# Copyright 2022 Lunar Ring. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os, sys import torch torch.backends.cudnn.benchmark = False import numpy as np import warnings warnings.filterwarnings('ignore') import time import subprocess import warnings import torch from tqdm.auto import tqdm from diffusers import StableDiffusionInpaintPipeline from PIL import Image import torch from movie_util import MovieSaver from typing import Callable, List, Optional, Union from latent_blending import LatentBlending, add_frames_linear_interp from stable_diffusion_holder import StableDiffusionHolder torch.set_grad_enabled(False) #%% First let us spawn a stable diffusion holder device = "cuda" fp_ckpt= "../stable_diffusion_models/ckpt/512-inpainting-ema.ckpt" fp_config = '../stablediffusion/configs//stable-diffusion/v2-inpainting-inference.yaml' sdh = StableDiffusionHolder(fp_ckpt, fp_config, device) #%% Let's first make a source image and mask. quality = 'medium' depth_strength = 0.65 #Specifies how deep (in terms of diffusion iterations the first branching happens) duration_transition = 7 # In seconds fps = 30 seed0 = 190791709 # Spawn latent blending lb = LatentBlending(sdh) lb.load_branching_profile(quality=quality, depth_strength=depth_strength) prompt1 = "photo of a futuristic alien temple in a desert, mystic, glowing, organic, intricate, sci-fi movie, mesmerizing, scary" lb.set_prompt1(prompt1) lb.init_inpainting(init_empty=True) lb.set_seed(seed0) # Run diffusion list_latents = lb.run_diffusion([lb.text_embedding1]) image_source = lb.sdh.latent2image(list_latents[-1]) mask_image = 255*np.ones([512,512], dtype=np.uint8) mask_image[340:420, 170:280] = 0 mask_image = Image.fromarray(mask_image) #%% Now let us compute a transition video with inpainting # First inject back the latents that we already computed for our source image. lb.inject_latents(list_latents, inject_img1=True) # Then setup the seeds. Keep the one from the first image fixed_seeds = [seed0, 6579436] # Fix the prompts for the target prompt2 = "aerial photo of a futuristic alien temple in a blue coastal area, the sun is shining with a bright light" lb.set_prompt1(prompt1) lb.set_prompt2(prompt2) lb.init_inpainting(image_source, mask_image) # Run latent blending imgs_transition = lb.run_transition(recycle_img1=True, fixed_seeds=fixed_seeds) # Let's get more cheap frames via linear interpolation (duration_transition*fps frames) imgs_transition_ext = add_frames_linear_interp(imgs_transition, duration_transition, fps) # Save as MP4 fp_movie = "movie_example2.mp4" if os.path.isfile(fp_movie): os.remove(fp_movie) ms = MovieSaver(fp_movie, fps=fps, shape_hw=[lb.height, lb.width]) for img in tqdm(imgs_transition_ext): ms.write_frame(img) ms.finalize()