# Copyright 2022 Lunar Ring. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os, sys import torch torch.backends.cudnn.benchmark = False import numpy as np import warnings warnings.filterwarnings('ignore') import warnings import torch from tqdm.auto import tqdm from PIL import Image import matplotlib.pyplot as plt import torch from movie_util import MovieSaver from typing import Callable, List, Optional, Union from latent_blending import LatentBlending, add_frames_linear_interp from stable_diffusion_holder import StableDiffusionHolder torch.set_grad_enabled(False) #%% First let us spawn a stable diffusion holder use_inpaint = True device = "cuda" fp_ckpt= "../stable_diffusion_models/ckpt/512-inpainting-ema.ckpt" fp_config = '../stablediffusion/configs//stable-diffusion/v2-inpainting-inference.yaml' # fp_ckpt = "../stable_diffusion_models/ckpt/768-v-ema.ckpt" # fp_config = '../stablediffusion/configs/stable-diffusion/v2-inference-v.yaml' sdh = StableDiffusionHolder(fp_ckpt, fp_config, device) #%% Next let's set up all parameters num_inference_steps = 30 # Number of diffusion interations guidance_scale = 5 lb = LatentBlending(sdh, num_inference_steps, guidance_scale) list_prompts = [] list_prompts.append("photo of a beautiful forest covered in white flowers, ambient light, very detailed, magic") list_prompts.append("photo of an golden statue with a funny hat, surrounded by ferns and vines, grainy analog photograph, mystical ambience, incredible detail") for k, prompt in enumerate(list_prompts): # k = 6 # prompt = list_prompts[k] for i in range(10): lb.set_prompt1(prompt) seed = np.random.randint(999999999) lb.set_seed(seed) plt.imshow(lb.run_diffusion(lb.text_embedding1, return_image=True)) plt.title(f"prompt {k}, seed {i} {seed}") plt.show() print(f"prompt {k} seed {seed} trial {i}") #%% #%% Let's make a source image and mask. k=0 for i in range(10): seed = 190791709# np.random.randint(999999999) # seed0 = 629575320 lb = LatentBlending(sdh) lb.autosetup_branching(quality='medium', deepth_strength=0.65) prompt1 = "photo of a futuristic alien temple in a desert, mystic, glowing, organic, intricate, sci-fi movie, mesmerizing, scary" lb.set_prompt1(prompt1) lb.init_inpainting(init_empty=True) lb.set_seed(seed) plt.imshow(lb.run_diffusion(lb.text_embedding1, return_image=True)) plt.title(f"prompt1 {k}, seed {i} {seed}") plt.show() print(f"prompt1 {k} seed {seed} trial {i}") xx #%% mask_image = 255*np.ones([512,512], dtype=np.uint8) mask_image[340:420, 170:280, ] = 0 mask_image = Image.fromarray(mask_image) #%% """ 69731932, 504430820 """