23 Commits

Author SHA1 Message Date
DGX
9f9512fa48 movie import fix 2024-02-21 12:43:17 +00:00
DGX
359ef99eaf movie engine fix 2024-02-21 12:42:17 +00:00
DGX
37fc1cf05f removed ffmpeg 2024-02-06 12:45:07 +00:00
DGX
0d44404903 removed dependency 2024-02-06 12:36:41 +00:00
DGX
5ea7981a9c random seeds 2024-02-06 12:01:42 +00:00
Johannes Stelzer
179a42b9bf Update README.md 2024-02-05 14:07:34 +00:00
DGX
b9ed277055 pretrained path 2024-02-01 13:26:12 +00:00
DGX
896ba0c768 missing numpy import 2024-02-01 13:25:15 +00:00
Johannes Stelzer
f72cc12fb3 Update README.md 2024-01-31 16:22:38 +00:00
Johannes Stelzer
01a960c48d diffusersholder automatically spawned in blendingengine 2024-01-31 11:12:47 +00:00
Johannes Stelzer
646a3c757e Update README.md 2024-01-26 11:52:04 +00:00
Johannes Stelzer
47e72ed76f Update README.md 2024-01-10 10:00:33 +01:00
DGX
4b235b874e compile flag with sfast 2024-01-10 08:58:30 +00:00
DGX
1775c9a90a Merge branch 'main' of github.com:lunarring/latentblending 2024-01-10 08:47:44 +00:00
DGX
a0f35f2a41 moved examples 2024-01-10 08:47:35 +00:00
Johannes Stelzer
f5965154ba trailing comma 2024-01-09 21:30:37 +01:00
Johannes Stelzer
b83d3ee0a0 lpips darwin 2024-01-09 21:21:23 +01:00
Johannes Stelzer
4501d80044 Update README.md 2024-01-09 21:16:10 +01:00
Johannes Stelzer
6e138c54a2 Update README.md 2024-01-09 21:12:14 +01:00
Johannes Stelzer
1ba4b578a0 Update README.md 2024-01-09 21:11:40 +01:00
DGX
4042a098b0 accelerate 2024-01-09 20:10:12 +00:00
DGX
9d5b545c1a accelerate 2024-01-09 20:09:16 +00:00
Johannes Stelzer
f1a1b47923 Merge pull request #13 from lunarring/package
Package
2024-01-09 21:08:37 +01:00
7 changed files with 113 additions and 378 deletions

View File

@@ -2,32 +2,48 @@
Latent blending enables video transitions with incredible smoothness between prompts, computed within seconds. Powered by [stable diffusion XL](https://stability.ai/stable-diffusion), this method involves specific mixing of intermediate latent representations to create a seamless transition with users having the option to fully customize the transition directly in high-resolution. The new version also supports SDXL Turbo, allowing to generate transitions faster than they are typically played back!
```python
import torch
from diffusers import AutoPipelineForText2Image
from latentblending.blending_engine import BlendingEngine
from latentblending.diffusers_holder import DiffusersHolder
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16").to("cuda")
dh = DiffusersHolder(pipe)
lb = LatentBlending(dh)
lb.set_prompt1("photo of underwater landscape, fish, und the sea, incredible detail, high resolution")
lb.set_prompt2("rendering of an alien planet, strange plants, strange creatures, surreal")
lb.set_negative_prompt("blurry, ugly, pale")
be = BlendingEngine(pipe)
be.set_prompt1("photo of underwater landscape, fish, und the sea, incredible detail, high resolution")
be.set_prompt2("rendering of an alien planet, strange plants, strange creatures, surreal")
be.set_negative_prompt("blurry, ugly, pale")
# Run latent blending
lb.run_transition()
be.run_transition()
# Save movie
lb.write_movie_transition('movie_example1.mp4', duration_transition=12)
be.write_movie_transition('movie_example1.mp4', duration_transition=12)
```
# Installation
```commandline
pip install git+https://github.com/lunarring/latentblending
```
# Extra speedup with stable_fast compile
Install https://github.com/chengzeyi/stable-fast
Then enable pipe compilation by setting *do_compile=True*
```python
be = BlendingEngine(pipe, do_compile=True)
```
## Gradio UI
Coming soon again :)
## Example 1: Simple transition
![](example1.jpg)
To run a simple transition between two prompts, run `example1_standard.py`
To run a simple transition between two prompts, see `examples/single_trans.py`
## Example 2: Multi transition
To run multiple transition between K prompts, resulting in a stitched video, run `example2_multitrans.py`.
[View a longer example video here.](https://vimeo.com/789052336/80dcb545b2)
To run multiple transition between K prompts, resulting in a stitched video, see `examples/multi_trans.py`.
[View a longer example video here.](https://youtu.be/RLF-yW5dR_Q)
# Customization
@@ -35,19 +51,19 @@ To run multiple transition between K prompts, resulting in a stitched video, run
### Change the height/width
```python
size_output = (1024, 768)
lb.set_dimensions(size_output)
be.set_dimensions(size_output)
```
### Change the number of diffusion steps (set_num_inference_steps)
```python
lb.set_num_inference_steps(50)
be.set_num_inference_steps(50)
```
For SDXL this is set as default=30, for SDXL Turbo a value of 4 is taken.
### Change the guidance scale
```python
lb.set_guidance_scale(3.0)
be.set_guidance_scale(3.0)
```
For SDXL this is set as default=4.0, for SDXL Turbo a value of 0 is taken.
@@ -55,7 +71,7 @@ For SDXL this is set as default=4.0, for SDXL Turbo a value of 0 is taken.
```python
depth_strength = 0.5
nmb_max_branches = 15
lb.set_branching(depth_strength=depth_strength, t_compute_max_allowed=None, nmb_max_branches=None)
be.set_branching(depth_strength=depth_strength, t_compute_max_allowed=None, nmb_max_branches=None)
```
* depth_strength: The strength of the diffusion iterations determines when the blending process will begin. A value close to zero results in more creative and intricate outcomes, while a value closer to one indicates a simpler alpha blending. However, low values may also bring about the introduction of additional objects and motion.
* t_compute_max_allowed: maximum time allowed for computation. Higher values give better results but take longer. Either provide t_compute_max_allowed or nmb_max_branches. Does not work for SDXL Turbo.
@@ -66,7 +82,7 @@ You can find the [most relevant parameters here.](parameters.md)
### Change guidance scale
```python
lb.set_guidance_scale(5.0)
be.set_guidance_scale(5.0)
```
### Crossfeeding to the last image.
@@ -76,7 +92,7 @@ Cross-feeding latents is a key feature of latent blending. Here, you can set how
crossfeed_power = 0.5 # 50% of the latents in the last branch are copied from branch1
crossfeed_range = 0.7 # The crossfeed is active until 70% of num_iteration, then switched off
crossfeed_decay = 0.2 # The power of the crossfeed decreases over diffusion iterations, here it would be 0.5*0.2=0.1 in the end of the range.
lb.set_branch1_crossfeed(crossfeed_power, crossfeed_range, crossfeed_decay)
be.set_branch1_crossfeed(crossfeed_power, crossfeed_range, crossfeed_decay)
```
### Crossfeeding to all transition images
@@ -86,16 +102,10 @@ Here, you can set how much the parent branches influence the mixed one. In the a
crossfeed_power = 0.5 # 50% of the latents in the last branch are copied from the parents
crossfeed_range = 0.7 # The crossfeed is active until 70% of num_iteration, then switched off
crossfeed_decay = 0.2 # The power of the crossfeed decreases over diffusion iterations, here it would be 0.5*0.2=0.1 in the end of the range.
lb.set_parental_crossfeed(crossfeed_power, crossfeed_range, crossfeed_decay)
be.set_parental_crossfeed(crossfeed_power, crossfeed_range, crossfeed_decay)
```
# Installation
#### Packages
```commandline
pip install -r requirements.txt
```
# How does latent blending work?
## Method
![](animation.gif)
@@ -104,9 +114,9 @@ In the figure above, a diffusion tree is illustrated. The diffusion steps are re
The concrete parameters for the transition above would be:
```
lb.set_branch1_crossfeed(crossfeed_power=0.8, crossfeed_range=0.6, crossfeed_decay=0.4)
lb.set_parental_crossfeed(crossfeed_power=0.8, crossfeed_range=0.8, crossfeed_decay=0.2)
imgs_transition = lb.run_transition(num_inference_steps=10, depth_strength=0.2, nmb_max_branches=7)
be.set_branch1_crossfeed(crossfeed_power=0.8, crossfeed_range=0.6, crossfeed_decay=0.4)
be.set_parental_crossfeed(crossfeed_power=0.8, crossfeed_range=0.8, crossfeed_decay=0.2)
imgs_transition = be.run_transition(num_inference_steps=10, depth_strength=0.2, nmb_max_branches=7)
```
## Perceptual aspects
@@ -124,6 +134,7 @@ With latent blending, we can create transitions that appear to defy the laws of
* Inpaint support dropped (as it only makes sense for a single transition)
# Coming soon...
- [ ] MacOS support
- [ ] Gradio interface
- [ ] Huggingface Space
- [ ] Controlnet

View File

@@ -1,33 +1,42 @@
import torch
import warnings
from blending_engine import BlendingEngine
from diffusers_holder import DiffusersHolder
from diffusers import AutoPipelineForText2Image
from movie_util import concatenate_movies
from latentblending.movie_util import concatenate_movies
from latentblending.blending_engine import BlendingEngine
import numpy as np
torch.set_grad_enabled(False)
torch.backends.cudnn.benchmark = False
warnings.filterwarnings('ignore')
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice.
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
pipe.to('cuda')
dh = DiffusersHolder(pipe)
pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
# pretrained_model_name_or_path = "stabilityai/sdxl-turbo"
pipe = AutoPipelineForText2Image.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16, variant="fp16")
pipe.to('cuda')
be = BlendingEngine(pipe, do_compile=True)
be.set_negative_prompt("blurry, pale, low-res, lofi")
# %% Let's setup the multi transition
fps = 30
duration_single_trans = 10
be.set_dimensions((1024, 1024))
nmb_prompts = 20
# Specify a list of prompts below
#%%
list_prompts = []
list_prompts.append("Photo of a house, high detail")
list_prompts.append("Photo of an elephant in african savannah")
list_prompts.append("photo of a house, high detail")
# You can optionally specify the seeds
list_seeds = [95437579, 33259350, 956051013]
fp_movie = 'movie_example2.mp4'
be = BlendingEngine(dh)
list_prompts.append("high resolution ultra 8K image with lake and forest")
list_prompts.append("strange and alien desolate lanscapes 8K")
list_prompts.append("ultra high res psychedelic skyscraper city landscape 8K unreal engine")
#%%
fp_movie = f'surreal_nmb{len(list_prompts)}.mp4'
# Specify the seeds
list_seeds = np.random.randint(0, np.iinfo(np.int32).max, len(list_prompts))
list_movie_parts = []
for i in range(len(list_prompts) - 1):

View File

@@ -1,8 +1,7 @@
import torch
import warnings
from blending_engine import BlendingEngine
from diffusers_holder import DiffusersHolder
from diffusers import AutoPipelineForText2Image
from latentblending.blending_engine import BlendingEngine
warnings.filterwarnings('ignore')
torch.set_grad_enabled(False)
@@ -12,9 +11,7 @@ torch.backends.cudnn.benchmark = False
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
pipe.to("cuda")
dh = DiffusersHolder(pipe)
be = BlendingEngine(dh)
be = BlendingEngine(pipe)
be.set_prompt1("photo of underwater landscape, fish, und the sea, incredible detail, high resolution")
be.set_prompt2("rendering of an alien planet, strange plants, strange creatures, surreal")
be.set_negative_prompt("blurry, ugly, pale")

View File

@@ -5,10 +5,12 @@ import warnings
import time
from tqdm.auto import tqdm
from PIL import Image
from latentblending.movie_util import MovieSaver
from typing import List, Optional
import lpips
from latentblending.utils import interpolate_spherical, interpolate_linear, add_frames_linear_interp, yml_load, yml_save
import platform
from latentblending.diffusers_holder import DiffusersHolder
from latentblending.utils import interpolate_spherical, interpolate_linear, add_frames_linear_interp
from lunar_tools import MovieSaver, fill_up_frames_linear_interpolation
warnings.filterwarnings('ignore')
torch.backends.cudnn.benchmark = False
torch.set_grad_enabled(False)
@@ -17,12 +19,15 @@ torch.set_grad_enabled(False)
class BlendingEngine():
def __init__(
self,
dh: None,
pipe: None,
do_compile: bool = False,
guidance_scale_mid_damper: float = 0.5,
mid_compression_scaler: float = 1.2):
r"""
Initializes the latent blending class.
Args:
pipe: diffusers pipeline (SDXL)
do_compile: compile pipeline for faster inference using stable fast
guidance_scale_mid_damper: float = 0.5
Reduces the guidance scale towards the middle of the transition.
A value of 0.5 would decrease the guidance_scale towards the middle linearly by 0.5.
@@ -35,7 +40,8 @@ class BlendingEngine():
and guidance_scale_mid_damper <= 1.0, \
f"guidance_scale_mid_damper neees to be in interval (0,1], you provided {guidance_scale_mid_damper}"
self.dh = dh
self.dh = DiffusersHolder(pipe)
self.device = self.dh.device
self.set_dimensions()
@@ -64,6 +70,9 @@ class BlendingEngine():
self.multi_transition_img_first = None
self.multi_transition_img_last = None
self.dt_unet_step = 0
if platform.system() == "Darwin":
self.lpips = lpips.LPIPS(net='alex')
else:
self.lpips = lpips.LPIPS(net='alex').cuda(self.device)
self.set_prompt1("")
@@ -76,13 +85,23 @@ class BlendingEngine():
self.benchmark_speed()
self.set_branching()
if do_compile:
print("starting compilation")
from sfast.compilers.diffusion_pipeline_compiler import (compile, CompilationConfig)
self.dh.pipe.enable_xformers_memory_efficient_attention()
config = CompilationConfig.Default()
config.enable_xformers = True
config.enable_triton = True
config.enable_cuda_graph = True
self.dh.pipe = compile(self.dh.pipe, config)
def benchmark_speed(self):
"""
Measures the time per diffusion step and for the vae decoding
"""
print("starting speed benchmark...")
text_embeddings = self.dh.get_text_embedding("test")
latents_start = self.dh.get_noise(np.random.randint(111111))
# warmup
@@ -96,6 +115,7 @@ class BlendingEngine():
t0 = time.time()
img = self.dh.latent2image(list_latents[-1])
self.dt_vae = time.time() - t0
print(f"time per unet iteration: {self.dt_unet_step} time for vae: {self.dt_vae}")
def set_dimensions(self, size_output=None):
r"""
@@ -268,7 +288,7 @@ class BlendingEngine():
if t_compute_max_allowed is None and nmb_max_branches is None:
t_compute_max_allowed = 20
elif t_compute_max_allowed is not None and nmb_max_branches is not None:
raise ValueErorr("Either specify t_compute_max_allowed or nmb_max_branches")
raise ValueError("Either specify t_compute_max_allowed or nmb_max_branches")
self.list_idx_injection, self.list_nmb_stems = self.get_time_based_branching(depth_strength, t_compute_max_allowed, nmb_max_branches)
@@ -676,7 +696,7 @@ class BlendingEngine():
"""
# Let's get more cheap frames via linear interpolation (duration_transition*fps frames)
imgs_transition_ext = add_frames_linear_interp(self.tree_final_imgs, duration_transition, fps)
imgs_transition_ext = fill_up_frames_linear_interpolation(self.tree_final_imgs, duration_transition, fps)
# Save as MP4
if os.path.isfile(fp_movie):
@@ -686,12 +706,6 @@ class BlendingEngine():
ms.write_frame(img)
ms.finalize()
def save_statedict(self, fp_yml):
# Dump everything relevant into yaml
imgs_transition = self.tree_final_imgs
state_dict = self.get_state_dict()
state_dict['nmb_images'] = len(imgs_transition)
yml_save(fp_yml, state_dict)
def get_state_dict(self):
state_dict = {}
@@ -813,14 +827,18 @@ if __name__ == "__main__":
from diffusers import AutoencoderTiny
# pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
pretrained_model_name_or_path = "stabilityai/sdxl-turbo"
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path)
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16, variant="fp16")
# pipe.to("mps")
pipe.to("cuda")
pipe.vae = AutoencoderTiny.from_pretrained('madebyollin/taesdxl', torch_device='cuda', torch_dtype=torch.float16)
pipe.vae = pipe.vae.cuda()
# pipe.vae = AutoencoderTiny.from_pretrained('madebyollin/taesdxl', torch_device='cuda', torch_dtype=torch.float16)
# pipe.vae = pipe.vae.cuda()
dh = DiffusersHolder(pipe)
xxx
# %% Next let's set up all parameters
prompt1 = "photo of underwater landscape, fish, und the sea, incredible detail, high resolution"
prompt2 = "rendering of an alien planet, strange plants, strange creatures, surreal"
@@ -829,19 +847,20 @@ if __name__ == "__main__":
duration_transition = 12 # In seconds
# Spawn latent blending
lb = LatentBlending(dh)
lb.set_prompt1(prompt1)
lb.set_prompt2(prompt2)
lb.set_negative_prompt(negative_prompt)
be = BlendingEngine(dh)
be.set_prompt1(prompt1)
be.set_prompt2(prompt2)
be.set_negative_prompt(negative_prompt)
# Run latent blending
t0 = time.time()
lb.run_transition(fixed_seeds=[420, 421])
be.run_transition(fixed_seeds=[420, 421])
dt = time.time() - t0
print(f"dt = {dt}")
# Save movie
fp_movie = f'test.mp4'
lb.write_movie_transition(fp_movie, duration_transition)
be.write_movie_transition(fp_movie, duration_transition)

View File

@@ -1,301 +0,0 @@
# Copyright 2022 Lunar Ring. All rights reserved.
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import subprocess
import os
import numpy as np
from tqdm import tqdm
import cv2
from typing import List
import ffmpeg # pip install ffmpeg-python. if error with broken pipe: conda update ffmpeg
class MovieSaver():
def __init__(
self,
fp_out: str,
fps: int = 24,
shape_hw: List[int] = None,
crf: int = 21,
codec: str = 'libx264',
preset: str = 'fast',
pix_fmt: str = 'yuv420p',
silent_ffmpeg: bool = True):
r"""
Initializes movie saver class - a human friendly ffmpeg wrapper.
After you init the class, you can dump numpy arrays x into moviesaver.write_frame(x).
Don't forget toi finalize movie file with moviesaver.finalize().
Args:
fp_out: str
Output file name. If it already exists, it will be deleted.
fps: int
Frames per second.
shape_hw: List[int, int]
Output shape, optional argument. Can be initialized automatically when first frame is written.
crf: int
ffmpeg doc: the range of the CRF scale is 051, where 0 is lossless
(for 8 bit only, for 10 bit use -qp 0), 23 is the default, and 51 is worst quality possible.
A lower value generally leads to higher quality, and a subjectively sane range is 1728.
Consider 17 or 18 to be visually lossless or nearly so;
it should look the same or nearly the same as the input but it isn't technically lossless.
The range is exponential, so increasing the CRF value +6 results in
roughly half the bitrate / file size, while -6 leads to roughly twice the bitrate.
codec: int
Number of diffusion steps. Larger values will take more compute time.
preset: str
Choose between ultrafast, superfast, veryfast, faster, fast, medium, slow, slower, veryslow.
ffmpeg doc: A preset is a collection of options that will provide a certain encoding speed
to compression ratio. A slower preset will provide better compression
(compression is quality per filesize).
This means that, for example, if you target a certain file size or constant bit rate,
you will achieve better quality with a slower preset. Similarly, for constant quality encoding,
you will simply save bitrate by choosing a slower preset.
pix_fmt: str
Pixel format. Run 'ffmpeg -pix_fmts' in your shell to see all options.
silent_ffmpeg: bool
Surpress the output from ffmpeg.
"""
if len(os.path.split(fp_out)[0]) > 0:
assert os.path.isdir(os.path.split(fp_out)[0]), "Directory does not exist!"
self.fp_out = fp_out
self.fps = fps
self.crf = crf
self.pix_fmt = pix_fmt
self.codec = codec
self.preset = preset
self.silent_ffmpeg = silent_ffmpeg
if os.path.isfile(fp_out):
os.remove(fp_out)
self.init_done = False
self.nmb_frames = 0
if shape_hw is None:
self.shape_hw = [-1, 1]
else:
if len(shape_hw) == 2:
shape_hw.append(3)
self.shape_hw = shape_hw
self.initialize()
print(f"MovieSaver initialized. fps={fps} crf={crf} pix_fmt={pix_fmt} codec={codec} preset={preset}")
def initialize(self):
args = (
ffmpeg
.input('pipe:', format='rawvideo', pix_fmt='rgb24', s='{}x{}'.format(self.shape_hw[1], self.shape_hw[0]), framerate=self.fps)
.output(self.fp_out, crf=self.crf, pix_fmt=self.pix_fmt, c=self.codec, preset=self.preset)
.overwrite_output()
.compile()
)
if self.silent_ffmpeg:
self.ffmpg_process = subprocess.Popen(args, stdin=subprocess.PIPE, stderr=subprocess.DEVNULL, stdout=subprocess.DEVNULL)
else:
self.ffmpg_process = subprocess.Popen(args, stdin=subprocess.PIPE)
self.init_done = True
self.shape_hw = tuple(self.shape_hw)
print(f"Initialization done. Movie shape: {self.shape_hw}")
def write_frame(self, out_frame: np.ndarray):
r"""
Function to dump a numpy array as frame of a movie.
Args:
out_frame: np.ndarray
Numpy array, in np.uint8 format. Convert with np.astype(x, np.uint8).
Dim 0: y
Dim 1: x
Dim 2: RGB
"""
assert out_frame.dtype == np.uint8, "Convert to np.uint8 before"
assert len(out_frame.shape) == 3, "out_frame needs to be three dimensional, Y X C"
assert out_frame.shape[2] == 3, f"need three color channels, but you provided {out_frame.shape[2]}."
if not self.init_done:
self.shape_hw = out_frame.shape
self.initialize()
assert self.shape_hw == out_frame.shape, f"You cannot change the image size after init. Initialized with {self.shape_hw}, out_frame {out_frame.shape}"
# write frame
self.ffmpg_process.stdin.write(
out_frame
.astype(np.uint8)
.tobytes()
)
self.nmb_frames += 1
def finalize(self):
r"""
Call this function to finalize the movie. If you forget to call it your movie will be garbage.
"""
if self.nmb_frames == 0:
print("You did not write any frames yet! nmb_frames = 0. Cannot save.")
return
self.ffmpg_process.stdin.close()
self.ffmpg_process.wait()
duration = int(self.nmb_frames / self.fps)
print(f"Movie saved, {duration}s playtime, watch here: \n{self.fp_out}")
def concatenate_movies(fp_final: str, list_fp_movies: List[str]):
r"""
Concatenate multiple movie segments into one long movie, using ffmpeg.
Parameters
----------
fp_final : str
Full path of the final movie file. Should end with .mp4
list_fp_movies : list[str]
List of full paths of movie segments.
"""
assert fp_final[-4] == ".", "fp_final seems to miss file extension: {fp_final}"
for fp in list_fp_movies:
assert os.path.isfile(fp), f"Input movie does not exist: {fp}"
assert os.path.getsize(fp) > 100, f"Input movie seems empty: {fp}"
if os.path.isfile(fp_final):
os.remove(fp_final)
# make a list for ffmpeg
list_concat = []
for fp_part in list_fp_movies:
list_concat.append(f"""file '{fp_part}'""")
# save this list
fp_list = "tmp_move.txt"
with open(fp_list, "w") as fa:
for item in list_concat:
fa.write("%s\n" % item)
cmd = f'ffmpeg -f concat -safe 0 -i {fp_list} -c copy {fp_final}'
subprocess.call(cmd, shell=True)
os.remove(fp_list)
if os.path.isfile(fp_final):
print(f"concatenate_movies: success! Watch here: {fp_final}")
def add_sound(fp_final, fp_silentmovie, fp_sound):
cmd = f'ffmpeg -i {fp_silentmovie} -i {fp_sound} -c copy -map 0:v:0 -map 1:a:0 {fp_final}'
subprocess.call(cmd, shell=True)
if os.path.isfile(fp_final):
print(f"add_sound: success! Watch here: {fp_final}")
def add_subtitles_to_video(
fp_input: str,
fp_output: str,
subtitles: list,
fontsize: int = 50,
font_name: str = "Arial",
color: str = 'yellow'
):
from moviepy.editor import VideoFileClip, TextClip, CompositeVideoClip
r"""
Function to add subtitles to a video.
Args:
fp_input (str): File path of the input video.
fp_output (str): File path of the output video with subtitles.
subtitles (list): List of dictionaries containing subtitle information
(start, duration, text). Example:
subtitles = [
{"start": 1, "duration": 3, "text": "hello test"},
{"start": 4, "duration": 2, "text": "this works"},
]
fontsize (int): Font size of the subtitles.
font_name (str): Font name of the subtitles.
color (str): Color of the subtitles.
"""
# Check if the input file exists
if not os.path.isfile(fp_input):
raise FileNotFoundError(f"Input file not found: {fp_input}")
# Check the subtitles format and sort them by the start time
time_points = []
for subtitle in subtitles:
if not isinstance(subtitle, dict):
raise ValueError("Each subtitle must be a dictionary containing 'start', 'duration' and 'text'.")
if not all(key in subtitle for key in ["start", "duration", "text"]):
raise ValueError("Each subtitle dictionary must contain 'start', 'duration' and 'text'.")
if subtitle['start'] < 0 or subtitle['duration'] <= 0:
raise ValueError("'start' should be non-negative and 'duration' should be positive.")
time_points.append((subtitle['start'], subtitle['start'] + subtitle['duration']))
# Check for overlaps
time_points.sort()
for i in range(1, len(time_points)):
if time_points[i][0] < time_points[i - 1][1]:
raise ValueError("Subtitle time intervals should not overlap.")
# Load the video clip
video = VideoFileClip(fp_input)
# Create a list to store subtitle clips
subtitle_clips = []
# Loop through the subtitle information and create TextClip for each
for subtitle in subtitles:
text_clip = TextClip(subtitle["text"], fontsize=fontsize, color=color, font=font_name)
text_clip = text_clip.set_position(('center', 'bottom')).set_start(subtitle["start"]).set_duration(subtitle["duration"])
subtitle_clips.append(text_clip)
# Overlay the subtitles on the video
video = CompositeVideoClip([video] + subtitle_clips)
# Write the final clip to a new file
video.write_videofile(fp_output)
class MovieReader():
r"""
Class to read in a movie.
"""
def __init__(self, fp_movie):
self.video_player_object = cv2.VideoCapture(fp_movie)
self.nmb_frames = int(self.video_player_object.get(cv2.CAP_PROP_FRAME_COUNT))
self.fps_movie = int(self.video_player_object.get(cv2.CAP_PROP_FPS))
self.shape = [100, 100, 3]
self.shape_is_set = False
def get_next_frame(self):
success, image = self.video_player_object.read()
if success:
if not self.shape_is_set:
self.shape_is_set = True
self.shape = image.shape
return image
else:
return np.zeros(self.shape)
if __name__ == "__main__":
fps = 2
list_fp_movies = []
for k in range(4):
fp_movie = f"/tmp/my_random_movie_{k}.mp4"
list_fp_movies.append(fp_movie)
ms = MovieSaver(fp_movie, fps=fps)
for fn in tqdm(range(30)):
img = (np.random.rand(512, 1024, 3) * 255).astype(np.uint8)
ms.write_frame(img)
ms.finalize()
fp_final = "/tmp/my_concatenated_movie.mp4"
concatenate_movies(fp_final, list_fp_movies)

View File

@@ -1,6 +1,6 @@
lpips==0.1.4
opencv-python
ffmpeg-python
diffusers==0.25.0
transformers
pytest
accelerate

View File

@@ -6,14 +6,14 @@ with open('requirements.txt') as f:
setup(
name='latentblending',
version='0.2',
version='0.3',
url='https://github.com/lunarring/latentblending',
description='Butter-smooth video transitions',
long_description=open('README.md').read(),
install_requires=required,
dependency_links=[
'git+https://github.com/lunarring/lunar_tools#egg=lunar_tools'
],
install_requires=[
'lunar_tools @ git+https://github.com/lunarring/lunar_tools.git#egg=lunar_tools'
] + required,
include_package_data=False,
)