# Copyright 2022 Lunar Ring. All rights reserved. # Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os, sys import torch torch.backends.cudnn.benchmark = False import numpy as np import warnings warnings.filterwarnings('ignore') import warnings import torch from tqdm.auto import tqdm from PIL import Image # import matplotlib.pyplot as plt import torch from movie_util import MovieSaver from typing import Callable, List, Optional, Union from latent_blending import LatentBlending, add_frames_linear_interp from stable_diffusion_holder import StableDiffusionHolder torch.set_grad_enabled(False) #%% First let us spawn a stable diffusion holder fp_ckpt = "../stable_diffusion_models/ckpt/v2-1_768-ema-pruned.ckpt" sdh = StableDiffusionHolder(fp_ckpt) #%% Next let's set up all parameters depth_strength = 0.65 # Specifies how deep (in terms of diffusion iterations the first branching happens) t_compute_max_allowed = 15 # Determines the quality of the transition in terms of compute time you grant it fixed_seeds = [69731932, 504430820] prompt1 = "photo of a beautiful cherry forest covered in white flowers, ambient light, very detailed, magic" prompt2 = "photo of an golden statue with a funny hat, surrounded by ferns and vines, grainy analog photograph, mystical ambience, incredible detail" duration_transition = 12 # In seconds fps = 30 # Spawn latent blending lb = LatentBlending(sdh) lb.set_prompt1(prompt1) lb.set_prompt2(prompt2) #FIXME AssertionError: Either specify t_compute_max_allowed or nmb_max_branches # Run latent blending imgs_transition = lb.run_transition( depth_strength = depth_strength, t_compute_max_allowed = t_compute_max_allowed, fixed_seeds = fixed_seeds ) # Let's get more cheap frames via linear interpolation (duration_transition*fps frames) imgs_transition_ext = add_frames_linear_interp(imgs_transition, duration_transition, fps) # Save as MP4 fp_movie = "movie_example1.mp4" if os.path.isfile(fp_movie): os.remove(fp_movie) ms = MovieSaver(fp_movie, fps=fps, shape_hw=[sdh.height, sdh.width]) for img in tqdm(imgs_transition_ext): ms.write_frame(img) ms.finalize()