# Copyright 2022 Lunar Ring. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os, sys import torch torch.backends.cudnn.benchmark = False import numpy as np import warnings warnings.filterwarnings('ignore') import warnings import torch from tqdm.auto import tqdm from diffusers import StableDiffusionPipeline from diffusers.schedulers import DDIMScheduler from PIL import Image import matplotlib.pyplot as plt import torch from movie_util import MovieSaver from typing import Callable, List, Optional, Union from latent_blending import LatentBlending, add_frames_linear_interp torch.set_grad_enabled(False) #%% First let us spawn a diffusers pipe using DDIMScheduler device = "cuda:0" model_path = "../stable_diffusion_models/stable-diffusion-v1-5" scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False) pipe = StableDiffusionPipeline.from_pretrained( model_path, revision="fp16", torch_dtype=torch.float16, scheduler=scheduler, use_auth_token=True ) pipe = pipe.to(device) #%% MULTITRANS # XXX FIXME AssertionError: Need to supply floats for list_injection_strength # GO AS DEEP AS POSSIBLE WITHOUT CAUSING MOTION num_inference_steps = 100 # Number of diffusion interations #list_nmb_branches = [2, 12, 24, 55, 77] # Branching structure: how many branches #list_injection_strength = [0.0, 0.35, 0.5, 0.65, 0.95] # Branching structure: how deep is the blending list_nmb_branches = list(np.linspace(2, 600, 15).astype(int)) # list_injection_strength = list(np.linspace(0.45, 0.97, 14).astype(np.float32)) # Branching structure: how deep is the blending list_injection_strength = [float(x) for x in list_injection_strength] list_injection_strength.insert(0,0.0) width = 512 height = 512 guidance_scale = 5 fps = 30 duration_target = 20 width = 512 height = 512 lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale) #list_nmb_branches = [2, 3, 10, 24] # Branching structure: how many branches #list_injection_strength = [0.0, 0.6, 0.8, 0.9] # list_prompts = [] list_prompts.append("surrealistic statue made of glitter and dirt, standing in a lake, atmospheric light, strange glow") list_prompts.append("statue of a mix between a tree and human, made of marble, incredibly detailed") list_prompts.append("weird statue of a frog monkey, many colors, standing next to the ruins of an ancient city") list_prompts.append("statue made of hot metal, bizzarre, dark clouds in the sky") list_prompts.append("statue of a spider that looked like a human") list_prompts.append("statue of a bird that looked like a scorpion") list_prompts.append("statue of an ancient cybernetic messenger annoucing good news, golden, futuristic") list_seeds = [234187386, 422209351, 241845736, 28652396, 783279867, 831049796, 234903931] fp_movie = "/home/lugo/tmp/latentblending/bubu.mp4" ms = MovieSaver(fp_movie, fps=fps) for i in range(len(list_prompts)-1): print(f"Starting movie segment {i+1}/{len(list_prompts)-1}") if i==0: lb.set_prompt1(list_prompts[i]) lb.set_prompt2(list_prompts[i+1]) recycle_img1 = False else: lb.swap_forward() lb.set_prompt2(list_prompts[i+1]) recycle_img1 = True local_seeds = [list_seeds[i], list_seeds[i+1]] list_imgs = lb.run_transition(list_nmb_branches, list_injection_strength, recycle_img1=recycle_img1, fixed_seeds=local_seeds) list_imgs_interp = add_frames_linear_interp(list_imgs, fps, duration_target) # Save movie frame for img in list_imgs_interp: ms.write_frame(img) ms.finalize() #%% #for img in lb.tree_final_imgs: # if img is not None: # ms.write_frame(img) # #ms.finalize()