import torch import warnings from diffusers import AutoPipelineForText2Image from latentblending.movie_util import concatenate_movies from latentblending.blending_engine import BlendingEngine import numpy as np torch.set_grad_enabled(False) torch.backends.cudnn.benchmark = False warnings.filterwarnings('ignore') # %% First let us spawn a stable diffusion holder. Uncomment your version of choice. pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16") pipe.to('cuda') be = BlendingEngine(pipe) # %% Let's setup the multi transition fps = 30 duration_single_trans = 10 # Specify a list of prompts below list_prompts = [] list_prompts.append("Photo of a house, high detail") list_prompts.append("Photo of an elephant in african savannah") list_prompts.append("photo of a house, high detail") # Specify the seeds list_seeds = np.random.randint(0, 10^9, len(list_prompts)) fp_movie = 'movie_example2.mp4' list_movie_parts = [] for i in range(len(list_prompts) - 1): # For a multi transition we can save some computation time and recycle the latents if i == 0: be.set_prompt1(list_prompts[i]) be.set_prompt2(list_prompts[i + 1]) recycle_img1 = False else: be.swap_forward() be.set_prompt2(list_prompts[i + 1]) recycle_img1 = True fp_movie_part = f"tmp_part_{str(i).zfill(3)}.mp4" fixed_seeds = list_seeds[i:i + 2] # Run latent blending be.run_transition( recycle_img1=recycle_img1, fixed_seeds=fixed_seeds) # Save movie be.write_movie_transition(fp_movie_part, duration_single_trans) list_movie_parts.append(fp_movie_part) # Finally, concatente the result concatenate_movies(fp_movie, list_movie_parts)