# Copyright 2022 Lunar Ring. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os, sys import torch torch.backends.cudnn.benchmark = False import numpy as np import warnings warnings.filterwarnings('ignore') import warnings import torch from tqdm.auto import tqdm from diffusers import StableDiffusionPipeline from diffusers.schedulers import DDIMScheduler from PIL import Image import matplotlib.pyplot as plt import torch from movie_util import MovieSaver from typing import Callable, List, Optional, Union from latent_blending import LatentBlending, add_frames_linear_interp from stable_diffusion_holder import StableDiffusionHolder torch.set_grad_enabled(False) #%% First let us spawn a stable diffusion holder device = "cuda:0" num_inference_steps = 20 # Number of diffusion interations fp_ckpt = "../stable_diffusion_models/ckpt/768-v-ema.ckpt" fp_config = '../stablediffusion/configs/stable-diffusion/v2-inference-v.yaml' sdh = StableDiffusionHolder(fp_ckpt, fp_config, device, num_inference_steps=num_inference_steps) #%% Next let's set up all parameters # FIXME below fix numbers # We want 20 diffusion steps in total, begin with 2 branches, have 3 branches at step 12 (=0.6*20) # 10 branches at step 16 (=0.8*20) and 24 branches at step 18 (=0.9*20) # Furthermore we want seed 993621550 for keyframeA and seed 54878562 for keyframeB () list_nmb_branches = [2, 3, 10, 24] # Branching structure: how many branches list_injection_strength = [0.0, 0.6, 0.8, 0.9] # Branching structure: how deep is the blending width = 768 height = 768 guidance_scale = 5 fixed_seeds = [993621550, 280335986] lb = LatentBlending(sdh, num_inference_steps, guidance_scale) prompt1 = "photo of a beautiful forest covered in white flowers, ambient light, very detailed, magic" prompt2 = "photo of an golden statue with a funny hat, surrounded by ferns and vines, grainy analog photograph,, mystical ambience, incredible detail" lb.set_prompt1(prompt1) lb.set_prompt2(prompt2) imgs_transition = lb.run_transition(list_nmb_branches, list_injection_strength, fixed_seeds=fixed_seeds) # let's get more cheap frames via linear interpolation duration_transition = 12 fps = 60 imgs_transition_ext = add_frames_linear_interp(imgs_transition, duration_transition, fps) # movie saving fp_movie = "/home/lugo/tmp/latentblending/bobo_incoming.mp4" if os.path.isfile(fp_movie): os.remove(fp_movie) ms = MovieSaver(fp_movie, fps=fps) for img in tqdm(imgs_transition_ext): ms.write_frame(img) ms.finalize()