# Copyright 2022 Lunar Ring. All rights reserved. # Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import warnings from latent_blending import LatentBlending from diffusers_holder import DiffusersHolder from diffusers import DiffusionPipeline from diffusers import AutoPipelineForText2Image warnings.filterwarnings('ignore') torch.set_grad_enabled(False) torch.backends.cudnn.benchmark = False # %% First let us spawn a stable diffusion holder. Uncomment your version of choice. pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16") pipe.to("cuda") dh = DiffusersHolder(pipe) # %% Next let's set up all parameters depth_strength = 0.55 # Specifies how deep (in terms of diffusion iterations the first branching happens) t_compute_max_allowed = 10 # Determines the quality of the transition in terms of compute time you grant it num_inference_steps = 4 size_output = (1024, 1024) prompt1 = "underwater landscape, fish, und the sea, incredible detail, high resolution" prompt2 = "rendering of an alien planet, strange plants, strange creatures, surreal" negative_prompt = "blurry, ugly, pale" # Optional fp_movie = 'movie_example1.mp4' duration_transition = 12 # In seconds # Spawn latent blending lb = LatentBlending(dh) lb.set_prompt1(prompt1) lb.set_prompt2(prompt2) lb.set_dimensions(size_output) lb.set_negative_prompt(negative_prompt) lb.set_guidance_scale(0) # Run latent blending lb.run_transition( depth_strength=depth_strength, num_inference_steps=num_inference_steps, t_compute_max_allowed=t_compute_max_allowed) # Save movie lb.write_movie_transition(fp_movie, duration_transition)