# Copyright 2022 Lunar Ring. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os, sys import torch torch.backends.cudnn.benchmark = False import numpy as np import warnings warnings.filterwarnings('ignore') import warnings import torch from tqdm.auto import tqdm from PIL import Image import matplotlib.pyplot as plt import torch from movie_util import MovieSaver from typing import Callable, List, Optional, Union from latent_blending import LatentBlending, add_frames_linear_interp from stable_diffusion_holder import StableDiffusionHolder torch.set_grad_enabled(False) #%% First let us spawn a stable diffusion holder device = "cuda:0" num_inference_steps = 20 # Number of diffusion interations fp_ckpt = "../stable_diffusion_models/ckpt/768-v-ema.ckpt" fp_config = '../stablediffusion/configs/stable-diffusion/v2-inference-v.yaml' sdh = StableDiffusionHolder(fp_ckpt, fp_config, device, num_inference_steps=num_inference_steps) #%% MULTITRANS num_inference_steps = 30 # Number of diffusion interations list_nmb_branches = [2, 10, 50, 100, 200] # list_injection_strength = list(np.linspace(0.5, 0.95, 4)) # Branching structure: how deep is the blending list_injection_strength.insert(0, 0.0) guidance_scale = 5 fps = 30 duration_single_trans = 20 width = 768 height = 768 lb = LatentBlending(sdh, num_inference_steps, guidance_scale) # deepth_strength = 0.5 # num_inference_steps, list_injection_idx, list_nmb_branches = lb.get_branching('medium', deepth_strength, fps*duration_single_trans) list_prompts = [] list_prompts.append("surrealistic statue made of glitter and dirt, standing in a lake, atmospheric light, strange glow") list_prompts.append("statue of a mix between a tree and human, made of marble, incredibly detailed") list_prompts.append("weird statue of a frog monkey, many colors, standing next to the ruins of an ancient city") list_prompts.append("statue made of hot metal, bizzarre, dark clouds in the sky") list_prompts.append("statue of a spider that looked like a human") list_prompts.append("statue of a bird that looked like a scorpion") list_prompts.append("statue of an ancient cybernetic messenger annoucing good news, golden, futuristic") list_seeds = [234187386, 422209351, 241845736, 28652396, 783279867, 831049796, 234903931] fp_movie = "movie_example3.mp4" ms = MovieSaver(fp_movie, fps=fps) lb.run_multi_transition( list_prompts, list_seeds, list_nmb_branches, # list_injection_idx=list_injection_idx, list_injection_strength=list_injection_strength, ms=ms, fps=fps, duration_single_trans=duration_single_trans ) #%% #for img in lb.tree_final_imgs: # if img is not None: # ms.write_frame(img) # #ms.finalize()