# Copyright 2022 Lunar Ring. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os, sys import torch torch.backends.cudnn.benchmark = False import numpy as np import warnings warnings.filterwarnings('ignore') import warnings import torch from tqdm.auto import tqdm from PIL import Image import matplotlib.pyplot as plt import torch from movie_util import MovieSaver from typing import Callable, List, Optional, Union from latent_blending import LatentBlending, add_frames_linear_interp from stable_diffusion_holder import StableDiffusionHolder torch.set_grad_enabled(False) #%% First let us spawn a stable diffusion holder device = "cuda:0" num_inference_steps = 20 # Number of diffusion interations fp_ckpt = "../stable_diffusion_models/ckpt/768-v-ema.ckpt" fp_config = '../stablediffusion/configs/stable-diffusion/v2-inference-v.yaml' sdh = StableDiffusionHolder(fp_ckpt, fp_config, device, num_inference_steps=num_inference_steps) #%% Next let's set up all parameters # FIXME below fix numbers # We want 20 diffusion steps in total, begin with 2 branches, have 3 branches at step 12 (=0.6*20) # 10 branches at step 16 (=0.8*20) and 24 branches at step 18 (=0.9*20) # Furthermore we want seed 993621550 for keyframeA and seed 54878562 for keyframeB () list_nmb_branches = [2, 3, 10, 24] # Branching structure: how many branches list_injection_strength = [0.0, 0.6, 0.8, 0.9] # Branching structure: how deep is the blending width = 768 height = 768 guidance_scale = 5 fixed_seeds = [993621550, 280335986] lb = LatentBlending(sdh, num_inference_steps, guidance_scale) prompt1 = "photo of a beautiful forest covered in white flowers, ambient light, very detailed, magic" prompt2 = "photo of an golden statue with a funny hat, surrounded by ferns and vines, grainy analog photograph,, mystical ambience, incredible detail" lb.set_prompt1(prompt1) lb.set_prompt2(prompt2) imgs_transition = lb.run_transition(list_nmb_branches, list_injection_strength, fixed_seeds=fixed_seeds) # let's get more cheap frames via linear interpolation duration_transition = 12 fps = 60 imgs_transition_ext = add_frames_linear_interp(imgs_transition, duration_transition, fps) # movie saving fp_movie = "movie_example1.mp4" if os.path.isfile(fp_movie): os.remove(fp_movie) ms = MovieSaver(fp_movie, fps=fps) for img in tqdm(imgs_transition_ext): ms.write_frame(img) ms.finalize()