# Copyright 2022 Lunar Ring. All rights reserved. # Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os, sys import torch torch.backends.cudnn.benchmark = False import numpy as np import warnings warnings.filterwarnings('ignore') import warnings import torch from tqdm.auto import tqdm from PIL import Image # import matplotlib.pyplot as plt import torch from movie_util import MovieSaver from typing import Callable, List, Optional, Union from latent_blending import LatentBlending, add_frames_linear_interp from stable_diffusion_holder import StableDiffusionHolder torch.set_grad_enabled(False) #%% First let us spawn a stable diffusion holder fp_ckpt = "../stable_diffusion_models/riffusion/riffusion-model-v1.ckpt" fp_config = "configs/v1-inference.yaml" sdh = StableDiffusionHolder(fp_ckpt, fp_config) #%% Next let's set up all parameters depth_strength = 0.25 # Specifies how deep (in terms of diffusion iterations the first branching happens) t_compute_max_allowed = 10 # Determines the quality of the transition in terms of compute time you grant it fixed_seeds = [69731932, 504430820] prompt1 = "ambient pad trippy" prompt2 = "ambient pad psychedelic" # Spawn latent blending lb = LatentBlending(sdh) lb.set_prompt1(prompt1) lb.set_prompt2(prompt2) lb.branch1_influence = 0.0 lb.branch1_max_depth_influence = 0.65 lb.branch1_influence_decay = 0.8 lb.parental_influence = 0.0 lb.parental_max_depth_influence = 1.0 lb.parental_influence_decay = 1.0 # x = lb.compute_latents1(True) # Image.fromarray(x).save("//home/lugo/git/riffusion/testA.png") # xxx # Run latent blending lb.run_transition( depth_strength = depth_strength, t_compute_max_allowed = t_compute_max_allowed, fixed_seeds = fixed_seeds ) dp_save = "/home/lugo/git/riffusion/latentblending" for i in range(len(lb.tree_final_imgs)): fp_save = os.path.join(dp_save, f"sound_{str(i).zfill(3)}.png") Image.fromarray(lb.tree_final_imgs[i]).save(fp_save) #%% take this file """ #!/bin/bash FOLDER="/home/lugo/git/riffusion/latentblending" for file in "$FOLDER"/*.png; do filename=$(basename -- "$file") # get the filename without the folder path filename_no_ext="${filename%.*}" # remove the file extension (i.e. png) # call riffusion.cli to convert the png to wav python -m riffusion.cli image-to-audio --image "$file" --audio "${FOLDER}/${filename_no_ext}.wav" done """