Compare commits
23 Commits
package
...
lunar_tool
Author | SHA1 | Date | |
---|---|---|---|
|
9f9512fa48 | ||
|
359ef99eaf | ||
|
37fc1cf05f | ||
|
0d44404903 | ||
|
5ea7981a9c | ||
|
179a42b9bf | ||
|
b9ed277055 | ||
|
896ba0c768 | ||
|
f72cc12fb3 | ||
|
01a960c48d | ||
|
646a3c757e | ||
|
47e72ed76f | ||
|
4b235b874e | ||
|
1775c9a90a | ||
|
a0f35f2a41 | ||
|
f5965154ba | ||
|
b83d3ee0a0 | ||
|
4501d80044 | ||
|
6e138c54a2 | ||
|
1ba4b578a0 | ||
|
4042a098b0 | ||
|
9d5b545c1a | ||
|
f1a1b47923 |
67
README.md
67
README.md
@@ -2,32 +2,48 @@
|
|||||||
|
|
||||||
Latent blending enables video transitions with incredible smoothness between prompts, computed within seconds. Powered by [stable diffusion XL](https://stability.ai/stable-diffusion), this method involves specific mixing of intermediate latent representations to create a seamless transition – with users having the option to fully customize the transition directly in high-resolution. The new version also supports SDXL Turbo, allowing to generate transitions faster than they are typically played back!
|
Latent blending enables video transitions with incredible smoothness between prompts, computed within seconds. Powered by [stable diffusion XL](https://stability.ai/stable-diffusion), this method involves specific mixing of intermediate latent representations to create a seamless transition – with users having the option to fully customize the transition directly in high-resolution. The new version also supports SDXL Turbo, allowing to generate transitions faster than they are typically played back!
|
||||||
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
|
import torch
|
||||||
|
from diffusers import AutoPipelineForText2Image
|
||||||
|
from latentblending.blending_engine import BlendingEngine
|
||||||
|
from latentblending.diffusers_holder import DiffusersHolder
|
||||||
|
|
||||||
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16").to("cuda")
|
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16").to("cuda")
|
||||||
dh = DiffusersHolder(pipe)
|
be = BlendingEngine(pipe)
|
||||||
lb = LatentBlending(dh)
|
be.set_prompt1("photo of underwater landscape, fish, und the sea, incredible detail, high resolution")
|
||||||
lb.set_prompt1("photo of underwater landscape, fish, und the sea, incredible detail, high resolution")
|
be.set_prompt2("rendering of an alien planet, strange plants, strange creatures, surreal")
|
||||||
lb.set_prompt2("rendering of an alien planet, strange plants, strange creatures, surreal")
|
be.set_negative_prompt("blurry, ugly, pale")
|
||||||
lb.set_negative_prompt("blurry, ugly, pale")
|
|
||||||
|
|
||||||
# Run latent blending
|
# Run latent blending
|
||||||
lb.run_transition()
|
be.run_transition()
|
||||||
|
|
||||||
# Save movie
|
# Save movie
|
||||||
lb.write_movie_transition('movie_example1.mp4', duration_transition=12)
|
be.write_movie_transition('movie_example1.mp4', duration_transition=12)
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
# Installation
|
||||||
|
```commandline
|
||||||
|
pip install git+https://github.com/lunarring/latentblending
|
||||||
|
```
|
||||||
|
|
||||||
|
# Extra speedup with stable_fast compile
|
||||||
|
Install https://github.com/chengzeyi/stable-fast
|
||||||
|
|
||||||
|
Then enable pipe compilation by setting *do_compile=True*
|
||||||
|
```python
|
||||||
|
be = BlendingEngine(pipe, do_compile=True)
|
||||||
|
```
|
||||||
|
|
||||||
## Gradio UI
|
## Gradio UI
|
||||||
Coming soon again :)
|
Coming soon again :)
|
||||||
|
|
||||||
## Example 1: Simple transition
|
## Example 1: Simple transition
|
||||||

|

|
||||||
To run a simple transition between two prompts, run `example1_standard.py`
|
To run a simple transition between two prompts, see `examples/single_trans.py`
|
||||||
|
|
||||||
## Example 2: Multi transition
|
## Example 2: Multi transition
|
||||||
To run multiple transition between K prompts, resulting in a stitched video, run `example2_multitrans.py`.
|
To run multiple transition between K prompts, resulting in a stitched video, see `examples/multi_trans.py`.
|
||||||
[View a longer example video here.](https://vimeo.com/789052336/80dcb545b2)
|
[View a longer example video here.](https://youtu.be/RLF-yW5dR_Q)
|
||||||
|
|
||||||
|
|
||||||
# Customization
|
# Customization
|
||||||
@@ -35,19 +51,19 @@ To run multiple transition between K prompts, resulting in a stitched video, run
|
|||||||
### Change the height/width
|
### Change the height/width
|
||||||
```python
|
```python
|
||||||
size_output = (1024, 768)
|
size_output = (1024, 768)
|
||||||
lb.set_dimensions(size_output)
|
be.set_dimensions(size_output)
|
||||||
```
|
```
|
||||||
|
|
||||||
### Change the number of diffusion steps (set_num_inference_steps)
|
### Change the number of diffusion steps (set_num_inference_steps)
|
||||||
```python
|
```python
|
||||||
lb.set_num_inference_steps(50)
|
be.set_num_inference_steps(50)
|
||||||
```
|
```
|
||||||
For SDXL this is set as default=30, for SDXL Turbo a value of 4 is taken.
|
For SDXL this is set as default=30, for SDXL Turbo a value of 4 is taken.
|
||||||
|
|
||||||
|
|
||||||
### Change the guidance scale
|
### Change the guidance scale
|
||||||
```python
|
```python
|
||||||
lb.set_guidance_scale(3.0)
|
be.set_guidance_scale(3.0)
|
||||||
```
|
```
|
||||||
For SDXL this is set as default=4.0, for SDXL Turbo a value of 0 is taken.
|
For SDXL this is set as default=4.0, for SDXL Turbo a value of 0 is taken.
|
||||||
|
|
||||||
@@ -55,7 +71,7 @@ For SDXL this is set as default=4.0, for SDXL Turbo a value of 0 is taken.
|
|||||||
```python
|
```python
|
||||||
depth_strength = 0.5
|
depth_strength = 0.5
|
||||||
nmb_max_branches = 15
|
nmb_max_branches = 15
|
||||||
lb.set_branching(depth_strength=depth_strength, t_compute_max_allowed=None, nmb_max_branches=None)
|
be.set_branching(depth_strength=depth_strength, t_compute_max_allowed=None, nmb_max_branches=None)
|
||||||
```
|
```
|
||||||
* depth_strength: The strength of the diffusion iterations determines when the blending process will begin. A value close to zero results in more creative and intricate outcomes, while a value closer to one indicates a simpler alpha blending. However, low values may also bring about the introduction of additional objects and motion.
|
* depth_strength: The strength of the diffusion iterations determines when the blending process will begin. A value close to zero results in more creative and intricate outcomes, while a value closer to one indicates a simpler alpha blending. However, low values may also bring about the introduction of additional objects and motion.
|
||||||
* t_compute_max_allowed: maximum time allowed for computation. Higher values give better results but take longer. Either provide t_compute_max_allowed or nmb_max_branches. Does not work for SDXL Turbo.
|
* t_compute_max_allowed: maximum time allowed for computation. Higher values give better results but take longer. Either provide t_compute_max_allowed or nmb_max_branches. Does not work for SDXL Turbo.
|
||||||
@@ -66,7 +82,7 @@ You can find the [most relevant parameters here.](parameters.md)
|
|||||||
|
|
||||||
### Change guidance scale
|
### Change guidance scale
|
||||||
```python
|
```python
|
||||||
lb.set_guidance_scale(5.0)
|
be.set_guidance_scale(5.0)
|
||||||
```
|
```
|
||||||
|
|
||||||
### Crossfeeding to the last image.
|
### Crossfeeding to the last image.
|
||||||
@@ -76,7 +92,7 @@ Cross-feeding latents is a key feature of latent blending. Here, you can set how
|
|||||||
crossfeed_power = 0.5 # 50% of the latents in the last branch are copied from branch1
|
crossfeed_power = 0.5 # 50% of the latents in the last branch are copied from branch1
|
||||||
crossfeed_range = 0.7 # The crossfeed is active until 70% of num_iteration, then switched off
|
crossfeed_range = 0.7 # The crossfeed is active until 70% of num_iteration, then switched off
|
||||||
crossfeed_decay = 0.2 # The power of the crossfeed decreases over diffusion iterations, here it would be 0.5*0.2=0.1 in the end of the range.
|
crossfeed_decay = 0.2 # The power of the crossfeed decreases over diffusion iterations, here it would be 0.5*0.2=0.1 in the end of the range.
|
||||||
lb.set_branch1_crossfeed(crossfeed_power, crossfeed_range, crossfeed_decay)
|
be.set_branch1_crossfeed(crossfeed_power, crossfeed_range, crossfeed_decay)
|
||||||
```
|
```
|
||||||
|
|
||||||
### Crossfeeding to all transition images
|
### Crossfeeding to all transition images
|
||||||
@@ -86,16 +102,10 @@ Here, you can set how much the parent branches influence the mixed one. In the a
|
|||||||
crossfeed_power = 0.5 # 50% of the latents in the last branch are copied from the parents
|
crossfeed_power = 0.5 # 50% of the latents in the last branch are copied from the parents
|
||||||
crossfeed_range = 0.7 # The crossfeed is active until 70% of num_iteration, then switched off
|
crossfeed_range = 0.7 # The crossfeed is active until 70% of num_iteration, then switched off
|
||||||
crossfeed_decay = 0.2 # The power of the crossfeed decreases over diffusion iterations, here it would be 0.5*0.2=0.1 in the end of the range.
|
crossfeed_decay = 0.2 # The power of the crossfeed decreases over diffusion iterations, here it would be 0.5*0.2=0.1 in the end of the range.
|
||||||
lb.set_parental_crossfeed(crossfeed_power, crossfeed_range, crossfeed_decay)
|
be.set_parental_crossfeed(crossfeed_power, crossfeed_range, crossfeed_decay)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
# Installation
|
|
||||||
#### Packages
|
|
||||||
```commandline
|
|
||||||
pip install -r requirements.txt
|
|
||||||
```
|
|
||||||
|
|
||||||
# How does latent blending work?
|
# How does latent blending work?
|
||||||
## Method
|
## Method
|
||||||

|

|
||||||
@@ -104,9 +114,9 @@ In the figure above, a diffusion tree is illustrated. The diffusion steps are re
|
|||||||
|
|
||||||
The concrete parameters for the transition above would be:
|
The concrete parameters for the transition above would be:
|
||||||
```
|
```
|
||||||
lb.set_branch1_crossfeed(crossfeed_power=0.8, crossfeed_range=0.6, crossfeed_decay=0.4)
|
be.set_branch1_crossfeed(crossfeed_power=0.8, crossfeed_range=0.6, crossfeed_decay=0.4)
|
||||||
lb.set_parental_crossfeed(crossfeed_power=0.8, crossfeed_range=0.8, crossfeed_decay=0.2)
|
be.set_parental_crossfeed(crossfeed_power=0.8, crossfeed_range=0.8, crossfeed_decay=0.2)
|
||||||
imgs_transition = lb.run_transition(num_inference_steps=10, depth_strength=0.2, nmb_max_branches=7)
|
imgs_transition = be.run_transition(num_inference_steps=10, depth_strength=0.2, nmb_max_branches=7)
|
||||||
```
|
```
|
||||||
|
|
||||||
## Perceptual aspects
|
## Perceptual aspects
|
||||||
@@ -124,6 +134,7 @@ With latent blending, we can create transitions that appear to defy the laws of
|
|||||||
* Inpaint support dropped (as it only makes sense for a single transition)
|
* Inpaint support dropped (as it only makes sense for a single transition)
|
||||||
|
|
||||||
# Coming soon...
|
# Coming soon...
|
||||||
|
- [ ] MacOS support
|
||||||
- [ ] Gradio interface
|
- [ ] Gradio interface
|
||||||
- [ ] Huggingface Space
|
- [ ] Huggingface Space
|
||||||
- [ ] Controlnet
|
- [ ] Controlnet
|
||||||
|
@@ -1,33 +1,42 @@
|
|||||||
import torch
|
import torch
|
||||||
import warnings
|
import warnings
|
||||||
from blending_engine import BlendingEngine
|
|
||||||
from diffusers_holder import DiffusersHolder
|
|
||||||
from diffusers import AutoPipelineForText2Image
|
from diffusers import AutoPipelineForText2Image
|
||||||
from movie_util import concatenate_movies
|
from latentblending.movie_util import concatenate_movies
|
||||||
|
from latentblending.blending_engine import BlendingEngine
|
||||||
|
import numpy as np
|
||||||
torch.set_grad_enabled(False)
|
torch.set_grad_enabled(False)
|
||||||
torch.backends.cudnn.benchmark = False
|
torch.backends.cudnn.benchmark = False
|
||||||
warnings.filterwarnings('ignore')
|
warnings.filterwarnings('ignore')
|
||||||
|
|
||||||
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice.
|
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice.
|
||||||
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
|
pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||||
pipe.to('cuda')
|
# pretrained_model_name_or_path = "stabilityai/sdxl-turbo"
|
||||||
dh = DiffusersHolder(pipe)
|
|
||||||
|
|
||||||
|
pipe = AutoPipelineForText2Image.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16, variant="fp16")
|
||||||
|
pipe.to('cuda')
|
||||||
|
be = BlendingEngine(pipe, do_compile=True)
|
||||||
|
be.set_negative_prompt("blurry, pale, low-res, lofi")
|
||||||
# %% Let's setup the multi transition
|
# %% Let's setup the multi transition
|
||||||
fps = 30
|
fps = 30
|
||||||
duration_single_trans = 10
|
duration_single_trans = 10
|
||||||
|
be.set_dimensions((1024, 1024))
|
||||||
|
nmb_prompts = 20
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# Specify a list of prompts below
|
# Specify a list of prompts below
|
||||||
|
#%%
|
||||||
|
|
||||||
list_prompts = []
|
list_prompts = []
|
||||||
list_prompts.append("Photo of a house, high detail")
|
list_prompts.append("high resolution ultra 8K image with lake and forest")
|
||||||
list_prompts.append("Photo of an elephant in african savannah")
|
list_prompts.append("strange and alien desolate lanscapes 8K")
|
||||||
list_prompts.append("photo of a house, high detail")
|
list_prompts.append("ultra high res psychedelic skyscraper city landscape 8K unreal engine")
|
||||||
|
#%%
|
||||||
|
fp_movie = f'surreal_nmb{len(list_prompts)}.mp4'
|
||||||
# You can optionally specify the seeds
|
# Specify the seeds
|
||||||
list_seeds = [95437579, 33259350, 956051013]
|
list_seeds = np.random.randint(0, np.iinfo(np.int32).max, len(list_prompts))
|
||||||
fp_movie = 'movie_example2.mp4'
|
|
||||||
be = BlendingEngine(dh)
|
|
||||||
|
|
||||||
list_movie_parts = []
|
list_movie_parts = []
|
||||||
for i in range(len(list_prompts) - 1):
|
for i in range(len(list_prompts) - 1):
|
@@ -1,8 +1,7 @@
|
|||||||
import torch
|
import torch
|
||||||
import warnings
|
import warnings
|
||||||
from blending_engine import BlendingEngine
|
|
||||||
from diffusers_holder import DiffusersHolder
|
|
||||||
from diffusers import AutoPipelineForText2Image
|
from diffusers import AutoPipelineForText2Image
|
||||||
|
from latentblending.blending_engine import BlendingEngine
|
||||||
|
|
||||||
warnings.filterwarnings('ignore')
|
warnings.filterwarnings('ignore')
|
||||||
torch.set_grad_enabled(False)
|
torch.set_grad_enabled(False)
|
||||||
@@ -12,9 +11,7 @@ torch.backends.cudnn.benchmark = False
|
|||||||
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
|
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
|
||||||
pipe.to("cuda")
|
pipe.to("cuda")
|
||||||
|
|
||||||
dh = DiffusersHolder(pipe)
|
be = BlendingEngine(pipe)
|
||||||
|
|
||||||
be = BlendingEngine(dh)
|
|
||||||
be.set_prompt1("photo of underwater landscape, fish, und the sea, incredible detail, high resolution")
|
be.set_prompt1("photo of underwater landscape, fish, und the sea, incredible detail, high resolution")
|
||||||
be.set_prompt2("rendering of an alien planet, strange plants, strange creatures, surreal")
|
be.set_prompt2("rendering of an alien planet, strange plants, strange creatures, surreal")
|
||||||
be.set_negative_prompt("blurry, ugly, pale")
|
be.set_negative_prompt("blurry, ugly, pale")
|
@@ -5,10 +5,12 @@ import warnings
|
|||||||
import time
|
import time
|
||||||
from tqdm.auto import tqdm
|
from tqdm.auto import tqdm
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
from latentblending.movie_util import MovieSaver
|
|
||||||
from typing import List, Optional
|
from typing import List, Optional
|
||||||
import lpips
|
import lpips
|
||||||
from latentblending.utils import interpolate_spherical, interpolate_linear, add_frames_linear_interp, yml_load, yml_save
|
import platform
|
||||||
|
from latentblending.diffusers_holder import DiffusersHolder
|
||||||
|
from latentblending.utils import interpolate_spherical, interpolate_linear, add_frames_linear_interp
|
||||||
|
from lunar_tools import MovieSaver, fill_up_frames_linear_interpolation
|
||||||
warnings.filterwarnings('ignore')
|
warnings.filterwarnings('ignore')
|
||||||
torch.backends.cudnn.benchmark = False
|
torch.backends.cudnn.benchmark = False
|
||||||
torch.set_grad_enabled(False)
|
torch.set_grad_enabled(False)
|
||||||
@@ -17,12 +19,15 @@ torch.set_grad_enabled(False)
|
|||||||
class BlendingEngine():
|
class BlendingEngine():
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
dh: None,
|
pipe: None,
|
||||||
|
do_compile: bool = False,
|
||||||
guidance_scale_mid_damper: float = 0.5,
|
guidance_scale_mid_damper: float = 0.5,
|
||||||
mid_compression_scaler: float = 1.2):
|
mid_compression_scaler: float = 1.2):
|
||||||
r"""
|
r"""
|
||||||
Initializes the latent blending class.
|
Initializes the latent blending class.
|
||||||
Args:
|
Args:
|
||||||
|
pipe: diffusers pipeline (SDXL)
|
||||||
|
do_compile: compile pipeline for faster inference using stable fast
|
||||||
guidance_scale_mid_damper: float = 0.5
|
guidance_scale_mid_damper: float = 0.5
|
||||||
Reduces the guidance scale towards the middle of the transition.
|
Reduces the guidance scale towards the middle of the transition.
|
||||||
A value of 0.5 would decrease the guidance_scale towards the middle linearly by 0.5.
|
A value of 0.5 would decrease the guidance_scale towards the middle linearly by 0.5.
|
||||||
@@ -35,7 +40,8 @@ class BlendingEngine():
|
|||||||
and guidance_scale_mid_damper <= 1.0, \
|
and guidance_scale_mid_damper <= 1.0, \
|
||||||
f"guidance_scale_mid_damper neees to be in interval (0,1], you provided {guidance_scale_mid_damper}"
|
f"guidance_scale_mid_damper neees to be in interval (0,1], you provided {guidance_scale_mid_damper}"
|
||||||
|
|
||||||
self.dh = dh
|
|
||||||
|
self.dh = DiffusersHolder(pipe)
|
||||||
self.device = self.dh.device
|
self.device = self.dh.device
|
||||||
self.set_dimensions()
|
self.set_dimensions()
|
||||||
|
|
||||||
@@ -64,7 +70,10 @@ class BlendingEngine():
|
|||||||
self.multi_transition_img_first = None
|
self.multi_transition_img_first = None
|
||||||
self.multi_transition_img_last = None
|
self.multi_transition_img_last = None
|
||||||
self.dt_unet_step = 0
|
self.dt_unet_step = 0
|
||||||
self.lpips = lpips.LPIPS(net='alex').cuda(self.device)
|
if platform.system() == "Darwin":
|
||||||
|
self.lpips = lpips.LPIPS(net='alex')
|
||||||
|
else:
|
||||||
|
self.lpips = lpips.LPIPS(net='alex').cuda(self.device)
|
||||||
|
|
||||||
self.set_prompt1("")
|
self.set_prompt1("")
|
||||||
self.set_prompt2("")
|
self.set_prompt2("")
|
||||||
@@ -76,13 +85,23 @@ class BlendingEngine():
|
|||||||
self.benchmark_speed()
|
self.benchmark_speed()
|
||||||
self.set_branching()
|
self.set_branching()
|
||||||
|
|
||||||
|
if do_compile:
|
||||||
|
print("starting compilation")
|
||||||
|
from sfast.compilers.diffusion_pipeline_compiler import (compile, CompilationConfig)
|
||||||
|
self.dh.pipe.enable_xformers_memory_efficient_attention()
|
||||||
|
config = CompilationConfig.Default()
|
||||||
|
config.enable_xformers = True
|
||||||
|
config.enable_triton = True
|
||||||
|
config.enable_cuda_graph = True
|
||||||
|
self.dh.pipe = compile(self.dh.pipe, config)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def benchmark_speed(self):
|
def benchmark_speed(self):
|
||||||
"""
|
"""
|
||||||
Measures the time per diffusion step and for the vae decoding
|
Measures the time per diffusion step and for the vae decoding
|
||||||
"""
|
"""
|
||||||
|
print("starting speed benchmark...")
|
||||||
text_embeddings = self.dh.get_text_embedding("test")
|
text_embeddings = self.dh.get_text_embedding("test")
|
||||||
latents_start = self.dh.get_noise(np.random.randint(111111))
|
latents_start = self.dh.get_noise(np.random.randint(111111))
|
||||||
# warmup
|
# warmup
|
||||||
@@ -96,6 +115,7 @@ class BlendingEngine():
|
|||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
img = self.dh.latent2image(list_latents[-1])
|
img = self.dh.latent2image(list_latents[-1])
|
||||||
self.dt_vae = time.time() - t0
|
self.dt_vae = time.time() - t0
|
||||||
|
print(f"time per unet iteration: {self.dt_unet_step} time for vae: {self.dt_vae}")
|
||||||
|
|
||||||
def set_dimensions(self, size_output=None):
|
def set_dimensions(self, size_output=None):
|
||||||
r"""
|
r"""
|
||||||
@@ -268,7 +288,7 @@ class BlendingEngine():
|
|||||||
if t_compute_max_allowed is None and nmb_max_branches is None:
|
if t_compute_max_allowed is None and nmb_max_branches is None:
|
||||||
t_compute_max_allowed = 20
|
t_compute_max_allowed = 20
|
||||||
elif t_compute_max_allowed is not None and nmb_max_branches is not None:
|
elif t_compute_max_allowed is not None and nmb_max_branches is not None:
|
||||||
raise ValueErorr("Either specify t_compute_max_allowed or nmb_max_branches")
|
raise ValueError("Either specify t_compute_max_allowed or nmb_max_branches")
|
||||||
|
|
||||||
self.list_idx_injection, self.list_nmb_stems = self.get_time_based_branching(depth_strength, t_compute_max_allowed, nmb_max_branches)
|
self.list_idx_injection, self.list_nmb_stems = self.get_time_based_branching(depth_strength, t_compute_max_allowed, nmb_max_branches)
|
||||||
|
|
||||||
@@ -676,7 +696,7 @@ class BlendingEngine():
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
# Let's get more cheap frames via linear interpolation (duration_transition*fps frames)
|
# Let's get more cheap frames via linear interpolation (duration_transition*fps frames)
|
||||||
imgs_transition_ext = add_frames_linear_interp(self.tree_final_imgs, duration_transition, fps)
|
imgs_transition_ext = fill_up_frames_linear_interpolation(self.tree_final_imgs, duration_transition, fps)
|
||||||
|
|
||||||
# Save as MP4
|
# Save as MP4
|
||||||
if os.path.isfile(fp_movie):
|
if os.path.isfile(fp_movie):
|
||||||
@@ -686,12 +706,6 @@ class BlendingEngine():
|
|||||||
ms.write_frame(img)
|
ms.write_frame(img)
|
||||||
ms.finalize()
|
ms.finalize()
|
||||||
|
|
||||||
def save_statedict(self, fp_yml):
|
|
||||||
# Dump everything relevant into yaml
|
|
||||||
imgs_transition = self.tree_final_imgs
|
|
||||||
state_dict = self.get_state_dict()
|
|
||||||
state_dict['nmb_images'] = len(imgs_transition)
|
|
||||||
yml_save(fp_yml, state_dict)
|
|
||||||
|
|
||||||
def get_state_dict(self):
|
def get_state_dict(self):
|
||||||
state_dict = {}
|
state_dict = {}
|
||||||
@@ -813,14 +827,18 @@ if __name__ == "__main__":
|
|||||||
from diffusers import AutoencoderTiny
|
from diffusers import AutoencoderTiny
|
||||||
# pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
# pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||||
pretrained_model_name_or_path = "stabilityai/sdxl-turbo"
|
pretrained_model_name_or_path = "stabilityai/sdxl-turbo"
|
||||||
|
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path)
|
||||||
|
|
||||||
|
|
||||||
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16, variant="fp16")
|
# pipe.to("mps")
|
||||||
pipe.to("cuda")
|
pipe.to("cuda")
|
||||||
pipe.vae = AutoencoderTiny.from_pretrained('madebyollin/taesdxl', torch_device='cuda', torch_dtype=torch.float16)
|
|
||||||
pipe.vae = pipe.vae.cuda()
|
# pipe.vae = AutoencoderTiny.from_pretrained('madebyollin/taesdxl', torch_device='cuda', torch_dtype=torch.float16)
|
||||||
|
# pipe.vae = pipe.vae.cuda()
|
||||||
|
|
||||||
dh = DiffusersHolder(pipe)
|
dh = DiffusersHolder(pipe)
|
||||||
|
|
||||||
|
xxx
|
||||||
# %% Next let's set up all parameters
|
# %% Next let's set up all parameters
|
||||||
prompt1 = "photo of underwater landscape, fish, und the sea, incredible detail, high resolution"
|
prompt1 = "photo of underwater landscape, fish, und the sea, incredible detail, high resolution"
|
||||||
prompt2 = "rendering of an alien planet, strange plants, strange creatures, surreal"
|
prompt2 = "rendering of an alien planet, strange plants, strange creatures, surreal"
|
||||||
@@ -829,19 +847,20 @@ if __name__ == "__main__":
|
|||||||
duration_transition = 12 # In seconds
|
duration_transition = 12 # In seconds
|
||||||
|
|
||||||
# Spawn latent blending
|
# Spawn latent blending
|
||||||
lb = LatentBlending(dh)
|
be = BlendingEngine(dh)
|
||||||
lb.set_prompt1(prompt1)
|
be.set_prompt1(prompt1)
|
||||||
lb.set_prompt2(prompt2)
|
be.set_prompt2(prompt2)
|
||||||
lb.set_negative_prompt(negative_prompt)
|
be.set_negative_prompt(negative_prompt)
|
||||||
|
|
||||||
# Run latent blending
|
# Run latent blending
|
||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
lb.run_transition(fixed_seeds=[420, 421])
|
be.run_transition(fixed_seeds=[420, 421])
|
||||||
dt = time.time() - t0
|
dt = time.time() - t0
|
||||||
|
print(f"dt = {dt}")
|
||||||
|
|
||||||
# Save movie
|
# Save movie
|
||||||
fp_movie = f'test.mp4'
|
fp_movie = f'test.mp4'
|
||||||
lb.write_movie_transition(fp_movie, duration_transition)
|
be.write_movie_transition(fp_movie, duration_transition)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@@ -1,301 +0,0 @@
|
|||||||
# Copyright 2022 Lunar Ring. All rights reserved.
|
|
||||||
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
|
|
||||||
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
import subprocess
|
|
||||||
import os
|
|
||||||
import numpy as np
|
|
||||||
from tqdm import tqdm
|
|
||||||
import cv2
|
|
||||||
from typing import List
|
|
||||||
import ffmpeg # pip install ffmpeg-python. if error with broken pipe: conda update ffmpeg
|
|
||||||
|
|
||||||
|
|
||||||
class MovieSaver():
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
fp_out: str,
|
|
||||||
fps: int = 24,
|
|
||||||
shape_hw: List[int] = None,
|
|
||||||
crf: int = 21,
|
|
||||||
codec: str = 'libx264',
|
|
||||||
preset: str = 'fast',
|
|
||||||
pix_fmt: str = 'yuv420p',
|
|
||||||
silent_ffmpeg: bool = True):
|
|
||||||
r"""
|
|
||||||
Initializes movie saver class - a human friendly ffmpeg wrapper.
|
|
||||||
After you init the class, you can dump numpy arrays x into moviesaver.write_frame(x).
|
|
||||||
Don't forget toi finalize movie file with moviesaver.finalize().
|
|
||||||
Args:
|
|
||||||
fp_out: str
|
|
||||||
Output file name. If it already exists, it will be deleted.
|
|
||||||
fps: int
|
|
||||||
Frames per second.
|
|
||||||
shape_hw: List[int, int]
|
|
||||||
Output shape, optional argument. Can be initialized automatically when first frame is written.
|
|
||||||
crf: int
|
|
||||||
ffmpeg doc: the range of the CRF scale is 0–51, where 0 is lossless
|
|
||||||
(for 8 bit only, for 10 bit use -qp 0), 23 is the default, and 51 is worst quality possible.
|
|
||||||
A lower value generally leads to higher quality, and a subjectively sane range is 17–28.
|
|
||||||
Consider 17 or 18 to be visually lossless or nearly so;
|
|
||||||
it should look the same or nearly the same as the input but it isn't technically lossless.
|
|
||||||
The range is exponential, so increasing the CRF value +6 results in
|
|
||||||
roughly half the bitrate / file size, while -6 leads to roughly twice the bitrate.
|
|
||||||
codec: int
|
|
||||||
Number of diffusion steps. Larger values will take more compute time.
|
|
||||||
preset: str
|
|
||||||
Choose between ultrafast, superfast, veryfast, faster, fast, medium, slow, slower, veryslow.
|
|
||||||
ffmpeg doc: A preset is a collection of options that will provide a certain encoding speed
|
|
||||||
to compression ratio. A slower preset will provide better compression
|
|
||||||
(compression is quality per filesize).
|
|
||||||
This means that, for example, if you target a certain file size or constant bit rate,
|
|
||||||
you will achieve better quality with a slower preset. Similarly, for constant quality encoding,
|
|
||||||
you will simply save bitrate by choosing a slower preset.
|
|
||||||
pix_fmt: str
|
|
||||||
Pixel format. Run 'ffmpeg -pix_fmts' in your shell to see all options.
|
|
||||||
silent_ffmpeg: bool
|
|
||||||
Surpress the output from ffmpeg.
|
|
||||||
"""
|
|
||||||
if len(os.path.split(fp_out)[0]) > 0:
|
|
||||||
assert os.path.isdir(os.path.split(fp_out)[0]), "Directory does not exist!"
|
|
||||||
|
|
||||||
self.fp_out = fp_out
|
|
||||||
self.fps = fps
|
|
||||||
self.crf = crf
|
|
||||||
self.pix_fmt = pix_fmt
|
|
||||||
self.codec = codec
|
|
||||||
self.preset = preset
|
|
||||||
self.silent_ffmpeg = silent_ffmpeg
|
|
||||||
|
|
||||||
if os.path.isfile(fp_out):
|
|
||||||
os.remove(fp_out)
|
|
||||||
|
|
||||||
self.init_done = False
|
|
||||||
self.nmb_frames = 0
|
|
||||||
if shape_hw is None:
|
|
||||||
self.shape_hw = [-1, 1]
|
|
||||||
else:
|
|
||||||
if len(shape_hw) == 2:
|
|
||||||
shape_hw.append(3)
|
|
||||||
self.shape_hw = shape_hw
|
|
||||||
self.initialize()
|
|
||||||
|
|
||||||
print(f"MovieSaver initialized. fps={fps} crf={crf} pix_fmt={pix_fmt} codec={codec} preset={preset}")
|
|
||||||
|
|
||||||
def initialize(self):
|
|
||||||
args = (
|
|
||||||
ffmpeg
|
|
||||||
.input('pipe:', format='rawvideo', pix_fmt='rgb24', s='{}x{}'.format(self.shape_hw[1], self.shape_hw[0]), framerate=self.fps)
|
|
||||||
.output(self.fp_out, crf=self.crf, pix_fmt=self.pix_fmt, c=self.codec, preset=self.preset)
|
|
||||||
.overwrite_output()
|
|
||||||
.compile()
|
|
||||||
)
|
|
||||||
if self.silent_ffmpeg:
|
|
||||||
self.ffmpg_process = subprocess.Popen(args, stdin=subprocess.PIPE, stderr=subprocess.DEVNULL, stdout=subprocess.DEVNULL)
|
|
||||||
else:
|
|
||||||
self.ffmpg_process = subprocess.Popen(args, stdin=subprocess.PIPE)
|
|
||||||
self.init_done = True
|
|
||||||
self.shape_hw = tuple(self.shape_hw)
|
|
||||||
print(f"Initialization done. Movie shape: {self.shape_hw}")
|
|
||||||
|
|
||||||
def write_frame(self, out_frame: np.ndarray):
|
|
||||||
r"""
|
|
||||||
Function to dump a numpy array as frame of a movie.
|
|
||||||
Args:
|
|
||||||
out_frame: np.ndarray
|
|
||||||
Numpy array, in np.uint8 format. Convert with np.astype(x, np.uint8).
|
|
||||||
Dim 0: y
|
|
||||||
Dim 1: x
|
|
||||||
Dim 2: RGB
|
|
||||||
"""
|
|
||||||
assert out_frame.dtype == np.uint8, "Convert to np.uint8 before"
|
|
||||||
assert len(out_frame.shape) == 3, "out_frame needs to be three dimensional, Y X C"
|
|
||||||
assert out_frame.shape[2] == 3, f"need three color channels, but you provided {out_frame.shape[2]}."
|
|
||||||
|
|
||||||
if not self.init_done:
|
|
||||||
self.shape_hw = out_frame.shape
|
|
||||||
self.initialize()
|
|
||||||
|
|
||||||
assert self.shape_hw == out_frame.shape, f"You cannot change the image size after init. Initialized with {self.shape_hw}, out_frame {out_frame.shape}"
|
|
||||||
|
|
||||||
# write frame
|
|
||||||
self.ffmpg_process.stdin.write(
|
|
||||||
out_frame
|
|
||||||
.astype(np.uint8)
|
|
||||||
.tobytes()
|
|
||||||
)
|
|
||||||
|
|
||||||
self.nmb_frames += 1
|
|
||||||
|
|
||||||
def finalize(self):
|
|
||||||
r"""
|
|
||||||
Call this function to finalize the movie. If you forget to call it your movie will be garbage.
|
|
||||||
"""
|
|
||||||
if self.nmb_frames == 0:
|
|
||||||
print("You did not write any frames yet! nmb_frames = 0. Cannot save.")
|
|
||||||
return
|
|
||||||
self.ffmpg_process.stdin.close()
|
|
||||||
self.ffmpg_process.wait()
|
|
||||||
duration = int(self.nmb_frames / self.fps)
|
|
||||||
print(f"Movie saved, {duration}s playtime, watch here: \n{self.fp_out}")
|
|
||||||
|
|
||||||
|
|
||||||
def concatenate_movies(fp_final: str, list_fp_movies: List[str]):
|
|
||||||
r"""
|
|
||||||
Concatenate multiple movie segments into one long movie, using ffmpeg.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
fp_final : str
|
|
||||||
Full path of the final movie file. Should end with .mp4
|
|
||||||
list_fp_movies : list[str]
|
|
||||||
List of full paths of movie segments.
|
|
||||||
"""
|
|
||||||
assert fp_final[-4] == ".", "fp_final seems to miss file extension: {fp_final}"
|
|
||||||
for fp in list_fp_movies:
|
|
||||||
assert os.path.isfile(fp), f"Input movie does not exist: {fp}"
|
|
||||||
assert os.path.getsize(fp) > 100, f"Input movie seems empty: {fp}"
|
|
||||||
|
|
||||||
if os.path.isfile(fp_final):
|
|
||||||
os.remove(fp_final)
|
|
||||||
|
|
||||||
# make a list for ffmpeg
|
|
||||||
list_concat = []
|
|
||||||
for fp_part in list_fp_movies:
|
|
||||||
list_concat.append(f"""file '{fp_part}'""")
|
|
||||||
|
|
||||||
# save this list
|
|
||||||
fp_list = "tmp_move.txt"
|
|
||||||
with open(fp_list, "w") as fa:
|
|
||||||
for item in list_concat:
|
|
||||||
fa.write("%s\n" % item)
|
|
||||||
|
|
||||||
cmd = f'ffmpeg -f concat -safe 0 -i {fp_list} -c copy {fp_final}'
|
|
||||||
subprocess.call(cmd, shell=True)
|
|
||||||
os.remove(fp_list)
|
|
||||||
if os.path.isfile(fp_final):
|
|
||||||
print(f"concatenate_movies: success! Watch here: {fp_final}")
|
|
||||||
|
|
||||||
|
|
||||||
def add_sound(fp_final, fp_silentmovie, fp_sound):
|
|
||||||
cmd = f'ffmpeg -i {fp_silentmovie} -i {fp_sound} -c copy -map 0:v:0 -map 1:a:0 {fp_final}'
|
|
||||||
subprocess.call(cmd, shell=True)
|
|
||||||
if os.path.isfile(fp_final):
|
|
||||||
print(f"add_sound: success! Watch here: {fp_final}")
|
|
||||||
|
|
||||||
|
|
||||||
def add_subtitles_to_video(
|
|
||||||
fp_input: str,
|
|
||||||
fp_output: str,
|
|
||||||
subtitles: list,
|
|
||||||
fontsize: int = 50,
|
|
||||||
font_name: str = "Arial",
|
|
||||||
color: str = 'yellow'
|
|
||||||
):
|
|
||||||
from moviepy.editor import VideoFileClip, TextClip, CompositeVideoClip
|
|
||||||
r"""
|
|
||||||
Function to add subtitles to a video.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
fp_input (str): File path of the input video.
|
|
||||||
fp_output (str): File path of the output video with subtitles.
|
|
||||||
subtitles (list): List of dictionaries containing subtitle information
|
|
||||||
(start, duration, text). Example:
|
|
||||||
subtitles = [
|
|
||||||
{"start": 1, "duration": 3, "text": "hello test"},
|
|
||||||
{"start": 4, "duration": 2, "text": "this works"},
|
|
||||||
]
|
|
||||||
fontsize (int): Font size of the subtitles.
|
|
||||||
font_name (str): Font name of the subtitles.
|
|
||||||
color (str): Color of the subtitles.
|
|
||||||
"""
|
|
||||||
|
|
||||||
# Check if the input file exists
|
|
||||||
if not os.path.isfile(fp_input):
|
|
||||||
raise FileNotFoundError(f"Input file not found: {fp_input}")
|
|
||||||
|
|
||||||
# Check the subtitles format and sort them by the start time
|
|
||||||
time_points = []
|
|
||||||
for subtitle in subtitles:
|
|
||||||
if not isinstance(subtitle, dict):
|
|
||||||
raise ValueError("Each subtitle must be a dictionary containing 'start', 'duration' and 'text'.")
|
|
||||||
if not all(key in subtitle for key in ["start", "duration", "text"]):
|
|
||||||
raise ValueError("Each subtitle dictionary must contain 'start', 'duration' and 'text'.")
|
|
||||||
if subtitle['start'] < 0 or subtitle['duration'] <= 0:
|
|
||||||
raise ValueError("'start' should be non-negative and 'duration' should be positive.")
|
|
||||||
time_points.append((subtitle['start'], subtitle['start'] + subtitle['duration']))
|
|
||||||
|
|
||||||
# Check for overlaps
|
|
||||||
time_points.sort()
|
|
||||||
for i in range(1, len(time_points)):
|
|
||||||
if time_points[i][0] < time_points[i - 1][1]:
|
|
||||||
raise ValueError("Subtitle time intervals should not overlap.")
|
|
||||||
|
|
||||||
# Load the video clip
|
|
||||||
video = VideoFileClip(fp_input)
|
|
||||||
|
|
||||||
# Create a list to store subtitle clips
|
|
||||||
subtitle_clips = []
|
|
||||||
|
|
||||||
# Loop through the subtitle information and create TextClip for each
|
|
||||||
for subtitle in subtitles:
|
|
||||||
text_clip = TextClip(subtitle["text"], fontsize=fontsize, color=color, font=font_name)
|
|
||||||
text_clip = text_clip.set_position(('center', 'bottom')).set_start(subtitle["start"]).set_duration(subtitle["duration"])
|
|
||||||
subtitle_clips.append(text_clip)
|
|
||||||
|
|
||||||
# Overlay the subtitles on the video
|
|
||||||
video = CompositeVideoClip([video] + subtitle_clips)
|
|
||||||
|
|
||||||
# Write the final clip to a new file
|
|
||||||
video.write_videofile(fp_output)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class MovieReader():
|
|
||||||
r"""
|
|
||||||
Class to read in a movie.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, fp_movie):
|
|
||||||
self.video_player_object = cv2.VideoCapture(fp_movie)
|
|
||||||
self.nmb_frames = int(self.video_player_object.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
||||||
self.fps_movie = int(self.video_player_object.get(cv2.CAP_PROP_FPS))
|
|
||||||
self.shape = [100, 100, 3]
|
|
||||||
self.shape_is_set = False
|
|
||||||
|
|
||||||
def get_next_frame(self):
|
|
||||||
success, image = self.video_player_object.read()
|
|
||||||
if success:
|
|
||||||
if not self.shape_is_set:
|
|
||||||
self.shape_is_set = True
|
|
||||||
self.shape = image.shape
|
|
||||||
return image
|
|
||||||
else:
|
|
||||||
return np.zeros(self.shape)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
fps = 2
|
|
||||||
list_fp_movies = []
|
|
||||||
for k in range(4):
|
|
||||||
fp_movie = f"/tmp/my_random_movie_{k}.mp4"
|
|
||||||
list_fp_movies.append(fp_movie)
|
|
||||||
ms = MovieSaver(fp_movie, fps=fps)
|
|
||||||
for fn in tqdm(range(30)):
|
|
||||||
img = (np.random.rand(512, 1024, 3) * 255).astype(np.uint8)
|
|
||||||
ms.write_frame(img)
|
|
||||||
ms.finalize()
|
|
||||||
|
|
||||||
fp_final = "/tmp/my_concatenated_movie.mp4"
|
|
||||||
concatenate_movies(fp_final, list_fp_movies)
|
|
@@ -1,6 +1,6 @@
|
|||||||
lpips==0.1.4
|
lpips==0.1.4
|
||||||
opencv-python
|
opencv-python
|
||||||
ffmpeg-python
|
|
||||||
diffusers==0.25.0
|
diffusers==0.25.0
|
||||||
transformers
|
transformers
|
||||||
pytest
|
pytest
|
||||||
|
accelerate
|
10
setup.py
10
setup.py
@@ -6,14 +6,14 @@ with open('requirements.txt') as f:
|
|||||||
|
|
||||||
setup(
|
setup(
|
||||||
name='latentblending',
|
name='latentblending',
|
||||||
version='0.2',
|
version='0.3',
|
||||||
url='https://github.com/lunarring/latentblending',
|
url='https://github.com/lunarring/latentblending',
|
||||||
description='Butter-smooth video transitions',
|
description='Butter-smooth video transitions',
|
||||||
long_description=open('README.md').read(),
|
long_description=open('README.md').read(),
|
||||||
install_requires=required,
|
install_requires=[
|
||||||
dependency_links=[
|
'lunar_tools @ git+https://github.com/lunarring/lunar_tools.git#egg=lunar_tools'
|
||||||
'git+https://github.com/lunarring/lunar_tools#egg=lunar_tools'
|
] + required,
|
||||||
],
|
|
||||||
include_package_data=False,
|
include_package_data=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user