# Copyright 2022 Lunar Ring. All rights reserved. # Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os, sys import torch torch.backends.cudnn.benchmark = False import numpy as np import warnings warnings.filterwarnings('ignore') import warnings import torch from tqdm.auto import tqdm from PIL import Image # import matplotlib.pyplot as plt import torch from movie_util import MovieSaver, concatenate_movies from typing import Callable, List, Optional, Union from latent_blending import LatentBlending, add_frames_linear_interp from stable_diffusion_holder import StableDiffusionHolder torch.set_grad_enabled(False) #%% Define vars for low-resoltion pass list_prompts = [] list_prompts.append("surrealistic statue made of glitter and dirt, standing in a lake, atmospheric light, strange glow") list_prompts.append("statue of a mix between a tree and human, made of marble, incredibly detailed") list_prompts.append("weird statue of a frog monkey, many colors, standing next to the ruins of an ancient city") list_prompts.append("statue of a spider that looked like a human") list_prompts.append("statue of a bird that looked like a scorpion") list_prompts.append("statue of an ancient cybernetic messenger annoucing good news, golden, futuristic") # You can optionally specify the seeds list_seeds = [954375479, 332539350, 956051013, 408831845, 250009012, 675588737] width = 512 height = 384 duration_single_trans = 6 num_inference_steps_lores = 40 nmb_max_branches_lores = 10 depth_strength_lores = 0.5 fp_ckpt_lores = "../stable_diffusion_models/ckpt/v2-1_512-ema-pruned.ckpt" #%% Define vars for high-resoltion pass fp_ckpt_hires = "../stable_diffusion_models/ckpt/x4-upscaler-ema.ckpt" depth_strength_hires = 0.65 num_inference_steps_hires = 100 nmb_branches_final_hires = 6 #%% Run low-res pass sdh = StableDiffusionHolder(fp_ckpt_lores) t_compute_max_allowed = 12 # per segment lb = LatentBlending(sdh) list_movie_dirs = [] # for i in range(len(list_prompts)-1): # For a multi transition we can save some computation time and recycle the latents if i==0: lb.set_prompt1(list_prompts[i]) lb.set_prompt2(list_prompts[i+1]) recycle_img1 = False else: lb.swap_forward() lb.set_prompt2(list_prompts[i+1]) recycle_img1 = True dp_movie_part = f"tmp_part_{str(i).zfill(3)}" fp_movie_part = os.path.join(dp_movie_part, "movie_lowres.mp4") os.makedirs(dp_movie_part, exist_ok=True) fixed_seeds = list_seeds[i:i+2] # Run latent blending lb.run_transition( depth_strength = depth_strength_lores, nmb_max_branches = nmb_max_branches_lores, fixed_seeds = fixed_seeds ) # Save movie and images (needed for upscaling!) lb.write_movie_transition(fp_movie_part, duration_single_trans) lb.write_imgs_transition(dp_movie_part) list_movie_dirs.append(dp_movie_part) #%% Run high-res pass on each segment sdh = StableDiffusionHolder(fp_ckpt_hires) lb = LatentBlending(sdh) for dp_part in list_movie_dirs: lb.run_upscaling(dp_part, depth_strength_hires, num_inference_steps_hires, nmb_branches_final_hires) #%% concatenate into one long movie list_fp_movies = [] for dp_part in list_movie_dirs: fp_movie = os.path.join(dp_part, "movie_highres.mp4") assert os.path.isfile(fp_movie) list_fp_movies.append(fp_movie) fp_final = "example4.mp4" concatenate_movies(fp_final, list_fp_movies)