# Copyright 2022 Lunar Ring. All rights reserved. # Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os, sys import torch torch.backends.cudnn.benchmark = False import numpy as np import warnings warnings.filterwarnings('ignore') import warnings import torch from tqdm.auto import tqdm from PIL import Image import torch from movie_util import MovieSaver, concatenate_movies from typing import Callable, List, Optional, Union from latent_blending import get_time, yml_save, LatentBlending, add_frames_linear_interp, compare_dicts from stable_diffusion_holder import StableDiffusionHolder torch.set_grad_enabled(False) import gradio as gr import copy from dotenv import find_dotenv, load_dotenv import shutil #%% class BlendingFrontend(): def __init__(self, sdh=None): self.num_inference_steps = 30 if sdh is None: self.use_debug = True self.height = 768 self.width = 768 else: self.use_debug = False self.lb = LatentBlending(sdh) self.lb.sdh.num_inference_steps = self.num_inference_steps self.height = self.lb.sdh.height self.width = self.lb.sdh.width self.init_save_dir() self.save_empty_image() self.share = True self.transition_can_be_computed = False self.depth_strength = 0.25 self.seed1 = 420 self.seed2 = 420 self.guidance_scale = 4.0 self.guidance_scale_mid_damper = 0.5 self.mid_compression_scaler = 1.2 self.prompt1 = "" self.prompt2 = "" self.negative_prompt = "" self.state_current = {} self.branch1_crossfeed_power = self.lb.branch1_crossfeed_power self.branch1_crossfeed_range = self.lb.branch1_crossfeed_range self.branch1_crossfeed_decay = self.lb.branch1_crossfeed_decay self.parental_crossfeed_power = self.lb.parental_crossfeed_power self.parental_crossfeed_range = self.lb.parental_crossfeed_range self.parental_crossfeed_power_decay = self.lb.parental_crossfeed_power_decay self.fps = 30 self.duration_video = 10 self.t_compute_max_allowed = 10 self.list_fp_imgs_current = [] self.current_timestamp = None self.recycle_img1 = False self.recycle_img2 = False self.fp_img1 = None self.fp_img2 = None self.multi_idx_current = -1 self.list_imgs_shown_last = 5*[self.fp_img_empty] self.list_all_segments = [] self.dp_session = "" def init_save_dir(self): load_dotenv(find_dotenv(), verbose=False) self.dp_out = os.getenv("DIR_OUT") if self.dp_out is None: self.dp_out = "" self.dp_imgs = os.path.join(self.dp_out, "imgs") os.makedirs(self.dp_imgs, exist_ok=True) self.dp_movies = os.path.join(self.dp_out, "movies") os.makedirs(self.dp_movies, exist_ok=True) # make dummy image def save_empty_image(self): self.fp_img_empty = os.path.join(self.dp_imgs, 'empty.jpg') Image.fromarray(np.zeros((self.height, self.width, 3), dtype=np.uint8)).save(self.fp_img_empty, quality=5) def randomize_seed1(self): # Dont randomize seed if we are in a multi concat mode. we don't want to change this one otherwise the movie breaks if len(self.list_all_segments) > 0: seed = self.seed1 else: seed = np.random.randint(0, 10000000) self.seed1 = int(seed) print(f"randomize_seed1: new seed = {self.seed1}") return seed def randomize_seed2(self): seed = np.random.randint(0, 10000000) self.seed2 = int(seed) print(f"randomize_seed2: new seed = {self.seed2}") return seed def setup_lb(self, list_ui_elem): # Collect latent blending variables self.state_current = self.get_state_dict() self.lb.set_width(list_ui_elem[list_ui_keys.index('width')]) self.lb.set_height(list_ui_elem[list_ui_keys.index('height')]) self.lb.set_prompt1(list_ui_elem[list_ui_keys.index('prompt1')]) self.lb.set_prompt2(list_ui_elem[list_ui_keys.index('prompt2')]) self.lb.set_negative_prompt(list_ui_elem[list_ui_keys.index('negative_prompt')]) self.lb.guidance_scale = list_ui_elem[list_ui_keys.index('guidance_scale')] self.lb.guidance_scale_mid_damper = list_ui_elem[list_ui_keys.index('guidance_scale_mid_damper')] self.t_compute_max_allowed = list_ui_elem[list_ui_keys.index('duration_compute')] self.lb.num_inference_steps = list_ui_elem[list_ui_keys.index('num_inference_steps')] self.lb.sdh.num_inference_steps = list_ui_elem[list_ui_keys.index('num_inference_steps')] self.duration_video = list_ui_elem[list_ui_keys.index('duration_video')] self.lb.seed1 = list_ui_elem[list_ui_keys.index('seed1')] #seed self.lb.seed2 = list_ui_elem[list_ui_keys.index('seed2')] self.lb.branch1_crossfeed_power = list_ui_elem[list_ui_keys.index('branch1_crossfeed_power')] self.lb.branch1_crossfeed_range = list_ui_elem[list_ui_keys.index('branch1_crossfeed_range')] self.lb.branch1_crossfeed_decay = list_ui_elem[list_ui_keys.index('branch1_crossfeed_decay')] self.lb.parental_crossfeed_power = list_ui_elem[list_ui_keys.index('parental_crossfeed_power')] self.lb.parental_crossfeed_range = list_ui_elem[list_ui_keys.index('parental_crossfeed_range')] self.lb.parental_crossfeed_power_decay = list_ui_elem[list_ui_keys.index('parental_crossfeed_power_decay')] self.num_inference_steps = list_ui_elem[list_ui_keys.index('num_inference_steps')] self.depth_strength = list_ui_elem[list_ui_keys.index('depth_strength')] def compute_img1(self, *args): list_ui_elem = args self.setup_lb(list_ui_elem) self.fp_img1 = os.path.join(self.dp_imgs, f"img1_{get_time('second')}.jpg") img1 = Image.fromarray(self.lb.compute_latents1(return_image=True)) img1.save(self.fp_img1) self.recycle_img1 = True self.recycle_img2 = False return [self.fp_img1, self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.fp_img_empty] def compute_img2(self, *args): if self.fp_img1 is None: # don't do anything return [self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.fp_img_empty] list_ui_elem = args self.setup_lb(list_ui_elem) self.fp_img2 = os.path.join(self.dp_imgs, f"img2_{get_time('second')}.jpg") img2 = Image.fromarray(self.lb.compute_latents2(return_image=True)) img2.save(self.fp_img2) self.recycle_img2 = True self.transition_can_be_computed = True return [self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.fp_img2] def compute_transition(self, *args): if not self.transition_can_be_computed: list_return = [self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.fp_img_empty] return list_return list_ui_elem = args self.setup_lb(list_ui_elem) print("STARTING TRANSITION...") if self.use_debug: list_imgs = [(255*np.random.rand(self.height,self.width,3)).astype(np.uint8) for l in range(5)] list_imgs = [Image.fromarray(l) for l in list_imgs] print("DONE! SENDING BACK RESULTS") return list_imgs fixed_seeds = [self.seed1, self.seed2] # Run Latent Blending imgs_transition = self.lb.run_transition( recycle_img1=self.recycle_img1, recycle_img2=self.recycle_img2, num_inference_steps=self.num_inference_steps, depth_strength=self.depth_strength, t_compute_max_allowed=self.t_compute_max_allowed, fixed_seeds=fixed_seeds ) print(f"Latent Blending pass finished. Resulted in {len(imgs_transition)} images") # Subselect three preview images idx_img_prev = np.round(np.linspace(0, len(imgs_transition)-1, 5)[1:-1]).astype(np.int32) list_imgs_preview = [] for j in idx_img_prev: list_imgs_preview.append(Image.fromarray(imgs_transition[j])) # Save the preview imgs as jpgs on disk so we are not sending umcompressed data around self.current_timestamp = get_time('second') self.list_fp_imgs_current = [] for i in range(len(list_imgs_preview)): fp_img = os.path.join(self.dp_imgs, f"img_preview_{i}_{self.current_timestamp}.jpg") list_imgs_preview[i].save(fp_img) self.list_fp_imgs_current.append(fp_img) # Insert cheap frames for the movie imgs_transition_ext = add_frames_linear_interp(imgs_transition, self.duration_video, self.fps) # Save as movie self.fp_movie = os.path.join(self.dp_movies, f"movie_{self.current_timestamp}.mp4") if os.path.isfile(self.fp_movie): os.remove(self.fp_movie) ms = MovieSaver(self.fp_movie, fps=self.fps) for img in tqdm(imgs_transition_ext): ms.write_frame(img) ms.finalize() print("DONE SAVING MOVIE! SENDING BACK...") # Assemble Output, updating the preview images and le movie list_return = self.list_fp_imgs_current + [self.fp_movie] return list_return def stack_forward(self, prompt2, seed2): # Save preview images, prompts and seeds into dictionary for stacking if len(self.list_all_segments) == 0: timestamp_session = get_time('second') self.dp_session = os.path.join(self.dp_out, f"session_{timestamp_session}") os.makedirs(self.dp_session) self.transition_can_be_computed = False idx_segment = len(self.list_all_segments) dp_segment = os.path.join(self.dp_session, f"segment_{str(idx_segment).zfill(3)}") self.list_all_segments.append(dp_segment) self.lb.write_imgs_transition(dp_segment) shutil.copyfile(self.fp_movie, os.path.join(dp_segment, "movie.mp4")) self.lb.swap_forward() fp_multi = self.multi_concat() list_out = [fp_multi] list_out.extend([self.fp_img2]) list_out.extend([self.fp_img_empty]*4) list_out.append(gr.update(interactive=False, value=prompt2)) list_out.append(gr.update(interactive=False, value=seed2)) list_out.append("") list_out.append(np.random.randint(0, 10000000)) print(f"stack_forward: fp_multi {fp_multi}") return list_out def multi_concat(self): list_fp_movies = [] for dp_segment in self.list_all_segments: list_fp_movies.append(os.path.join(dp_segment, "movie.mp4")) # Concatenate movies and save fp_final = os.path.join(self.dp_session, "movie.mp4") concatenate_movies(fp_final, list_fp_movies) return fp_final def get_state_dict(self): state_dict = {} grab_vars = ['prompt1', 'prompt2', 'seed1', 'seed2', 'height', 'width', 'num_inference_steps', 'depth_strength', 'guidance_scale', 'guidance_scale_mid_damper', 'mid_compression_scaler'] for v in grab_vars: state_dict[v] = getattr(self, v) return state_dict if __name__ == "__main__": # fp_ckpt = "../stable_diffusion_models/ckpt/v2-1_768-ema-pruned.ckpt" fp_ckpt = "../stable_diffusion_models/ckpt/v2-1_512-ema-pruned.ckpt" bf = BlendingFrontend(StableDiffusionHolder(fp_ckpt)) # self = BlendingFrontend(None) with gr.Blocks() as demo: with gr.Row(): prompt1 = gr.Textbox(label="prompt 1") prompt2 = gr.Textbox(label="prompt 2") with gr.Row(): duration_compute = gr.Slider(5, 200, bf.t_compute_max_allowed, step=1, label='compute budget', interactive=True) duration_video = gr.Slider(1, 100, bf.duration_video, step=0.1, label='video duration', interactive=True) height = gr.Slider(256, 2048, bf.height, step=128, label='height', interactive=True) width = gr.Slider(256, 2048, bf.width, step=128, label='width', interactive=True) with gr.Accordion("Advanced Settings (click to expand)", open=False): with gr.Accordion("Diffusion settings", open=True): with gr.Row(): num_inference_steps = gr.Slider(5, 100, bf.num_inference_steps, step=1, label='num_inference_steps', interactive=True) guidance_scale = gr.Slider(1, 25, bf.guidance_scale, step=0.1, label='guidance_scale', interactive=True) negative_prompt = gr.Textbox(label="negative prompt") with gr.Accordion("Seed control: adjust seeds for first and last images", open=True): with gr.Row(): b_newseed1 = gr.Button("randomize seed 1", variant='secondary') seed1 = gr.Number(bf.seed1, label="seed 1", interactive=True) seed2 = gr.Number(bf.seed2, label="seed 2", interactive=True) b_newseed2 = gr.Button("randomize seed 2", variant='secondary') with gr.Accordion("Last image crossfeeding.", open=True): with gr.Row(): branch1_crossfeed_power = gr.Slider(0.0, 1.0, bf.branch1_crossfeed_power, step=0.01, label='branch1 crossfeed power', interactive=True) branch1_crossfeed_range = gr.Slider(0.0, 1.0, bf.branch1_crossfeed_range, step=0.01, label='branch1 crossfeed range', interactive=True) branch1_crossfeed_decay = gr.Slider(0.0, 1.0, bf.branch1_crossfeed_decay, step=0.01, label='branch1 crossfeed decay', interactive=True) with gr.Accordion("Transition settings", open=True): with gr.Row(): parental_crossfeed_power = gr.Slider(0.0, 1.0, bf.parental_crossfeed_power, step=0.01, label='parental crossfeed power', interactive=True) parental_crossfeed_range = gr.Slider(0.0, 1.0, bf.parental_crossfeed_range, step=0.01, label='parental crossfeed range', interactive=True) parental_crossfeed_power_decay = gr.Slider(0.0, 1.0, bf.parental_crossfeed_power_decay, step=0.01, label='parental crossfeed decay', interactive=True) with gr.Row(): depth_strength = gr.Slider(0.01, 0.99, bf.depth_strength, step=0.01, label='depth_strength', interactive=True) guidance_scale_mid_damper = gr.Slider(0.01, 2.0, bf.guidance_scale_mid_damper, step=0.01, label='guidance_scale_mid_damper', interactive=True) with gr.Row(): b_compute1 = gr.Button('compute first image', variant='primary') b_compute_transition = gr.Button('compute transition', variant='primary') b_compute2 = gr.Button('compute last image', variant='primary') with gr.Row(): img1 = gr.Image(label="1/5") img2 = gr.Image(label="2/5", show_progress=False) img3 = gr.Image(label="3/5", show_progress=False) img4 = gr.Image(label="4/5", show_progress=False) img5 = gr.Image(label="5/5") with gr.Row(): vid_single = gr.Video(label="single trans") vid_multi = gr.Video(label="multi trans") with gr.Row(): # b_restart = gr.Button("RESTART EVERYTHING") b_stackforward = gr.Button('append last movie segment (left) to multi movie (right)', variant='primary') with gr.Row(): gr.Markdown( """ # Parameters ## Main - compute budget: set your waiting time for the transition. high values = better quality - video duration: seconds per segment - height/width: in pixels ## Diffusion settings - num_inference_steps: number of diffusion steps - guidance_scale: latent blending seems to prefer lower values here - negative prompt: enter negative prompt here, applied for all images ## Last image crossfeeding - branch1_crossfeed_power: Controls the level of cross-feeding between the first and last image branch. For preserving structures. - branch1_crossfeed_range: Sets the duration of active crossfeed during development. High values enforce strong structural similarity. - branch1_crossfeed_decay: Sets decay for branch1_crossfeed_power. Lower values make the decay stronger across the range. ## Transition settings - parental_crossfeed_power: Similar to branch1_crossfeed_power, however applied for the images withinin the transition. - parental_crossfeed_range: Similar to branch1_crossfeed_range, however applied for the images withinin the transition. - parental_crossfeed_power_decay: Similar to branch1_crossfeed_decay, however applied for the images withinin the transition. - depth_strength: Determines when the blending process will begin in terms of diffusion steps. Low values more inventive but can cause motion. - guidance_scale_mid_damper: Decreases the guidance scale in the middle of a transition. """ ) # Collect all UI elemts in list to easily pass as inputs in gradio dict_ui_elem = {} dict_ui_elem["prompt1"] = prompt1 dict_ui_elem["negative_prompt"] = negative_prompt dict_ui_elem["prompt2"] = prompt2 dict_ui_elem["duration_compute"] = duration_compute dict_ui_elem["duration_video"] = duration_video dict_ui_elem["height"] = height dict_ui_elem["width"] = width dict_ui_elem["depth_strength"] = depth_strength dict_ui_elem["branch1_crossfeed_power"] = branch1_crossfeed_power dict_ui_elem["branch1_crossfeed_range"] = branch1_crossfeed_range dict_ui_elem["branch1_crossfeed_decay"] = branch1_crossfeed_decay dict_ui_elem["num_inference_steps"] = num_inference_steps dict_ui_elem["guidance_scale"] = guidance_scale dict_ui_elem["guidance_scale_mid_damper"] = guidance_scale_mid_damper dict_ui_elem["seed1"] = seed1 dict_ui_elem["seed2"] = seed2 dict_ui_elem["parental_crossfeed_range"] = parental_crossfeed_range dict_ui_elem["parental_crossfeed_power"] = parental_crossfeed_power dict_ui_elem["parental_crossfeed_power_decay"] = parental_crossfeed_power_decay # Convert to list, as gradio doesn't seem to accept dicts list_ui_elem = [] list_ui_keys = [] for k in dict_ui_elem.keys(): list_ui_elem.append(dict_ui_elem[k]) list_ui_keys.append(k) bf.list_ui_keys = list_ui_keys b_newseed1.click(bf.randomize_seed1, outputs=seed1) b_newseed2.click(bf.randomize_seed2, outputs=seed2) b_compute1.click(bf.compute_img1, inputs=list_ui_elem, outputs=[img1, img2, img3, img4, img5]) b_compute2.click(bf.compute_img2, inputs=list_ui_elem, outputs=[img2, img3, img4, img5]) b_compute_transition.click(bf.compute_transition, inputs=list_ui_elem, outputs=[img2, img3, img4, vid_single]) b_stackforward.click(bf.stack_forward, inputs=[prompt2, seed2], outputs=[vid_multi, img1, img2, img3, img4, img5, prompt1, seed1, prompt2]) demo.launch(share=bf.share, inbrowser=True, inline=False)