_steps)
|
|
|
|
# Some schedulers like PNDM have timesteps as arrays
|
|
# It's more optimized to move all timesteps to correct device beforehand
|
|
timesteps_tensor = self.pipe.scheduler.timesteps.to(self.pipe.device)
|
|
|
|
if not do_inject_latents:
|
|
# get the initial random noise unless the user supplied it
|
|
latents_shape = (batch_size * num_images_per_prompt, self.pipe.unet.in_channels, height // 8, width // 8)
|
|
latents_dtype = text_embeddings.dtype
|
|
latents = torch.randn(latents_shape, generator=generator, device=self.pipe.device, dtype=latents_dtype)
|
|
|
|
# scale the initial noise by the standard deviation required by the scheduler
|
|
latents = latents * self.pipe.scheduler.init_noise_sigma
|
|
extra_step_kwargs = {}
|
|
|
|
# collect latents
|
|
list_latents_out = []
|
|
for i, t in enumerate(timesteps_tensor):
|
|
|
|
|
|
if do_inject_latents:
|
|
# Inject latent at right place
|
|
if i < idx_start:
|
|
continue
|
|
elif i == idx_start:
|
|
latents = latents_for_injection.clone()
|
|
|
|
if i == idx_stop:
|
|
return list_latents_out
|
|
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
latent_model_input = self.pipe.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
# predict the noise residual
|
|
noise_pred = self.pipe.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
|
|
|
# perform guidance
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents = self.pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
|
|
|
list_latents_out.append(latents.clone())
|
|
|
|
if return_image:
|
|
return self.latent2image(latents)
|
|
else:
|
|
return list_latents_out
|
|
|
|
|
|
@torch.no_grad()
|
|
def run_diffusion_inpaint(
|
|
self,
|
|
text_embeddings: torch.FloatTensor,
|
|
latents_for_injection: torch.FloatTensor = None,
|
|
idx_start: int = -1,
|
|
idx_stop: int = -1,
|
|
return_image: Optional[bool] = False
|
|
):
|
|
r"""
|
|
Runs inpaint-based diffusion. Returns a list of latents that were computed.
|
|
Adaptations allow to supply
|
|
a) starting index for diffusion
|
|
b) stopping index for diffusion
|
|
c) latent representations that are injected at the starting index
|
|
Furthermore the intermittent latents are collected and returned.
|
|
|
|
Adapted from diffusers (https://github.com/huggingface/diffusers)
|
|
Args:
|
|
text_embeddings: torch.FloatTensor
|
|
Text embeddings used for diffusion
|
|
latents_for_injection: torch.FloatTensor
|
|
Latents that are used for injection
|
|
idx_start: int
|
|
Index of the diffusion process start and where the latents_for_injection are injected
|
|
idx_stop: int
|
|
Index of the diffusion process end.
|
|
return_image: Optional[bool]
|
|
Optionally return image directly
|
|
|
|
"""
|
|
|
|
if latents_for_injection is None:
|
|
do_inject_latents = False
|
|
else:
|
|
do_inject_latents = True
|
|
|
|
generator = torch.Generator(device=self.device).manual_seed(int(self.seed))
|
|
batch_size = 1
|
|
height = self.height
|
|
width = self.width
|
|
num_inference_steps = self.num_inference_steps
|
|
num_images_per_prompt = 1
|
|
do_classifier_free_guidance = True
|
|
|
|
# prepare mask and masked_image
|
|
mask, masked_image = self.prepare_mask_and_masked_image(self.image_source, self.mask_image)
|
|
mask = mask.to(device=self.pipe.device, dtype=text_embeddings.dtype)
|
|
masked_image = masked_image.to(device=self.pipe.device, dtype=text_embeddings.dtype)
|
|
|
|
# resize the mask to latents shape as we concatenate the mask to the latents
|
|
mask = torch.nn.functional.interpolate(mask, size=(height // 8, width // 8))
|
|
|
|
# encode the mask image into latents space so we can concatenate it to the latents
|
|
masked_image_latents = self.pipe.vae.encode(masked_image).latent_dist.sample(generator=generator)
|
|
masked_image_latents = 0.18215 * masked_image_latents
|
|
|
|
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
|
mask = mask.repeat(num_images_per_prompt, 1, 1, 1)
|
|
masked_image_latents = masked_image_latents.repeat(num_images_per_prompt, 1, 1, 1)
|
|
|
|
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
|
masked_image_latents = (
|
|
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
|
)
|
|
|
|
num_channels_mask = mask.shape[1]
|
|
num_channels_masked_image = masked_image_latents.shape[1]
|
|
|
|
num_channels_latents = self.pipe.vae.config.latent_channels
|
|
latents_shape = (batch_size * num_images_per_prompt, num_channels_latents, height // 8, width // 8)
|
|
latents_dtype = text_embeddings.dtype
|
|
latents = torch.randn(latents_shape, generator=generator, device=self.pipe.device, dtype=latents_dtype)
|
|
latents = latents.to(self.pipe.device)
|
|
# set timesteps
|
|
self.pipe.scheduler.set_timesteps(num_inference_steps)
|
|
timesteps_tensor = self.pipe.scheduler.timesteps.to(self.pipe.device)
|
|
latents = latents * self.pipe.scheduler.init_noise_sigma
|
|
extra_step_kwargs = {}
|
|
# collect latents
|
|
list_latents_out = []
|
|
|
|
for i, t in enumerate(timesteps_tensor):
|
|
if do_inject_latents:
|
|
# Inject latent at right place
|
|
if i < idx_start:
|
|
continue
|
|
elif i == idx_start:
|
|
latents = latents_for_injection.clone()
|
|
|
|
if i == idx_stop:
|
|
return list_latents_out
|
|
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
# concat latents, mask, masked_image_latents in the channel dimension
|
|
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
|
|
|
|
latent_model_input = self.pipe.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
# predict the noise residual
|
|
noise_pred = self.pipe.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
|
|
|
# perform guidance
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents = self.pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
|
|
|
list_latents_out.append(latents.clone())
|
|
|
|
if return_image:
|
|
return self.latent2image(latents)
|
|
else:
|
|
return list_latents_out
|
|
|
|
@torch.no_grad()
|
|
def latent2image(
|
|
self,
|
|
latents: torch.FloatTensor
|
|
):
|
|
r"""
|
|
Returns an image provided a latent representation from diffusion.
|
|
Args:
|
|
latents: torch.FloatTensor
|
|
Result of the diffusion process.
|
|
"""
|
|
|
|
latents = 1 / 0.18215 * latents
|
|
image = self.pipe.vae.decode(latents).sample
|
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
|
image = (image[0,:,:,:] * 255).astype(np.uint8)
|
|
|
|
return image
|
|
|
|
@torch.no_grad()
|
|
def get_text_embeddings(
|
|
self,
|
|
prompt: str
|
|
):
|
|
r"""
|
|
Computes the text embeddings provided a string with a prompts.
|
|
Adapted from diffusers (https://github.com/huggingface/diffusers)
|
|
Args:
|
|
prompt: str
|
|
ABC trending on artstation painted by Old Greg.
|
|
"""
|
|
if self.negative_prompt is None:
|
|
uncond_tokens = [""]
|
|
else:
|
|
if isinstance(self.negative_prompt, str):
|
|
uncond_tokens = [self.negative_prompt]
|
|
|
|
batch_size = 1
|
|
num_images_per_prompt = 1
|
|
do_classifier_free_guidance = True
|
|
# get prompt text embeddings
|
|
text_inputs = self.pipe.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.pipe.tokenizer.model_max_length,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
|
|
# if text_input_ids.shape[-1] > self.pipe.tokenizer.modeLatentBlendingl_max_length:
|
|
# removed_text = self.pipe.tokenizer.batch_decode(text_input_ids[:, self.pipe.tokenizer.model_max_length :])
|
|
# text_input_ids = text_input_ids[:, : self.pipe.tokenizer.model_max_length]
|
|
text_embeddings = self.pipe.text_encoder(text_input_ids.to(self.pipe.device))[0]
|
|
|
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
bs_embed, seq_len, _ = text_embeddings.shape
|
|
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
|
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
|
|
# get unconditional embeddings for classifier free guidance
|
|
if do_classifier_free_guidance:
|
|
max_length = text_input_ids.shape[-1]
|
|
uncond_input = self.pipe.tokenizer(
|
|
uncond_tokens,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
uncond_embeddings = self.pipe.text_encoder(uncond_input.input_ids.to(self.pipe.device))[0]
|
|
|
|
seq_len = uncond_embeddings.shape[1]
|
|
uncond_embeddings = uncond_embeddings.repeat(batch_size, num_images_per_prompt, 1)
|
|
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
|
return text_embeddings
|
|
|
|
|
|
def prepare_mask_and_masked_image(self, image, mask):
|
|
r"""
|
|
Mask and image preparation for inpainting.
|
|
Adapted from diffusers (https://github.com/huggingface/diffusers)
|
|
Args:
|
|
image:
|
|
Source image
|
|
mask:
|
|
Mask image
|
|
"""
|
|
image = np.array(image.convert("RGB"))
|
|
image = image[None].transpose(0, 3, 1, 2)
|
|
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
|
|
|
mask = np.array(mask.convert("L"))
|
|
mask = mask.astype(np.float32) / 255.0
|
|
mask = mask[None, None]
|
|
mask[mask < 0.5] = 0
|
|
mask[mask >= 0.5] = 1
|
|
mask = torch.from_numpy(mask)
|
|
|
|
masked_image = image * (mask < 0.5)
|
|
|
|
return mask, masked_image
|
|
|
|
def randomize_seed(self):
|
|
r"""
|
|
Set a random seed for a fresh start.
|
|
"""
|
|
seed = np.random.randint(999999999)
|
|
self.set_seed(seed)
|
|
|
|
def set_seed(self, seed: int):
|
|
r"""
|
|
Set a the seed for a fresh start.
|
|
"""
|
|
self.seed = seed
|
|
|
|
|
|
def swap_forward(self):
|
|
r"""
|
|
Moves over keyframe two -> keyframe one. Useful for making a sequence of transitions.
|
|
"""
|
|
# Move over all latents
|
|
for t_block in range(len(self.tree_latents)):
|
|
self.tree_latents[t_block][0] = self.tree_latents[t_block][-1]
|
|
|
|
# Move over prompts and text embeddings
|
|
self.prompt1 = self.prompt2
|
|
self.text_embedding1 = self.text_embedding2
|
|
|
|
# Final cleanup for extra sanity
|
|
self.tree_final_imgs = []
|
|
|
|
# Auxiliary functions
|
|
def get_closest_idx(
|
|
fract_mixing: float,
|
|
list_fract_mixing_prev: List[float],
|
|
):
|
|
r"""
|
|
Helper function to retrieve the parents for any given mixing.
|
|
Example: fract_mixing = 0.4 and list_fract_mixing_prev = [0, 0.3, 0.6, 1.0]
|
|
Will return the two closest values from list_fract_mixing_prev, i.e. [1, 2]
|
|
"""
|
|
|
|
pdist = fract_mixing - np.asarray(list_fract_mixing_prev)
|
|
pdist_pos = pdist.copy()
|
|
pdist_pos[pdist_pos<0] = np.inf
|
|
b_parent1 = np.argmin(pdist_pos)
|
|
pdist_neg = -pdist.copy()
|
|
pdist_neg[pdist_neg<=0] = np.inf
|
|
b_parent2= np.argmin(pdist_neg)
|
|
|
|
if b_parent1 > b_parent2:
|
|
tmp = b_parent2
|
|
b_parent2 = b_parent1
|
|
b_parent1 = tmp
|
|
|
|
return b_parent1, b_parent2
|
|
|
|
@torch.no_grad()
|
|
def interpolate_spherical(p0, p1, fract_mixing: float):
|
|
r"""
|
|
Helper function to correctly mix two random variables using spherical interpolation.
|
|
See https://en.wikipedia.org/wiki/Slerp
|
|
The function will always cast up to float64 for sake of extra precision.
|
|
Args:
|
|
p0:
|
|
First tensor for interpolation
|
|
p1:
|
|
Second tensor for interpolation
|
|
fract_mixing: float
|
|
Mixing coefficient of interval [0, 1].
|
|
0 will return in p0
|
|
1 will return in p1
|
|
0.x will return a mix between both preserving angular velocity.
|
|
"""
|
|
|
|
if p0.dtype == torch.float16:
|
|
recast_to = 'fp16'
|
|
else:
|
|
recast_to = 'fp32'
|
|
|
|
p0 = p0.double()
|
|
p1 = p1.double()
|
|
norm = torch.linalg.norm(p0) * torch.linalg.norm(p1)
|
|
epsilon = 1e-7
|
|
dot = torch.sum(p0 * p1) / norm
|
|
dot = dot.clamp(-1+epsilon, 1-epsilon)
|
|
|
|
theta_0 = torch.arccos(dot)
|
|
sin_theta_0 = torch.sin(theta_0)
|
|
theta_t = theta_0 * fract_mixing
|
|
s0 = torch.sin(theta_0 - theta_t) / sin_theta_0
|
|
s1 = torch.sin(theta_t) / sin_theta_0
|
|
interp = p0*s0 + p1*s1
|
|
|
|
if recast_to == 'fp16':
|
|
interp = interp.half()
|
|
elif recast_to == 'fp32':
|
|
interp = interp.float()
|
|
|
|
return interp
|
|
|
|
|
|
def interpolate_linear(p0, p1, fract_mixing):
|
|
r"""
|
|
Helper function to mix two variables using standard linear interpolation.
|
|
Args:
|
|
p0:
|
|
First tensor / np.ndarray for interpolation
|
|
p1:
|
|
Second tensor / np.ndarray for interpolation
|
|
fract_mixing: float
|
|
Mixing coefficient of interval [0, 1].
|
|
0 will return in p0
|
|
1 will return in p1
|
|
0.x will return a linear mix between both.
|
|
"""
|
|
reconvert_uint8 = False
|
|
if type(p0) is np.ndarray and p0.dtype == 'uint8':
|
|
reconvert_uint8 = True
|
|
p0 = p0.astype(np.float64)
|
|
|
|
if type(p1) is np.ndarray and p1.dtype == 'uint8':
|
|
reconvert_uint8 = True
|
|
p1 = p1.astype(np.float64)
|
|
|
|
interp = (1-fract_mixing) * p0 + fract_mixing * p1
|
|
|
|
if reconvert_uint8:
|
|
interp = np.clip(interp, 0, 255).astype(np.uint8)
|
|
|
|
return interp
|
|
|
|
|
|
def add_frames_linear_interp(
|
|
list_imgs: List[np.ndarray],
|
|
fps_target: Union[float, int] = None,
|
|
duration_target: Union[float, int] = None,
|
|
nmb_frames_target: int=None,
|
|
):
|
|
r"""
|
|
Helper function to cheaply increase the number of frames given a list of images,
|
|
by virtue of standard linear interpolation.
|
|
The number of inserted frames will be automatically adjusted so that the total of number
|
|
of frames can be fixed precisely, using a random shuffling technique.
|
|
The function allows 1:1 comparisons between transitions as videos.
|
|
|
|
Args:
|
|
list_imgs: List[np.ndarray)
|
|
List of images, between each image new frames will be inserted via linear interpolation.
|
|
fps_target:
|
|
OptionA: specify here the desired frames per second.
|
|
duration_target:
|
|
OptionA: specify here the desired duration of the transition in seconds.
|
|
nmb_frames_target:
|
|
OptionB: directly fix the total number of frames of the output.
|
|
"""
|
|
|
|
# Sanity
|
|
if nmb_frames_target is not None and fps_target is not None:
|
|
raise ValueError("You cannot specify both fps_target and nmb_frames_target")
|
|
if fps_target is None:
|
|
assert nmb_frames_target is not None, "Either specify nmb_frames_target or nmb_frames_target"
|
|
if nmb_frames_target is None:
|
|
assert fps_target is not None, "Either specify duration_target and fps_target OR nmb_frames_target"
|
|
assert duration_target is not None, "Either specify duration_target and fps_target OR nmb_frames_target"
|
|
nmb_frames_target = fps_target*duration_target
|
|
|
|
# Get number of frames that are missing
|
|
nmb_frames_diff = len(list_imgs)-1
|
|
nmb_frames_missing = nmb_frames_target - nmb_frames_diff - 1
|
|
|
|
if nmb_frames_missing < 1:
|
|
return list_imgs
|
|
|
|
list_imgs_float = [img.astype(np.float32) for img in list_imgs]
|
|
|
|
# Distribute missing frames, append nmb_frames_to_insert(i) frames for each frame
|
|
mean_nmb_frames_insert = nmb_frames_missing/nmb_frames_diff
|
|
constfact = np.floor(mean_nmb_frames_insert)
|
|
remainder_x = 1-(mean_nmb_frames_insert - constfact)
|
|
|
|
nmb_iter = 0
|
|
while True:
|
|
nmb_frames_to_insert = np.random.rand(nmb_frames_diff)
|
|
nmb_frames_to_insert[nmb_frames_to_insert<=remainder_x] = 0
|
|
nmb_frames_to_insert[nmb_frames_to_insert>remainder_x] = 1
|
|
nmb_frames_to_insert += constfact
|
|
if np.sum(nmb_frames_to_insert) == nmb_frames_missing:
|
|
break
|
|
nmb_iter += 1
|
|
if nmb_iter > 100000:
|
|
print("add_frames_linear_interp: issue with inserting the right number of frames")
|
|
break
|
|
|
|
nmb_frames_to_insert = nmb_frames_to_insert.astype(np.int32)
|
|
list_imgs_interp = []
|
|
for i in tqdm(range(len(list_imgs_float)-1), desc="STAGE linear interp"):
|
|
img0 = list_imgs_float[i]
|
|
img1 = list_imgs_float[i+1]
|
|
list_imgs_interp.append(img0.astype(np.uint8))
|
|
list_fracts_linblend = np.linspace(0, 1, nmb_frames_to_insert[i]+2)[1:-1]
|
|
for fract_linblend in list_fracts_linblend:
|
|
img_blend = interpolate_linear(img0, img1, fract_linblend).astype(np.uint8)
|
|
list_imgs_interp.append(img_blend.astype(np.uint8))
|
|
|
|
if i==len(list_imgs_float)-2:
|
|
list_imgs_interp.append(img1.astype(np.uint8))
|
|
|
|
return list_imgs_interp
|
|
|
|
|
|
def get_time(resolution=None):
|
|
"""
|
|
Helper function returning an nicely formatted time string, e.g. 221117_1620
|
|
"""
|
|
if resolution==None:
|
|
resolution="second"
|
|
if resolution == "day":
|
|
t = time.strftime('%y%m%d', time.localtime())
|
|
elif resolution == "minute":
|
|
t = time.strftime('%y%m%d_%H%M', time.localtime())
|
|
elif resolution == "second":
|
|
t = time.strftime('%y%m%d_%H%M%S', time.localtime())
|
|
elif resolution == "millisecond":
|
|
t = time.strftime('%y%m%d_%H%M%S', time.localtime())
|
|
t += "_"
|
|
t += str("{:03d}".format(int(int(datetime.utcnow().strftime('%f'))/1000)))
|
|
else:
|
|
raise ValueError("bad resolution provided: %s" %resolution)
|
|
return t
|
|
|
|
#%% le main
|
|
if __name__ == "__main__":
|
|
|
|
device = "cuda:0"
|
|
model_path = "../stable_diffusion_models/stable-diffusion-v1-5"
|
|
|
|
scheduler = DDIMScheduler(beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False)
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(
|
|
model_path,
|
|
revision="fp16",
|
|
torch_dtype=torch.float16,
|
|
scheduler=scheduler,
|
|
use_auth_token=True
|
|
)
|
|
pipe = pipe.to(device)
|
|
|
|
num_inference_steps = 20 # Number of diffusion interations
|
|
list_nmb_branches = [2, 3, 10, 24] # Branching structure: how many branches
|
|
list_injection_strength = [0.0, 0.6, 0.8, 0.9] # Branching structure: how deep is the blending
|
|
width = 512
|
|
height = 512
|
|
guidance_scale = 5
|
|
fixed_seeds = [993621550, 280335986]
|
|
|
|
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale)
|
|
lb.negative_prompt = 'text, letters'
|
|
prompt1 = "photo of a beautiful newspaper covered in white flowers, ambient light, very detailed, magic"
|
|
prompt2 = "photo of an eerie statue surrounded by ferns and vines, analog photograph kodak portra, mystical ambience, incredible detail"
|
|
lb.set_prompt1(prompt1)
|
|
lb.set_prompt2(prompt2)
|
|
|
|
imgs_transition = lb.run_transition(list_nmb_branches, list_injection_strength, fixed_seeds=fixed_seeds)
|
|
|
|
xxx
|
|
|
|
#%%
|
|
|
|
num_inference_steps = 30 # Number of diffusion interations
|
|
list_nmb_branches = [2, 10, 50, 100, 200] #
|
|
list_injection_strength = list(np.linspace(0.5, 0.95, 4)) # Branching structure: how deep is the blending
|
|
list_injection_strength.insert(0, 0.0)
|
|
|
|
width = 512
|
|
height = 512
|
|
guidance_scale = 5
|
|
fps = 30
|
|
duration_single_trans = 20
|
|
width = 512
|
|
height = 512
|
|
|
|
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale)
|
|
|
|
list_prompts = []
|
|
list_prompts.append("surrealistic statue made of glitter and dirt, standing in a lake, atmospheric light, strange glow")
|
|
list_prompts.append("statue of a mix between a tree and human, made of marble, incredibly detailed")
|
|
list_prompts.append("weird statue of a frog monkey, many colors, standing next to the ruins of an ancient city")
|
|
list_prompts.append("statue made of hot metal, bizzarre, dark clouds in the sky")
|
|
list_prompts.append("statue of a spider that looked like a human")
|
|
list_prompts.append("statue of a bird that looked like a scorpion")
|
|
list_prompts.append("statue of an ancient cybernetic messenger annoucing good news, golden, futuristic")
|
|
|
|
|
|
list_seeds = [234187386, 422209351, 241845736, 28652396, 783279867, 831049796, 234903931]
|
|
|
|
fp_movie = "/home/lugo/tmp/latentblending/bubua.mp4"
|
|
ms = MovieSaver(fp_movie, fps=fps)
|
|
|
|
lb.run_multi_transition(
|
|
list_prompts,
|
|
list_seeds,
|
|
list_nmb_branches,
|
|
list_injection_strength=list_injection_strength,
|
|
ms=ms,
|
|
fps=fps,
|
|
duration_single_trans=duration_single_trans
|
|
)
|
|
|
|
|
|
|
|
#%%
|
|
"""
|
|
TODO Coding:
|
|
RUNNING WITHOUT PROMPT!
|
|
|
|
auto mode (quality settings)
|
|
save value ranges, can it be trashed?
|
|
set all variables in init! self.img2...
|
|
|
|
TODO Other:
|
|
github
|
|
write text
|
|
requirements
|
|
make graphic explaining
|
|
make colab
|
|
license
|
|
twitter et al
|
|
"""
|