# Copyright 2022 Lunar Ring. All rights reserved. # Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os, sys import torch torch.backends.cudnn.benchmark = False import numpy as np import warnings warnings.filterwarnings('ignore') import warnings import torch from tqdm.auto import tqdm from PIL import Image # import matplotlib.pyplot as plt import torch from movie_util import MovieSaver from typing import Callable, List, Optional, Union from latent_blending import LatentBlending, add_frames_linear_interp from stable_diffusion_holder import StableDiffusionHolder torch.set_grad_enabled(False) #%% Define vars for low-resoltion pass prompt1 = "photo of mount vesuvius erupting a terrifying pyroclastic ash cloud" prompt2 = "photo of a inside a building full of ash, fire, death, destruction, explosions" fixed_seeds = [5054613, 1168652] width = 512 height = 384 num_inference_steps_lores = 40 nmb_max_branches_lores = 10 depth_strength_lores = 0.5 fp_ckpt_lores = "../stable_diffusion_models/ckpt/v2-1_512-ema-pruned.ckpt" #%% Define vars for high-resoltion pass fp_ckpt_hires = "../stable_diffusion_models/ckpt/x4-upscaler-ema.ckpt" depth_strength_hires = 0.65 num_inference_steps_hires = 100 nmb_branches_final_hires = 6 dp_imgs = "tmp_transition" # folder for results and intermediate steps #%% Run low-res pass sdh = StableDiffusionHolder(fp_ckpt_lores) #%% lb = LatentBlending(sdh) lb.set_prompt1(prompt1) lb.set_prompt2(prompt2) lb.set_width(width) lb.set_height(height) # Run latent blending lb.run_transition( depth_strength = depth_strength_lores, nmb_max_branches = nmb_max_branches_lores, fixed_seeds = fixed_seeds ) lb.write_imgs_transition(dp_imgs) #%% Run high-res pass sdh = StableDiffusionHolder(fp_ckpt_hires) lb = LatentBlending(sdh) lb.run_upscaling(dp_imgs, depth_strength_hires, num_inference_steps_hires, nmb_branches_final_hires)