new examples
This commit is contained in:
parent
3c6015782f
commit
f03a62dba8
|
@ -31,10 +31,10 @@ from latent_blending import LatentBlending, add_frames_linear_interp
|
|||
from stable_diffusion_holder import StableDiffusionHolder
|
||||
torch.set_grad_enabled(False)
|
||||
|
||||
|
||||
#%% First let us spawn a stable diffusion holder
|
||||
fp_ckpt = "../stable_diffusion_models/ckpt/v2-1_768-ema-pruned.ckpt"
|
||||
sdh = StableDiffusionHolder(fp_ckpt)
|
||||
|
||||
|
||||
#%% Next let's set up all parameters
|
||||
depth_strength = 0.65 # Specifies how deep (in terms of diffusion iterations the first branching happens)
|
||||
|
@ -44,8 +44,8 @@ fixed_seeds = [69731932, 504430820]
|
|||
prompt1 = "photo of a beautiful cherry forest covered in white flowers, ambient light, very detailed, magic"
|
||||
prompt2 = "photo of an golden statue with a funny hat, surrounded by ferns and vines, grainy analog photograph, mystical ambience, incredible detail"
|
||||
|
||||
fp_movie = 'movie_example1.mp4'
|
||||
duration_transition = 12 # In seconds
|
||||
fps = 30
|
||||
|
||||
# Spawn latent blending
|
||||
lb = LatentBlending(sdh)
|
||||
|
@ -53,22 +53,11 @@ lb.set_prompt1(prompt1)
|
|||
lb.set_prompt2(prompt2)
|
||||
|
||||
# Run latent blending
|
||||
imgs_transition = lb.run_transition(
|
||||
lb.run_transition(
|
||||
depth_strength = depth_strength,
|
||||
t_compute_max_allowed = t_compute_max_allowed,
|
||||
fixed_seeds = fixed_seeds
|
||||
)
|
||||
|
||||
# Let's get more cheap frames via linear interpolation (duration_transition*fps frames)
|
||||
imgs_transition_ext = add_frames_linear_interp(imgs_transition, duration_transition, fps)
|
||||
|
||||
# Save as MP4
|
||||
fp_movie = "movie_example1.mp4"
|
||||
if os.path.isfile(fp_movie):
|
||||
os.remove(fp_movie)
|
||||
ms = MovieSaver(fp_movie, fps=fps, shape_hw=[sdh.height, sdh.width])
|
||||
for img in tqdm(imgs_transition_ext):
|
||||
ms.write_frame(img)
|
||||
ms.finalize()
|
||||
|
||||
|
||||
# Save movie
|
||||
lb.write_movie_transition(fp_movie, duration_transition)
|
|
@ -0,0 +1,81 @@
|
|||
# Copyright 2022 Lunar Ring. All rights reserved.
|
||||
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os, sys
|
||||
import torch
|
||||
torch.backends.cudnn.benchmark = False
|
||||
import numpy as np
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore')
|
||||
import warnings
|
||||
import torch
|
||||
from tqdm.auto import tqdm
|
||||
from PIL import Image
|
||||
import torch
|
||||
from movie_util import MovieSaver, concatenate_movies
|
||||
from typing import Callable, List, Optional, Union
|
||||
from latent_blending import LatentBlending, add_frames_linear_interp
|
||||
from stable_diffusion_holder import StableDiffusionHolder
|
||||
torch.set_grad_enabled(False)
|
||||
|
||||
#%% First let us spawn a stable diffusion holder
|
||||
fp_ckpt = "../stable_diffusion_models/ckpt/v2-1_512-ema-pruned.ckpt"
|
||||
# fp_ckpt = "../stable_diffusion_models/ckpt/v2-1_768-ema-pruned.ckpt"
|
||||
sdh = StableDiffusionHolder(fp_ckpt)
|
||||
|
||||
|
||||
#%% Let's setup the multi transition
|
||||
fps = 30
|
||||
duration_single_trans = 6
|
||||
depth_strength = 0.55 #Specifies how deep (in terms of diffusion iterations the first branching happens)
|
||||
|
||||
# Specify a list of prompts below
|
||||
list_prompts = []
|
||||
list_prompts.append("surrealistic statue made of glitter and dirt, standing in a lake, atmospheric light, strange glow")
|
||||
list_prompts.append("statue of a mix between a tree and human, made of marble, incredibly detailed")
|
||||
list_prompts.append("weird statue of a frog monkey, many colors, standing next to the ruins of an ancient city")
|
||||
list_prompts.append("statue of a spider that looked like a human")
|
||||
list_prompts.append("statue of a bird that looked like a scorpion")
|
||||
list_prompts.append("statue of an ancient cybernetic messenger annoucing good news, golden, futuristic")
|
||||
|
||||
# You can optionally specify the seeds
|
||||
list_seeds = [954375479, 332539350, 956051013, 408831845, 250009012, 675588737]
|
||||
t_compute_max_allowed = 12 # per segment
|
||||
fp_movie = 'movie_example2.mp4'
|
||||
lb = LatentBlending(sdh)
|
||||
|
||||
list_movie_parts = [] #
|
||||
for i in range(len(list_prompts)-1):
|
||||
prompt1 = list_prompts[i]
|
||||
prompt2 = list_prompts[i+1]
|
||||
lb.set_prompt1(prompt1)
|
||||
lb.set_prompt2(prompt2)
|
||||
fp_movie_part = f"tmp_part_{str(i).zfill(3)}.mp4"
|
||||
|
||||
fixed_seeds = list_seeds[i:i+2]
|
||||
|
||||
# Run latent blending
|
||||
lb.run_transition(
|
||||
depth_strength = depth_strength,
|
||||
t_compute_max_allowed = t_compute_max_allowed,
|
||||
fixed_seeds = fixed_seeds
|
||||
)
|
||||
|
||||
# Save movie
|
||||
lb.write_movie_transition(fp_movie_part, duration_single_trans)
|
||||
list_movie_parts.append(fp_movie_part)
|
||||
|
||||
# Finally, concatente the result
|
||||
concatenate_movies(fp_movie, list_movie_parts)
|
|
@ -727,64 +727,6 @@ class LatentBlending():
|
|||
return torch.randn((1, C, H, W), generator=generator, device=self.sdh.device)
|
||||
|
||||
|
||||
def run_multi_transition(
|
||||
self,
|
||||
fp_movie: str,
|
||||
list_prompts: List[str],
|
||||
list_seeds: List[int] = None,
|
||||
fps: float = 24,
|
||||
duration_single_trans: float = 15,
|
||||
):
|
||||
r"""
|
||||
Runs multiple transitions and stitches them together. You can supply the seeds for each prompt.
|
||||
Args:
|
||||
fp_movie: file path for movie saving
|
||||
list_prompts: List[float]:
|
||||
list of the prompts. There will be a transition starting from the first to the last.
|
||||
list_seeds: List[int] = None:
|
||||
Random Seeds for each prompt.
|
||||
fps: float:
|
||||
frames per second
|
||||
duration_single_trans: float:
|
||||
The duration of a single transition prompt[i] -> prompt[i+1].
|
||||
The duration of your movie will be duration_single_trans * len(list_prompts)
|
||||
|
||||
"""
|
||||
|
||||
if list_seeds is None:
|
||||
list_seeds = list(np.random.randint(0, 10e10, len(list_prompts)))
|
||||
assert len(list_prompts) == len(list_seeds), "Supply the same number of prompts and seeds"
|
||||
|
||||
ms = MovieSaver(fp_movie, fps=fps)
|
||||
|
||||
for i in range(len(list_prompts)-1):
|
||||
print(f"Starting movie segment {i+1}/{len(list_prompts)-1}")
|
||||
|
||||
if i==0:
|
||||
self.set_prompt1(list_prompts[i])
|
||||
self.set_prompt2(list_prompts[i+1])
|
||||
recycle_img1 = False
|
||||
else:
|
||||
self.swap_forward()
|
||||
self.set_prompt2(list_prompts[i+1])
|
||||
recycle_img1 = True
|
||||
|
||||
local_seeds = [list_seeds[i], list_seeds[i+1]]
|
||||
list_imgs = self.run_transition(recycle_img1=recycle_img1, fixed_seeds=local_seeds)
|
||||
list_imgs_interp = add_frames_linear_interp(list_imgs, fps, duration_single_trans)
|
||||
|
||||
if i==0:
|
||||
self.multi_transition_img_first = list_imgs[0]
|
||||
|
||||
# Save movie frame
|
||||
for img in list_imgs_interp:
|
||||
ms.write_frame(img)
|
||||
|
||||
ms.finalize()
|
||||
self.multi_transition_img_last = list_imgs[-1]
|
||||
|
||||
print("run_multi_transition: All completed.")
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def run_diffusion(
|
||||
|
@ -1018,6 +960,10 @@ class LatentBlending():
|
|||
def write_imgs_transition(self, dp_img):
|
||||
r"""
|
||||
Writes the transition images into the folder dp_img.
|
||||
Requires run_transition to be completed.
|
||||
Args:
|
||||
dp_img: str
|
||||
Directory, into which the transition images, yaml file and latents are written.
|
||||
"""
|
||||
imgs_transition = self.tree_final_imgs
|
||||
os.makedirs(dp_img, exist_ok=True)
|
||||
|
@ -1028,6 +974,32 @@ class LatentBlending():
|
|||
fp_yml = os.path.join(dp_img, "lowres.yaml")
|
||||
self.save_statedict(fp_yml)
|
||||
|
||||
def write_movie_transition(self, fp_movie, duration_transition, fps=30):
|
||||
r"""
|
||||
Writes the transition movie to fp_movie, using the given duration and fps..
|
||||
The missing frames are linearly interpolated.
|
||||
Args:
|
||||
fp_movie: str
|
||||
file pointer to the final movie.
|
||||
duration_transition: float
|
||||
duration of the movie in seonds
|
||||
fps: int
|
||||
fps of the movie
|
||||
|
||||
"""
|
||||
|
||||
# Let's get more cheap frames via linear interpolation (duration_transition*fps frames)
|
||||
imgs_transition_ext = add_frames_linear_interp(self.tree_final_imgs, duration_transition, fps)
|
||||
|
||||
# Save as MP4
|
||||
if os.path.isfile(fp_movie):
|
||||
os.remove(fp_movie)
|
||||
ms = MovieSaver(fp_movie, fps=fps, shape_hw=[self.sdh.height, self.sdh.width])
|
||||
for img in tqdm(imgs_transition_ext):
|
||||
ms.write_frame(img)
|
||||
ms.finalize()
|
||||
|
||||
|
||||
|
||||
def save_statedict(self, fp_yml):
|
||||
# Dump everything relevant into yaml
|
||||
|
|
Loading…
Reference in New Issue